Lecture 5

Douglas Wikström KTH Stockholm dog@csc.kth.se

February 20, 2015

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1 .

Fact. If a and n are coprime, then there exists a b such that $a b=1 \bmod n$.

Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest common divisor is 1 .

Fact. If a and n are coprime, then there exists a b such that $a b=1 \bmod n$.

Excercise: Why is this so?

Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let n_{1}, \ldots, n_{k} be positive pairwise coprime integers and let a_{1}, \ldots, a_{k} be integers. Then the equation system

$$
\begin{aligned}
x & =a_{1} \bmod n_{1} \\
x & =a_{2} \bmod n_{2} \\
x & =a_{3} \bmod n_{3} \\
& \vdots \\
x & =a_{k} \bmod n_{k}
\end{aligned}
$$

has a unique solution in $\left\{0, \ldots, \prod_{i} n_{i}-1\right\}$.

Constructive Proof of CRT

1. Set $N=n_{1} n_{2} \cdot \ldots \cdot n_{k}$.
2. Find r_{i} and s_{i} such that $r_{i} n_{i}+s_{i} \frac{N}{n_{i}}=1$ (Bezout).
3. Note that

$$
s_{i} \frac{N}{n_{i}}=1-r_{i} n_{i}=\left\{\begin{array}{ll}
1 & \left(\bmod n_{i}\right) \\
0 & \left(\bmod n_{j}\right)
\end{array} \quad \text { if } j \neq i\right.
$$

4. The solution to the equation system becomes:

$$
x=\sum_{i=1}^{k}\left(s_{i} \frac{N}{n_{i}}\right) \cdot a_{i}
$$

The Multiplicative Group

The set $\mathbb{Z}_{n}^{*}=\{0 \leq a<n: \operatorname{gcd}(a, n)=1\}$ forms a group, since:

- Closure. It is closed under multiplication modulo n.
- Associativity. For $x, y, z \in \mathbb{Z}_{n}^{*}$:

$$
(x y) z=x(y z) \bmod n
$$

- Identity. For every $x \in \mathbb{Z}_{n}^{*}$:

$$
1 \cdot x=x \cdot 1=x .
$$

- Inverse. For every $a \in \mathbb{Z}_{n}^{*}$ exists $b \in \mathbb{Z}_{n}^{*}$ such that:

$$
a b=1 \bmod n .
$$

Lagrange's Theorem

Theorem. If H is a subgroup of a finite group G, then $|H|$ divides $|G|$.

Proof.

1. Define $a H=\{a h: h \in H\}$. This gives an equivalence relation $x \approx y \Leftrightarrow x=y h \wedge h \in H$ on G.
2. The map $\phi_{a, b}: a H \rightarrow b H$, defined by $\phi_{a, b}(x)=b a^{-1} x$ is a bijection, so $|a H|=|b H|$ for $a, b \in G$.

Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers $0<a<n$ relatively prime to n.

Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers $0<a<n$ relatively prime to n.

- Clearly: $\phi(p)=p-1$ when p is prime.

Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers $0<a<n$ relatively prime to n.

- Clearly: $\phi(p)=p-1$ when p is prime.
- Similarly: $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ when p is prime and $k>1$.

Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers $0<a<n$ relatively prime to n.

- Clearly: $\phi(p)=p-1$ when p is prime.
- Similarly: $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ when p is prime and $k>1$.
- In general: $\phi\left(\prod_{i} p_{i}^{k_{i}}\right)=\prod_{i}\left(p_{i}^{k}-p_{i}^{k-1}\right)$.

Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function $\phi(n)$ counts the number of integers $0<a<n$ relatively prime to n.

- Clearly: $\phi(p)=p-1$ when p is prime.
- Similarly: $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$ when p is prime and $k>1$.
- In general: $\phi\left(\prod_{i} p_{i}^{k_{i}}\right)=\prod_{i}\left(p_{i}^{k}-p_{i}^{k-1}\right)$.

Excercise: How does this follow from CRT?

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_{p}^{*}$ and p is prime, then $b^{p-1}=1 \bmod p$.
Theorem. (Euler) If $b \in \mathbb{Z}_{n}^{*}$, then $b^{\phi(n)}=1 \bmod n$.

Fermat's and Euler's Theorems

Theorem. (Fermat) If $b \in \mathbb{Z}_{p}^{*}$ and p is prime, then $b^{p-1}=1 \bmod p$.

Theorem. (Euler) If $b \in \mathbb{Z}_{n}^{*}$, then $b^{\phi(n)}=1 \bmod n$.

Proof. Note that $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$. b generates a subgroup $\langle b\rangle$ of \mathbb{Z}_{n}^{*}, so $|\langle b\rangle|$ divides $\phi(n)$ and $b^{\phi(n)}=1 \bmod n$.

Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g such that each element in G is on the form g^{x} for some integer x.

Theorem. If p is prime, then \mathbb{Z}_{p}^{*} is cyclic.

Cipher (Symmetric Cryptosystem)

$$
c=\mathrm{E}_{\mathrm{k}}(m) \quad m=\mathrm{E}_{\mathrm{k}}^{-1}(c)
$$

Public-Key Cryptosystem

$$
\begin{aligned}
& c=\mathrm{E}_{\mathrm{pk}}(m) \quad m=\mathrm{D}_{\mathrm{sk}}(c) \\
& \text { Alice } \\
& \text { pk } \\
& \text { Bob } \\
& m \\
& \text { sk }
\end{aligned}
$$

History of Public-Key Cryptography

Public-key cryptography was discovered:

- By Ellis, Cocks, and Williamson at the Government Communications Headquarters (GCHQ) in the UK in the early 1970s (not public until 1997).
- Independently by Merkle in 1974 (Merkle's puzzles).
- Independently in its discrete-logarithm based form by Diffie and Hellman in 1977, and instantiated in 1978 (key-exchange).
- Independently in its factoring-based form by Rivest, Shamir and Adleman in 1977.

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D) where,

- Gen is a probabilistic key generation algorithm that outputs key pairs (pk, sk),
- E is a (possibly probabilistic) encryption algorithm that given a public key pk and a message m in the plaintext space $\mathcal{M}_{\text {pk }}$ outputs a ciphertext c, and
- D is a decryption algorithm that given a secret key sk and a ciphertext c outputs a plaintext m,
such that $\mathrm{D}_{\mathrm{sk}}\left(\mathrm{E}_{\mathrm{pk}}(m)\right)=m$ for every $(\mathrm{pk}, \mathrm{sk})$ and $m \in \mathcal{M}_{\mathrm{pk}}$.

