Lecture 5

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 20, 2015

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that $ab = 1 \mod n$.

Excercise: Why is this so?

Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n_1, \ldots, n_k be positive pairwise coprime integers and let a_1, \ldots, a_k be integers. Then the equation system

$$x = a_1 \mod n_1$$

$$x = a_2 \mod n_2$$

$$x = a_3 \mod n_3$$

$$\vdots$$

$$x = a_k \mod n_k$$

has a unique solution in $\{0, \ldots, \prod_i n_i - 1\}$.

Constructive Proof of CRT

- 1. Set $N = n_1 n_2 \cdot \ldots \cdot n_k$.
- 2. Find r_i and s_i such that $r_i n_i + s_i \frac{N}{n_i} = 1$ (Bezout).
- 3. Note that

$$s_i \frac{N}{n_i} = 1 - r_i n_i = \begin{cases} 1 \pmod{n_i} \\ 0 \pmod{n_j} \end{cases}$$
 if $j \neq i$

4. The solution to the equation system becomes:

$$x = \sum_{i=1}^{k} \left(s_i \frac{N}{n_i} \right) \cdot a_i$$

The Multiplicative Group

The set $\mathbb{Z}_n^* = \{0 \le a < n : \gcd(a, n) = 1\}$ forms a group, since:

- ▶ **Closure.** It is closed under multiplication modulo *n*.
- ▶ **Associativity.** For $x, y, z \in \mathbb{Z}_n^*$:

$$(xy)z = x(yz) \bmod n$$
.

▶ **Identity.** For every $x \in \mathbb{Z}_n^*$:

$$1 \cdot x = x \cdot 1 = x$$
.

▶ **Inverse.** For every $a \in \mathbb{Z}_n^*$ exists $b \in \mathbb{Z}_n^*$ such that:

$$ab = 1 \mod n$$
.

Lagrange's Theorem

Theorem. If H is a subgroup of a finite group G, then |H| divides |G|.

Proof.

- 1. Define $aH = \{ah : h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x = yh \land h \in H$ on G.
- 2. The map $\phi_{a,b}: aH \to bH$, defined by $\phi_{a,b}(x) = ba^{-1}x$ is a bijection, so |aH| = |bH| for $a, b \in G$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

▶ Clearly: $\phi(p) = p - 1$ when p is prime.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.
- ▶ In general: $\phi\left(\prod_{i} p_{i}^{k_{i}}\right) = \prod_{i} \left(p_{i}^{k} p_{i}^{k-1}\right)$.

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers 0 < a < n relatively prime to n.

- ▶ Clearly: $\phi(p) = p 1$ when p is prime.
- ▶ Similarly: $\phi(p^k) = p^k p^{k-1}$ when p is prime and k > 1.
- ▶ In general: $\phi\left(\prod_{i} p_{i}^{k_{i}}\right) = \prod_{i} \left(p_{i}^{k} p_{i}^{k-1}\right)$.

Excercise: How does this follow from CRT?

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \mod n$.

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_p^*$ and p is prime, then $b^{p-1} = 1 \mod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_{n}^{*}$, then $b^{\phi(n)} = 1 \mod n$.

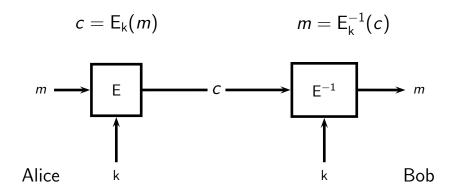
Proof. Note that $|\mathbb{Z}_n^*| = \phi(n)$. b generates a subgroup $\langle b \rangle$ of \mathbb{Z}_n^* , so $|\langle b \rangle|$ divides $\phi(n)$ and $b^{\phi(n)} = 1 \mod n$.

Multiplicative Group of a Prime Order Field

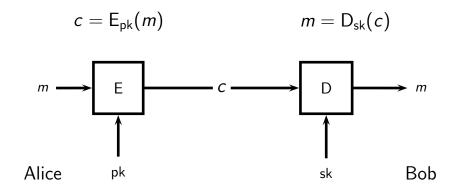
Definition. A group G is called **cyclic** if there exists an element g such that each element in G is on the form g^x for some integer x.

Theorem. If p is prime, then \mathbb{Z}_p^* is cyclic.

Cipher (Symmetric Cryptosystem)



Public-Key Cryptosystem



History of Public-Key Cryptography

Public-key cryptography was discovered:

- ▶ By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- ▶ Independently by Merkle in 1974 (Merkle's puzzles).
- ▶ Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- ▶ E is a (possibly probabilistic) **encryption algorithm** that given a public key pk and a message m in the plaintext space \mathcal{M}_{pk} outputs a ciphertext c, and
- ▶ D is a **decryption algorithm** that given a secret key sk and a ciphertext *c* outputs a plaintext *m*,

such that $D_{sk}(E_{pk}(m)) = m$ for every (pk, sk) and $m \in \mathcal{M}_{pk}$.