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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab =1 mod n.
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Coprimality (Relative Primality)

Definition. Two integers m and n are coprime if their greatest
common divisor is 1.

Fact. If a and n are coprime, then there exists a b such that
ab =1 mod n.

Excercise: Why is this so?
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Chinese Remainder Theorem (CRT)

Theorem. (Sun Tzu 400 AC) Let ny,..., ng be positive pairwise
coprime integers and let ai, ..., ax be integers. Then the equation
system
a1 mod m
= a>mod n
= a3z mod n3
X = ag mod ng

has a unique solution in {0,...,[]; ni — 1}.
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Constructive Proof of CRT

1. Set N=nyno-...- ng.
2. Find r; and s; such that r;n; + s,-# =1 (Bezout).
3. Note that
N [ 1 (mod nj)
S’F,-_l_""’_{ 0 (modn;) ifj#i

4. The solution to the equation system becomes:
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The Multiplicative Group

Theset Z, ={0<a<n : gecd(a,n) =1} forms a group, since:
» Closure. It is closed under multiplication modulo n.
» Associativity. For x,y,z € Z%:
(xy)z = x(yz) mod n .

> ldentity. For every x € Z}:

> Inverse. For every a € Zj, exists b € Z}, such that:

ab=1modn .
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Lagrange's Theorem

Theorem. If H is a subgroup of a finite group G,
then |H| divides |G].

Proof.
1. Define aH = {ah: h € H}. This gives an equivalence relation
x~y<x=yhANheHonG.
2. The map ¢ap: aH — bH, defined by ¢, p(x) = ba~lx is a
bijection, so |aH| = |bH| for a,b € G.
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Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.
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Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.
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Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.
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Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.

k; -
» In general: ¢ (H, p; ) =1 (P,k —P,{( 1)-
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Euler's Phi-Function (Totient Function)

Definition. Euler's Phi-function ¢(n) counts the number of
integers 0 < a < n relatively prime to n.

» Clearly: ¢(p) = p — 1 when p is prime.

» Similarly: ¢(p¥) = p¥ — p¥~1 when p is prime and k > 1.

k; -
» In general: ¢ (H, p; ) =1 (P,k —P,{( 1)-

Excercise: How does this follow from CRT?
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Fermat's and Euler's Theorems

Theorem. (Fermat) If b € Zj, and p is prime, then
bP~1 =1 mod p.

Theorem. (Euler) If b € Z, then b%(") =1 mod n.
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Fermat's and Euler's Theorems

Theorem. (Fermat) If b € Zj, and p is prime, then
bP~1 =1 mod p.

Theorem. (Euler) If b € Z, then b%(") =1 mod n.

Proof. Note that |Z%| = ¢(n). b generates a subgroup (b) of Z%,
so |(b)| divides ¢(n) and b?(" =1 mod n.

DD2448 Foundations of Cryptography February 20, 2015



Multiplicative Group of a Prime Order Field

Definition. A group G is called cyclic if there exists an element g
such that each element in G is on the form g* for some integer x.

Theorem. If p is prime, then Zj, is cyclic.
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Public-Key Cryptography

Cipher (Symmetric Cryptosystem)

c = Ex(m) m=E_ *(c)
m = E C E-! > m
Alice k k Bob

DD2448 Foundations of Cryptography February 20, 2015



Public-Key Cryptography

Public-Key Cryptosystem

¢ = Ep(m) m = Dg(c)
M =—1 E C D [ m
Alice pk sk Bob
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Public-Key Cryptography

History of Public-Key Cryptography

Public-key cryptography was discovered:

» By Ellis, Cocks, and Williamson at the Government
Communications Headquarters (GCHQ) in the UK in the early
1970s (not public until 1997).

» Independently by Merkle in 1974 (Merkle's puzzles).

> Independently in its discrete-logarithm based form by Diffie
and Hellman in 1977, and instantiated in 1978 (key-exchange).

» Independently in its factoring-based form by Rivest, Shamir
and Adleman in 1977.
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Public-Key Cryptography

Public-Key Cryptography

Definition. A public-key cryptosystem is a tuple (Gen, E, D)
where,
» Gen is a probabilistic key generation algorithm that
outputs key pairs (pk, sk),

» E is a (possibly probabilistic) encryption algorithm that
given a public key pk and a message m in the plaintext space
Mk outputs a ciphertext ¢, and

» D is a decryption algorithm that given a secret key sk and a
ciphertext ¢ outputs a plaintext m,

such that De(Epk(m)) = m for every (pk,sk) and m € M.
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