Iteratively Intervening with the “Most Difficult” Topics of an
Algorithms and Complexity Course

EMMA ENSTROM, KTH Royal Institute of Technology
VIGGO KANN, KTH Royal Institute of Technology

When compared to earlier programming and data structure experiences that our students might have, the
perspective changes on computers and programming when introducing theoretical computer science (TCS)
into the picture. Underlying computational models need to be addressed, and mathematical tools employed,
to understand the quality criteria of TCS. Focus shifts from doing to proving. During several years, we have
tried to make this perspective transition smoother for the students of a third year, mandatory algorithms,
data structures and computational complexity course. The concepts receiving extra attention in this work
are NP-completeness, one of the most central concepts in computer science, and dynamic programming, an
algorithm construction method that is powerful but somewhat unintuitive for some students.

The major difficulties we attribute to NP-completeness is that the tasks look similar, but have a different
purpose, than in algorithm construction exercises. Students do not immediately see the usefulness of the
concept, and hence motivation could be one issue. We have partly studied the teaching of NP-completeness
in collaboration with a professor giving a similar course at a university in another country. One line of
attacking NP-completeness has been to emphasize its algorithmic aspects, using typical tools for teaching
algorithms.

Potential difficulties associated with dynamic programming is that it is based on a known difficult concept
— recursion — and that there are many ingredients in a dynamic programming solution to a problem.

For both dynamic programming and NP-completeness, we have invented several new activities and struc-
tured the teaching differently, forcing students to think and adopt a standpoint, and practice the concepts
in programming exercises.

For students, one particularly difficult area is the proving of correctness required in all tasks in the
course, and one area of uncertainty for the students is presentation of algorithms in pseudo code (which
lacks formal syntax). These issues have also been addressed.

The approach to improving the course is action research, and the evaluation has been done using course
surveys, self-efficacy surveys, rubrics-like grading protocols, and grades. We have also interviewed teaching
assistants about their experiences.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Complexity Measures and
Classes—Reducibility and completeness; K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education

General Terms: Algorithms, experimentation, theory
Additional Key Words and Phrases: Algorithm visualization, assessment, NP-completeness, self-efficacy

ACM Reference Format:

Emma Enstrom and Viggo Kann, 2014. Iteratively Intervening with the “Most Difficult” Topics of an Algo-
rithms and Complexity Course. ACM Trans. Comput. Educ. ?, ?, Article ? (October 2014), 36 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

This work is funded by RCN at KTH School of Education and Communication in Engineering Science and
GRU at the KTH School of Computer Science and Communication, partly from the CPU fund.

Author’s addresses: Department of Theoretical Computer Science, School of Computer Science and Commu-
nication, KTH Royal Institute of Technology, Sweden.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2014 ACM 1946-6226/2014/10-ART? $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

2.2 E. Enstrdm and V. Kann

1. INTRODUCTION

The ACM Computing Curricula [ACM 2013| stipulates which “bodies of knowledge”
should be included in an undergraduate degree program in computer science. The first
of these is Algorithms and Complexity, and the main part of it is usually taught in
a separate course containing subjects like algorithmic strategies and computational
complexity. It is obvious that algorithm design is an important skill for computer sci-
entists, but what about computational complexity?

In his 1997 invited talk at a theoretical computer science conference Christos Pa-
padimitriou [Papadimitriou 1997 observed how the notion of NP-completeness has
become a pervasive and influential concept in many diverse disciplines, ranging from
“statistics and artificial life to automatic control and nuclear engineering”, and gave
some reasons for this success. One of these is that NP-completeness is a “valuable
intermediary between the abstraction of computational models and the reality of
computational models.” As a consequence, it is now a widely accepted fact that NP-
completeness is a fundamental concept that “any CS professional should understand
and be able to apply” [Lobo and Baliga 2006].

On the other hand, it is also quite well-known that computational complexity is
not easy to teach or to learn and, in general, the problem of presenting theoretical
foundations of computer science in an integrated and motivating way has been studied
for decades (e.g., [Mandrioli 1982]) and is still a rich, though somewhat under-explored,
research area for computer science education (e.g., [Goldreich 2006]).

The main algorithmic strategies that should be taught in an Algorithms and Com-
plexity course, according to the ACM Computing Curricula 2013, are brute force al-
gorithms and recursive backtracking (i.e. exhaustive search algorithms), greedy algo-
rithms, divide-and-conquer, and dynamic programming. Of these strategies, dynamic
programming (dynprog in the following) is perhaps the least straight-forward one. The
bottom-up approach of dynprog is a strategy for “reversing” the evaluation order of
sub problems and turning recursion into iteration. There is also a top-down approach
to dynamic programming, which is called memoization in which the recursive calls are
complemented with a lookup table where already calculated values are stored, effec-
tively reducing the number of recursive calls that are made. The problem is still solved
recursively, though. This version does not appear to confuse as many students, but it
is lacking one of the ingenious features of dynprog. Memoization algorithms are re-
cursive and recursive algorithms are not as easily analyzed as iterative algorithms.
For an introduction to dynamic programming, see for example [Kleinberg and Tardos
2006].

This article is about improving learning of the concepts of NP-completeness and dyn-
prog in an algorithms and complexity course for third-year undergraduate computer
science students at KTH. We have chosen to concentrate on these concepts because
they present difficulties of different kinds for students, according to our experience.

In the course, both concepts are assessed with problems where the student is facing
the task of devising some algorithm, present it nicely (generally in pseudo code), an-
alyze its complexity, and prove that it works, i.e. solves the problem. All steps apart
from actually designing the algorithm are, from the students’ perspective, absent when
programming — after constructing a program that solves a task, nothing remains. This
might be the reason so many students are either not performing well on, or complain-
ing about, these steps in the solution. The students expect something different from
the task and their solution, than does the teacher. These circumstances are also ad-
dressed in the last cycle of this project.

The task “write a program that solves this problem:...” does not seem to pose any
difficulties to our students apart from how easy or difficult it is to come up with an

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:3

idea of how to solve the problem, in a programming setting, provided that all you have
to do is write the program.

In a theoretical computer science setting, implementation of algorithms is less im-
portant than design of algorithms. The task is phrased “design an algorithm that solves
this problem:...”, and the student is expected to describe the algorithm (preferably
both in pseudo code and with some accompanying explanation in natural language),
analyze its complexity, and prove that it actually solves (all legal instances of) the prob-
lem. “Look, I have attached the code that implements this algorithm, and it works” is,
by the standards of theoretical computer science, not a proof. (On the contrary, this
actually introduces new possible errors due to the implementation itself, the language
chosen, the computer architecture, and so on, and it is harder to prove that the imple-
mentation is correct.)

We have seen many students being unprepared for arguing correctness when pre-
senting their homework solutions, despite the fact that this is often explicitly men-
tioned as a requirement. Nevertheless, students do present solutions to the problem,
let it be with methods from another context than the course, and the task “solve this
problem” is self-evident and does not need any particular presentation or persuasion
to tackle.

The results described in this article are partly based on four previous papers [En-
strom and Kann 2010; Enstrom et al. 2011;/Crescenzi et al. 2013;/Enstrom 2013] : three
about the course improvements, and one about automated assessment. Additional re-
sults regarding students self-efficacy beliefs concerning proof and pseudo code, addi-
tional data supporting or contradicting previous findings, and extended discussions
on the communicative characteristics of the teaching and learning situation, are also
included.

1.1. Potential NP-completeness related difficulties

When, on the other hand, the task is “Prove that the problem X is NP-complete”, in
addition to the problems students are facing in algorithm tasks, they also need to know
the particular purposes of NP-completeness reductions. These reductions work just as
algorithmic reductions in general, but we are concerned with which properties of the
original problem are “preserved” through the reduction. In addition, we also use the
reduction in a proof by contradiction setting, which means that we start with a known
problem and reduce it to a new problem. This is certainly not how we solve problems in
general! These are potential difficulties with the NP-completeness reduction tasks, but
another possible obstacle is motivation. Unlike the task of solving a problem, the task
of proving a problem to belong in a particular problem class and the usefulness of the
result of those efforts, is not self-evident to our students. This either causes students
to lose motivation, or to try solving the problem instead, as this type of task seems
more useful, natural or recognizable than “only” showing that the problem is difficult.
There are grains of truth in this view — certainly a rich field of TCS is concerned with
solving the difficult problems as well as possible. Lacking good ways of approximating
or heuristically solving the problems, TCS goes back to classifying the difficult prob-
lems again, this time according to how well they can be approximated. We suspect that
we need to motivate the usefulness of classifying problems according to computational
hardness to the students.

Motivation of the usefulness of a subject is important for learning. For example,
Light et al. [Light et al. 2009] write:

In professional courses, the match between a student’s understanding of

what it means to be an engineer or a doctor and what the course seems to be
providing can be crucial both for motivation and intellectual development.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:4 E. Enstrdm and V. Kann

So if the students have trouble seeing the usefulness of computational complexity they
might have less incentive to learn. However, as already observed, NP-completeness
and computational complexity) has had a huge impact in many different application
areas, and it should be possible to motivate the concrete usefulness of this concept to
students.

Besides possible failures to expose the rich applications of reductions, one missing
ingredient while teaching these concepts is that the concepts themselves are just an-
other way of usefully applying the algorithmic way of thinking, which is usually taught
to all computer science students. In other words, a further motivation to learn NP-com-
pleteness is that designing reductions can be, in a certain sense, exactly the same as
designing algorithms: a student enjoying this latter activity should also enjoy the for-
mer one.

The reduction is supposed to be used in a proof, and the motivation for doing so is the
same for all NP-completeness proofs. Many students do not see the purpose of design-
ing a reduction in this context and end up constructing exhaustive search algorithms
while working on their proofs, or produce a “proof” with a reduction in the wrong di-
rection, from the new problem to the known one. This is in line with previous research
on reductions, which has found that when confronted with the task of constructing an
algorithm based on a reduction, students tend to try reducing abstraction by “opening
up the black box” [Armoni 2008; Armoni et al. 2006[], which leads to algorithms for
solving the original problem instead of reducing it. In this case, it happens already
in the context of “normal” problem solving through reductions. We believe that this
tendency can be more prevalent in our setting, when the purpose and context of the
reduction algorithm is less familiar to the students.

Finally, if the hardness is due to lack of experience with proofs, this is a larger is-
sue that possibly needs a cross-curricular approach and is better attacked by special
courses like the ones described by [Muller and Rubinstein 2011]. Also the attempt to
make reductions “a habit of mind” [Armoni et al. 2006] might fit into that approach.

We decided to make use of two typical tools for teaching the design and the anal-
ysis of computer algorithms; an automated program assessment system (Kattis) and
an algorithm visualization system (AlViEEl). It is worth observing that even though
NP-completeness is one of the concepts students typically struggle with, as far as we
know this concept is not well covered by educational software: the only other experi-
ences we are aware of are the ones described in [Brandle 2006; Pape 1998]. We also
supported the use of the two tools with other activities mainly devoted to highlighting
the usefulness of learning computational complexity and to forcing students to think
and to adopt a standpoint. This paper describes the activities that we introduced in
our courses and how the students responded to them.

1.2. Potential dynamic programming difficulties

As for dynamic programming, one thing that could contribute to making it difficult is
that recursion, a well known “difficult task”, is part of the problem solving strategy of
dynprog. The subject of recursion has attracted educational researchers’ interest for
a long time. In the 1980s Kahney and Eisenstadt [Kahney and Eisenstadt 1982] con-
tributed by studying students’ and other programmers’ answers to problems involving
recursion. Their results are further described by Kahney in [Kahney 1983], and de-
scribe a set of “mental models” of recursion that students had, out of which one was
capable of capturing the things instructors want students to know about recursion,
and some were not only incomplete, but misleading. Around the same time, Ford [Ford
1982] concludes that iteration is really a special case of recursion, and that recursion is

Lhttp://alvie.algoritmica.org/

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:5

a generalized control structure in programs. Similar arguments are also used by oth-
ers: recursion is an example of the paradigm “Divide, Conquer and Glue”, and when
using iteration, the glue step is missing and students get erroneous pre-images of the
paradigm [Turbak et al. 1999]. Scholtz et al. [Scholtz and Sanders 2010]] claim that the
difficulties with recursion are connected to understanding the passive flow, whereas
other authors are investigating misunderstandings that can occur around base cases
[Haberman and Averbuch 2002]. They also note that recursion is a difficult topic for
students. Many authors dwell on the topic of where in the first course recursion should
appear, or how recursion is related to iteration, the computational model, or similar
issues.

Beyond the possible difficulties associated with recursion, previous years’ experi-
ences suggest that two difficult parts of dynprog are finding a recurrence relation
based on some structure of the desired solution, and tackling the complexity of solving
a problem completely from scratch, without hints; remembering to perform all steps
that need to be taken when constructing and analyzing the algorithm. Many students
also struggle with, or avoid, any tasks involving “argue correctness” or “prove”. Being
able to cope with many dimensions — problems where a simple two-dimensional matrix
is not sufficient to hold every subproblem that matters to the solution, is necessary for
some problems.

Ginat et al [Ginat and Shifroni 1999] suggest that less focus on the computational
model, and more focus on the abstract level and the algorithm in theory can help stu-
dents not to mistrust recursion as a method or their own abilities on recursion. As an
algorithm construction method, dynprog follows that recommendation. It does not deal
with passive flow, and the algorithm construction task indeed treats recursion as an
abstract phenomenon.

1.3. On proofs

Proofs have been known to be a troublesome area of mathematics for students for
decades. Balacheff [Balacheff 1988 devised a taxonomy for various approaches stu-
dents can have to proof, out of which the two first levels are only more or less ran-
dom testing with examples. In order to make this taxonomy more useful for teachers,
Varghese [Varghese 2011] made complementary notes and constructed examples of the
taxonomy.

In a study on Taiwanese undergraduates, Ko and Knuth [Ko and Knuth 2009] clas-
sify their subjects’ answers as no response, restatement, (invalid) counterexample, em-
pirical, non-referential symbolic, structural and completeness, and find depressingly
many answers ending up in the two first categories. For counterexamples, the results
look somewhat better. They also raise the question whether the teaching assistants
understand proofs well enough. Jones [Jones 2000] also lists several previous papers
where students are found to perform unsatisfactory when producing proofs, and in-
vestigate how prospective UK teachers, who have finished undergraduate mathemat-
ics degrees, perceive proofs. Jones finds that there are many students who have good
grades in mathematics, but little explicit, reflected knowledge about proofs. They are
not good at describing them in a rich and detailed way. Technical excellence is not
always followed by a rich conceptual understanding.

Stylianides and Al-Murani [Stylianides and Al-Murani 2010]] were looking for a par-
ticular misconception about proofs: that a proof and a counterexample can coexist, for
the same assertion, among secondary students in the UK. When surveying, it seemed
like students could have this misconception, while when interviewing, there was not
evidence of anyone having it. The hypothesized misconception stemmed from combin-
ing results by Balacheff [Balacheff 1988] and Fischbein [Fischbein 1982].

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

76 E. Enstrdm and V. Kann

Similar results, suggesting that students did not understand the role of proof, were
in 1993 obtained by Chazan [[Chazan 1993]]: “there could always be a counterexample”.

In a paper from 2011, Zerr and Zerr [Zerr and Zerr 2011] describe how the students
of their study are far better at correctly classifying correct proofs as correct, than in-
correct ones as incorrect (96 % success rate vs. 62 % when only some errors had to
be spotted, and 35 % if we require students to find all errors). They argue that this
is likely if all practice students have regarding proofs is to understand those in the
text book and those shown by the teacher. In the study, peer-assessment of proofs and
grading of both initial proof, assessment, and revised proof are performed.

2. THE COURSE

Algorithms, Data structures and Complexity (ADC) is a compulsory, third-year course
in the 5-year Computer Science and Engineering program at KTH, Stockholm. The
prerequisites for this course are programming (CS1), algorithms and data struc-
tures (CS2), computer architecture, discrete mathematics, probability theory, and logic.
About 150 students follow the course every year.

ADC consists of 32 lectures (the first three are 90 minutes, and the rest 45 minutes
each), given by the second author, 12 two hour tutorials in three groups, given by PhD
and master students, and 4 compulsory computer labs. The assessment consists of two
graded homework assignments and a written theory exam only assessing the lower
grades assessment criteria. There is also an optional oral exam for students aspiring to
get the highest grades. The mandatory computer lab exercises are performed in pairs,
automatically checked for correctness and verbally presented to a teaching assistant
(TA) in lab, and only graded pass/fail. ADC uses continuous assessment.

The first 19 lectures, 7 tutorials and 3 computer labs cover construction and analysis
of algorithms and data structures. Out of these, lectures 9 and 10 and tutorials 3 and
4 plus one computer lab exercise deal with dynprog. The lab exercise, together with
an individual, written home assignment which the students afterwards discuss with
teacher or TA, constitute the major part of the assessed student work on the topic.
There are also supplementary tasks for those who are unhappy with their performance
and want to improve their grades.

The following 12 lectures cover reductions (1), introduction to complexity (1), Tur-
ing machines and undecidability (2), Cook-Levin theorem (1), NP-reductions and
NP-completeness (3), approximation algorithms and heuristics (3), other complex-
ity classes (1). The tutorials in parallel cover reductions and undecidability (2), NP-
reductions and NP-completeness (4), approximation algorithms (2), solution to the
complexity homework (1), and complexity classes (1), all of which are relevant NP-
completeness.

The course is graded on a scale from A to E, or F for fail, and there are intended
learning outcomes and assessment criteria connected with each grade. These are pre-
sented in a matrix and a flow chart on the course home page, and addressed on lectures
and during peer review. In the end, how well your work meets the criteria decides your
grade, so what work you have fulfilled, and how well you performed, matters — not just
the percentage of total work.

The second author was the teacher responsible for the course and the first author
has been one of the TAs.

2.1. The homework assignments

The individual homework assignments are very important as both formative and sum-
mative assessment in the course. They also played an important réle for the studies
described in this paper. Therefore we will explain how they work in more detail.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics 2.7

The first homework assignment assesses the learning outcome on algorithm design
and the second assesses the learning outcome on complexity. Each homework assign-
ment consists of three tasks assessing the grading criteria for the grades E, C and
A, respectively. A student passing only the fist task has shown knowledge on the E
level. A student passing two tasks has shown knowledge on the C level, and a student
passing all three tasks has shown knowledge on the A level.

Students have two weeks to work on each homework assignment. No cooperation at
all is allowed. In fact, the students are not allowed to discuss the assignments with
anyone except the teachers of the course. Each student should hand in solutions as a
written report. A few days after the due date of the written reports, each student has
a 15 minute oral presentation with a TA. During the oral presentation minor errors
can be fixed, and the TA can explain misconceptions. It is the combined written and
oral presentation that is assessed. The feedback (including the grade) to the students
is given orally and immediately.

Before the oral presentations the teaching assistants are instructed how to assess
the assignments, and they are given some time to read the written reports in advance.

When all students have presented their solutions the teacher publishes correct solu-
tions on the course web. In order to give more feedback, 45 minutes of the next tutorial
are spent on explaining the solutions.

3. METHOD

We tried an action research approach to our course improvement work, each cycle
consisting of the following steps:

(1) Identify which are the hardest things (concepts, methods, skills etc) for the stu-
dents to grasp.

(2) Try to change teaching and/or assessment in order to improve the learning of the
identified problem areas. Adding teaching and learning activities addressing these
potential hardest things.

(3) Evaluate the results. Find new indications of “hard” content.

For each cycle, we also included new evaluation points, and additional topics to be
considered: first NP-completeness, then dynprog and lastly proofs and pseudo code.
These roughly correspond to first, second and third cycles, but the NP-completeness
work started earlier [Enstrom and Kann 2010]] and had several iterations before the
“real” first cycle began. During the second iteration of complexity theory, we collabo-
rated with a professor giving a similar course at a university in Italy [Crescenzi et al.
2013]]. Together, we discussed which things we believed to be hardest for students to
learn, and our previous experiences. We also discussed how we at our different univer-
sities had tried to mitigate these difficulties, and tried each other’s methods. We found
this type of course development activity very fruitful. It had no permanent funding,
so it has not been a long-lasting part of planning the course. One prominent source of
feedback into the action research loop has been the somewhat ill defined “What stu-
dents complain to their teachers about being extra difficult or not practiced enough.”
Assuming that this is not due to observation bias, the fact that students usually com-
plained about complexity, and then one year mainly complained about dynamic pro-
gramming, could mean one out of two things. Either that dynprog was looking like a
more challenging subject than complexity that year, or possibly that complexity was
already recognized by the teachers as hard. However, the changes in teaching have not
been aimed at describing complexity as hard, but rather at showing that it is a differ-
ent topic, with similar methods, used for different purposes, compared to algorithms.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:8 E. Enstrdm and V. Kann

4. ACTIVITIES IMPROVING THE COURSE

Throughout the cycles, the silver thread through our plans has been to explicitly ad-
dress aspects of the topics that we suspect students are not seeing. This has been done
both by modifying existing activities, and by adding new activities to the course.

4.1. Programming assignments

When the course was given for the first time, in 1999, a decision was taken to include
mandatory programming lab assignments in the otherwise theoretical course. The rea-
son for this decision was that we suspected that the students would learn the theory
better by practicing it in a familiar way, and thereby easier seeing that the theory is
useful, which should increase their motivation.

Originally there were three lab assignments: implementing some data structures on
disk, optimizing a given algorithm, and designing an algorithm for bipartite matching
in a graph using a max-flow algorithm, that also should be implemented. Since 2006
the automated programming assessment system Kattif] has been used in ADC. Kattis
was developed at KTH 2005 to assess programming exercises. It has later been com-
mercialized. The typical way of using this system in teaching is described in [Enstrom
et al. 2011].

During the process of solving a task, students have access to Kattis 24/7. Source code
is submitted to Kattis, and the system runs secret test cases and interprets the output
of the submitted code, and then reports the results to the students via email and/or a
web interface.

4.1.1. The reduction computer lab. The first change to the course was to add a program-
ming exercise on NP-completeness reductions. This was in order to tie that part of the
course closer to the other parts, and to emphasize the algorithmic side of reductions. It
was also supposed to prevent people from making their first “reduce in the wrong di-
rection” mistake on their individual homework assignment, where it affects the grade
more severely.

The specific exercise that the students were presented with was a reduction task,
where they could choose between two NP-complete problems, and then produce code
that reduces input for that problem to input for a new problem that was described in
their instructions.

The feedback from Kattis for this problem consists of information on whether the
solution was working or not, and in case it was not, whether a “yes” instance had
been transformed to a “no” instance or vice versa and occasionally other hints on what
could have happened. This is a slight change in the feedback compared to [Enstrom
and Kann 2010], where this particular exercise is described further.

As a contextual note, for an ADC Kattis programming assignment, the students are
given the text of the laboratory exercise in advance. The text also contains some the-
ory questions that the students are asked to answer before solving the exercise. After
the first 10-12 hours of lectures on this part of the course, the students are asked to
perform a 15 minutes peer review of the answers given to the theory questions, and
during the next week, the students work with the actual programming both on sched-
uled lab hours with teachers available, and on their own time. Finally, the students
also have to discuss their solution with a TA during the scheduled computer lab hours.

4.1.2. The dynprog programming assignment. After adding a mandatory programming as-
signment to the course, right before the individual homework on the same topic, stu-
dents were asking to be able to practice in the same way for their dynamic program-

2https:/kth.kattis.com

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

https://kth.kattis.com

Iteratively Intervening with the “Most Difficult” Topics ?:9

ming algorithm design. The exercise where students optimized an existing program
was replaced with an edit distance assignment utilizing dynamic programming, but
with the same focus as the previous exercise: practicing code maintenance and rewrit-
ing other people’s code. Students get a Java program where recursion is utilized di-
rectly and this in combination with some other less clever implementation details
guarantees that the Kattis time limit will never be met — but the program works.
The task is to speed it up significantly, which is mainly done by using dynprog.

4.2. Clickers and response cards during lectures

The use of clickers (or Audience Response Systems, or “voting” systems) for pedagogical
or administrative purposes is widespread in the world today [Caldwell 2007]]. Among
the reasons for using them is “anonymity”, but since the systems are often built in a
way that admits excessive data collection and even scoring on an individual level, it
is worth noting that this anonymity is only towards peers, not towards the teacher.
In other words, if the student is afraid of speaking up and answering questions on
lectures because it could expose him or her to the other students, the argument is valid.
If students don’t want to expose possible lacks of knowledge to teachers, the system can
actually be a greater threat, as temporary misunderstandings might be recorded and
later graded.

The advantages with clicker questions are well-known, especially for teaching
physics [Duncan 2006]. For example, they provide means for student activity; everyone
gets to think and answer the questions, not just the fastest responder; the results of
the small polls allows the teacher to address misunderstandings directly; and they pro-
vide formative feedback to the students. They also incentivize the teacher to plan good
questions that are suitable for this type of exercise. The use of response cards, prede-
cessors of clickers of sorts, has been studied academically since the 1960s, and have
proven to have effect on student grades and student participation [Randolph 2007]|.

At KTH, there was no clicker system, so we constructed our own low-budget system
of response cards of three colors. We have gradually included response cards in the
course during the two past years, and it has been much appreciated by the students.
The cards are administered to the students in the beginning of lectures. The votes are
still made simultaneously, and the feeling of being exposed seems not to be present
among our students, according to their evaluation responses.

The first year, the clicker questions were introduced in an algorithm lecture be-
fore the complexity lectures. At the end of the lecture, we asked (using the cards)
whether we should continue to ask such questions. Everyone answered yes! We then
used clicker questions in most complexity lectures to reveal and remedy misconcep-
tions on undecidability and reductions. Some questions required discussion among the
students and some questions required fast response. The second year clicker questions
using response cards were used throughout the whole course.

4.3. Visualizations

Visualizations are commonplace when teaching algorithms, and there is a multitude
of tools and applets available for teachers for visualization purposes. For our course,
no tools were originally suggested, and only a few algorithms were traced on lectures.
Our Italian colleague had developed his own visualization tool AIViE, and during the
exchange part of the project, we borrowed each others’ tools and exercises. From that
year on, computer aided visualizations were present in the course. We also linked to
other algorithm visualizations on the internet from the course web pages.

For the dynamic programming methods, the Fibonacci sequence was visualized with
both recursive calls, memoization and (bottom-up) dynamic programming. Some more
complicated dynprog algorithms were also illustrated.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:10 E. Enstrdm and V. Kann

Why do you need to learn computational complexity?

1. Prerequisite to advanced courses (e.g. cryptography).
2. Will help you to attack hard real problems as an engineer.
3. Makes you more attractive to several companies.

Fig. 1. Arguments for learning complexity.

4.4. Visualizations of reductions

As stated in [Crescenzi 2010], a reduction is, for all purposes, an algorithm trans-
forming instances of a starting problem into instances of a target problem: it is then
natural to use algorithm visualization techniques while teaching reductions. We used
the AIViE system to present the visualizations of two reductions in the following way.

Two of the three reductions from 3-satisfiability to Subset sum, 3-colorability and
Vertex cover (inspired by [Kleinberg and Tardos 2006} [Sipser 2012]) were selected and
presented theoretically in a lecture. During the reduction explanation, the teacher
made use of the visualizations, which were successively made available on the AIViE
web site, so that the students could experiment themselves. The two visualizations not
only show how the starting instance x is transformed into the target instance 2/, but
they also show how a solution of 2’ can be transformed into a solution of z, thereby
visualizing the proof of the correctness of the reduction.

4.5. Motivation and usefulness

As mentioned above, for algorithm design exercises students appear to be motivated
by the task itself — to come up with a clever algorithm. For complexity, the situation is
a bit different. The main motivational problem could be that the students do not think
that they will benefit from learning complexity, outside of the course. In order to get
proof of the industrial usefulness of computational complexity, we sent the following
questions to some former students now working in industry:

(1) Describe a case where knowledge of computational complexity has helped you in
your work.

(2) Do you regard algorithmic knowledge and knowledge of complexity as a qualifica-
tion when recruiting computer scientists?

We got several positive answers, leading to a 5 minute motivational part of the lec-
ture where complexity was introduced in ADC. Three arguments were presented to the
students, see Figure

The following example of attacking an NP-hard real problem was given:

At Racasse we developed the price comparison service RedElvis. It was to
find the cheapest way to order books, music and video on the web, consid-
ering delivery terms, discounts etc. We showed that the complexity of the
problem is too high. Therefore we implemented some heuristics instead of
an optimal algorithm, and found that simulated annealing gave solutions
which in every test were equal to or better than the best solution a human
could obtain [[Grundin 2011].

Two employability (third argument) examples were given:

(1) Gustav Grundin at Vodaphone always gives an algorithmic/complexity problem at
the employment interview.

(2) Lars Engelbretsen at Google: “Good knowledge of algorithmic problem solving is
necessary for developers at Google.”

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:11

A, B, C, D and E are decision problems. Suppose that B is NP-complete and that
there are polynomial-time Karp reductions between the problems in the following
way:
E « A - B —» C
1
D

What will we know about the complexity of A, C, D, E? Mark with a cross each
square that corresponds to something we know for sure.

in NP | NP-complete | NP-hard

=g a»

Fig. 2. The NP-reducibility assignment (ADC).

4.6. The NP-reducibility assignment

Text book assignments on complexity are often about solving a problem or proving
something. There might be a lack of simpler assignments. We have introduced a new
type of complexity assignment, which we have used both in the instruction and assess-
ment, see Figure |2l The assignment hides all details about the involved problems and
makes it impossible to tamper with the contents of the black box. Just asking the stu-
dents this type of question, that they normally are not asked, directs their attention
to the fact that this is important in itself. When we introduced the question, it was
immediately appreciated by both students and teaching assistants.

4.7. Pattern Oriented Instruction

The second cycle of improvements also experimented with a new structure of the course
contents, regarding dynamic programming.

Since coping with many aspects of a problem at the same time might be difficult,
and since teaching everything at once might lead students to focus entirely on the
algorithm that is constructed, and less on the construction process, we tried using Pat-
tern Oriented Instruction (POI). POI is based on cognitive psychology theories on con-
struction and organization of knowledge in schemata. A schema is a mental, connected
chunk of “information”, that has been constructed by repeated experiences which share
some common ingredients.

When, for instance, solving a complex problem, we are processing several different
types of information at the same time. This is called cognitive load, and if the cognitive
load gets too heavy, our problem solving skills are considerably reduced. When having
seen the same type of problem many times before, we are able to process many inter-
connected pieces of information as one unit, a “chunk”, which reduces cognitive load.
A pattern is either distilled from several different experiences with certain ingredi-
ents in common, or generalized from some specialized example of a phenomenon. It
can be employed in teaching to enhance the learners’ ability to create new schemata.
POI deals with structuring the teaching and the content in a way that facilitates the
creation of schemata, which can later be processed as chunks.

POI preparations focus on identification, selection, progression and comparison of
problems and patterns. The students are exposed to increasingly complex problems,
encompassing different patterns already familiar. The comparison of problem charac-

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

212 E. Enstrdm and V. Kann

teristics is central, and patters are first introduced and later revisited in a different
setting. The effect of POI on students’ abilities in problem solving, abstraction and
analogical reasoning in particular, are investigated by Muller and Haberman [Muller
2005 Muller and Haberman 2008; Haberman and Muller 2008] and the effect on prob-
lem decomposition and solution construction abilities by Muller, Haberman and Ginat
in [Muller et al. 2007]|.

4.7.1. New structure of the course content . Together with the POI approach, we used
Variation theory, based on the writings of Marton and Booth [Marton and Booth 1997].
This is a theory involving the prerequisites of learning: in order to learn something,
we have to both acknowledge it as something important, and see that it could have
been arranged in another way than it currently is. Everything that can vary, must be
perceived to have the option of varying, for the learner to be able to discern that as a
significant dimension of variation. When used for planning lectures — if the students
notice — this can help to mitigate misconceptions about the topics learned. For instance,
that the equal sign has the meaning of equality instead of only being a “do something
now” operator, cannot be learned unless the equal sign sometimes is not used as that
operator.

The description below is also given in [Enstrom 2013]].

The task of solving a dynprog problem can be thought of as solving three different
tasks:

(1) finding a structure for the solution,

(2) expressing a recurrence relation, and

(3) defining and proving an evaluation order with the properties that we will always
have solved “smaller” subproblems whenever we solve a “larger” problem, and that
the evaluation order renders the same result as the recurrence relation would pro-
duce.

To help comparing and distinguishing various characteristics of problems, we identi-
fied some features that could vary between different dynprog problems, and we hence
needed examples of: whether the history needed to be saved during computations or
not; whether the evaluation order was intuitive or more intricate; whether new values
depended on the indices of the elements to be calculated, or on some input, or both;
whether the previous subproblems to be used for each calculation were the most re-
cently calculated subproblems, or if some special method was needed to find relevant
subproblems (for instance, “jump”, skip cells, in a matrix of previously calculated val-
ues); the number of dimensions for the subproblems (do they fit in a sequence, matrix,
higher order); that there could be several different recurrence relations for the same
problem and that the same recurrence relation could be the basis of several differently
posed questions; the “location” of the base cases, “the location” of the answer after cal-
culation; whether only a number, or the entire path to that number was needed for
the solution (constructive solution), and different combinations and variations of these
features.

These were only the dynprog specific variations. Another important variation is in
the structure of a problem, or rather, of its solutions. If subproblems do not overlap,
divide-and-conquer is generally a better method than dynprog, and if they do overlap,
dynprog might be best. A greedy solution can sometimes be proven to be the superior
option. These algorithm construction methods are also covered in the first part of the
course, and assessed on the same written home assignment.

4.7.2. Phases, prototypes and patterns in dynamic programming . For the lectures, we de-
cided to separate only two phases of constructing a dynprog algorithm:

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:13

— recognizing the structure of the problem and create a recurrence relation and
— finding and proving an evaluation order for a given recurrence relation,

and to deal with one phase at a time in our teaching.

Since we believed that the first phase was the hardest to learn, the course started
with the second phase and let the students practice it in a new lab assignment, see
Then we proceeded to the first phase. This division into phases is also helpful
when arguing correctness for the algorithm.

In the first phase we wanted to refer to prototype problems. Some of these had al-
ready been used in the course, and others were introduced as a complement to these.
The prototype problems we chose were: Fibonacci (sequences), 2-dimensional recur-
rences without input (2-dimensional sequences), 2-dimensional recurrences with in-
put, (values decided from input), Longest increasing subsequence (index and input
dependent, need to save full history) Matrix chain multiplication (base cases on the
diagonal, construction of the solution), Swamp walk (different questions, same “solu-
tion”), Coins (different recursions for the same problem, focus on proving correctness),
Longest common substring (argue correctness of recurrence relation and algorithm,
construct the solution, compare to 2D-with input that rendered the same recurrence
relation) and Floyd-Warshall’s algorithm for finding all shortest paths in a graph (more
than two dimensions used). We do not argue that these problems are the best possible
set of prototype problems, but they contained examples of the variations we wanted to
show and most of them had appeared in one form or another on the lectures previous
years, only not as explicit representatives of some technique(s) each.

5. EVALUATION

We have evaluated the new activities in several ways, using course surveys, self-
efficacy surveys, rubrics-like grading protocols, and grades.

5.1. Self-efficacy

In contrast with self esteem or confidence, self-efficacy is described as an individual’s
confidence in his or her own ability to, at a given moment, perform actions in order
to achieve some desired outcome. The term was introduced by Albert Bandura in the
1970s and is further developed by him in [Bandura 1986]. The phrasing of the self-
efficacy items should be direct and not involve guesses about the future or some sort
of inherent capabilities of the subject to the study. Self-efficacy beliefs are not static
— on the contrary, they change with the individual’s experience. It is self confidence
of a sort, but situated and very localized in time and subject area contents. These
characteristics have given self-efficacy a role in education. The score of a self-efficacy
test is known to be an important predictor of success [Pajares and Miller 1994]. There
are studies in how self-efficacy correlates with performance [lannone and Inglis 2010],
how self-efficacy changes during studies|[Ramalingan and Wiedenbeck 1998, and how
it correlates with other factors around the individual [Askar and Davenport 2009].
We knew of no established instruments measuring self-efficacy for theoretic com-
puter science. In mathematics, self-efficacy instruments have been developed [lannone
and Inglis 2010; |[Pajares and Miller 1994] and also in programming [Ramalingan and
Wiedenbeck 1998;|Askar and Davenport 2009]], which is another related area.
Self-efficacy can either be considered as a learning outcome in itself (the purpose
of some teaching could be to make students confident that they could perform cer-
tain tasks with desired outcome), or as an indicator of how well students are actually
performing. The latter would require us to correlate self-efficacy to performance for
our items and (grading) quality criteria. Self-efficacy like items can also be used to
compare various tasks of the course and try to establish whether students are more

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:14 E. Enstrdm and V. Kann

DP1. 1 could understand dynprog algorithms presented to me by a teacher or in a
book.

DP2. 1 could recognize that an algorithm uses the dynprog strategy.

DP3. 1 could design a dynprog algorithm computing a recursively defined number
sequence.

DP4. 1 could explain to an average CS student why dynprog is better than recur-
sion when computing the Fibonacci sequence.

DP5. 1 could choose a dynprog order of computing for values depending on separate
input (and not only on index).

DPé6. 1 could explain why dynprog, using my order och computing, would solve the
same problem as the recursion.

DP7. 1 could implement a dynprog algorithm presented to you in pseudocode.
DP8. 1 could decide, from the problem statement and given some time, whether a
problem can be expressed recursively, without that being stated explicitly.

DP9. 1 could design a dynprog algorithm for a problem, given a problem statement
without recursion.

DP10. 1 could construct a solution to a problem if I am given a dynprog algorithm
deciding whether the solution exists.

Fig. 3. Self-efficacy items for dynamic programming, translated from Swedish.

C1. I could determine whether a decision problem lies in NP.

C2. 1 could determine whether a reduction is polynomial.

C3. 1 could explain the principles of an NP-completeness proof.

C4. 1 could determine in what direction a reduction should go in order to be able
to use it positively or negatively.

C5. 1 could determine whether an NP-completeness proof is correct.

C6. I could choose a suitable NP-complete problem to reduce to a given problem.
C7. 1 could construct a simple NP reduction between two given problems.

C8. 1 could prove that my reduction is correct.

Fig. 4. Self-efficacy items for complexity, translated from Swedish.

comfortable with some tasks than with others, possibly indicating which tasks require
more attention in teaching and more feedback during evaluation. This is the main use
of the self-efficacy items in these studies.

5.2. The self-efficacy surveys

We would like to know whether students find any of the different tasks we believe are
involved in dynprog especially hard, and whether students improve their self-efficacy
during the course. Based on the ADC intended learning outcomes and the guidelines
by Bandura in [Bandura 2006], we constructed self-efficacy items on dynprog, see
figure 3] complexity, see figure |4, and proofs and pseudocode, see figure 5| The items
are loosely held together by their theme, but it is not likely that either of them could
contribute in the same way or amount to some score on the student’s “total” self-efficacy
on any of the themes. Hence the items should probably not be considered as comprising
self-efficacy instruments for the various themes. Rather, the tasks we ask about are
to some degree based on taxonomies such as Bloom’s taxonomy [Bloom et al. 1956],
dealing with separate tasks which could either be considered basic or something that
students only need to learn if they aspire on higher grades. The surveys are further
described in [Crescenzi et al. 2013; [Enstrom 2013]]. The students are for each item
asked to grade their self efficacy on a scale from 0 to 100.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:15

P1. I could implement an algorithm from a natural text description.

P2. 1 could implement an algorithm from a pseudo code description.

P3. 1 could understand what an algorithm does based on pseudo code.

P4. 1 could at an overview level describe what a program does, without going into
implementation details, if I first read the code.

P5. 1 could identify which algorithm solves a given problem, if I was allowed to see
the pseudo code for several algorithms.

P6. 1 could tell what problem an algorithm solves, given pseudo code for the algo-
rithm.

P7. 1 could describe an algorithm with pseudo code.

P8. 1 could decide what is important to describe in the pseudo code, and what can
be left out.

P9. 1 feel certain what format I would use for my pseudo code, and what symbols I
should use.

B1. I know what needs to be included in the correctness argument for an algo-
rithm.

B2. 1 could determine whether a correctness proof that was presented to me was
complete and correct.

B3. I could understand why my algorithm is correct.

B4. 1 could explain orally why my algorithm is correct, to a teacher or another
student.

B5. 1 could argue formally or prove that my algorithm is correct, in writing.

Fig. 5. Self-efficacy items for pseudocode and proofs, translated from Swedish.

The surveys were administered on lectures, before and after the sections of the
course that was part of the experiments in 2012 and 2013. Apart from one survey
— the proof and pseudocode survey of 2012, handed out together with the anonymous
survey on the new activities of the course — the self-efficacy surveys were not anony-
mous, but the students were promised that it would not count towards grading, and
that no one would read the material until after the course was finished. This procedure
is naturally a limitation in the usability of the responses, possibly introducing errors
in the form of more polished or adjusted answers from students. On the other hand,
we wanted both to be able to see individual trends between the two occasions, and re-
tain the option to later compare self-efficacy beliefs with results: both their predictive
value from the first occasion, since it is known that self-efficacy affects motivation and
possibly performance, and also possible correlations between results and self-efficacy
beliefs after the teaching and learning activities.

5.3. Home assignment cover page

Together with the homework assignments, the students got cover pages to attach to
their homework, with two types of questions. One half was a participation statement,
and contained questions on what sessions or activities the student had attended in the
relevant part of the course, and the other half was a “Where was what learned” part,
and contained a matrix where students could mark where they had learned to master
different aspects of dynprog and complexity, respectively: on their own, on lectures, on
tutorials, from visualizations, from the peer assessed theory questions before the lab
assignment, from the lab assignment, or if they still did not master it.

5.4. Course surveys

At the peer reviewed, pseudonymous theory exam, a final survey on the course was
distributed in two versions, one with pre-defined answer options, and one with free-

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:16 E. Enstrdm and V. Kann

text questions. The students were randomly assigned one of these, and the one with
pre-defined answer options is the one we present here. There was also, as always at
our school, an online course survey, where some questions were about related issues.
This survey is completely anonymous, done on the students’ own time, and has higher
non-response rate.

5.5. Results of the assessments

It is very hard to show that a change in a course has a positive effect by comparing as-
sessment results, since there are so many variables involved in assessment. We do not
believe in denying some of the students access to activities that we think are beneficial
to them, so we cannot organize control groups. However, we know which activities the
ADC students attended. Thus we can compare the number of activities attended to the
student’s performance on the two homework assignments.

5.6. Grading protocols from the individual assessments

To be able to view more detailed information on what students actually could do
at their homework presentations, the grades being to blunt for determining this, a
rubrics-like grading protocol was introduced. It allows the course responsible teacher
to visibly (by marking some cells grey) communicate to TAs what performances are
not sufficient for a passing grade, and at the same time makes the grading more trans-
parent to students, who can be shown the protocol as example requirements or as
motivation for an assessment.

When handing out homework, there probably remains some gaps between what stu-
dents feel needs to be communicated, and what teachers find relevant. This mainly
concerns the problem statement — naturally teachers expect students to do everything
required by the problem statement, but also tasks that are always connected to the
questions in the problem statement, but maybe not mentioned explicitly on each ques-
tion. This is part of the socialization process into the role of a computer science pro-
fessional (who knows about theoretical computer science). Sometimes, students do not
accept that any requirement is not repeated for all tasks, while teachers tend to be
more explicit for easier (corresponding to lower grade’s criteria) tasks than for harder
ones (where students are expected to be acting more independently as computer scien-
tists with all tools and habits associated with this.) In the grading protocol, also many
implicit criteria are present as to show that these are requirements and not a whim of
the TA performing the grading.

This allows us to some extent to see whether some task was more often missed or
not satisfiably accomplished compared to others. TAs were not required to complete
the entire protocol if they encountered fatal errors, so we do not have a complete list of
all errors made.

6. RESULTS

The findings of the previous studies are outlined and elaborated on here, and some ad-
ditional data is included in the previous tables. Also, data on the proof and pseudocode
self-efficacy surveys are presented and analyzed. The attempts to check for internal
validity of the self-efficacy surveys, which was not done before, are also presented.

6.1. Automated assessment and programming assignments

The very first attempt at improving the ADC course included yet another, computer-
assessed, programming assignment in the system Kattis. Students have since, accord-
ing to course evaluation surveys and during-courses reports from student representa-
tives about the course, come to perceive this assignment as a valuable practice occasion
for the second homework of the course. The formative assessment side of the lab as-

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics 217

signments is here emphasized — an opportunity to get feedback and practice without
risking to lower your grade.

However, as described in [Enstrom et al. 2011], when the ADC course first intro-
duced Kattis in 2006, the number of students who finished the lab assignments on
time actually decreased. The passing rate of the lab exercises was presented in Table
1 in [Enstrom et al. 2011]], but the grade administration system only returned data
about the course in total, not the on time completion of assignments. More accurate
data is presented here, in table[l}

Table I. Percentage of first time students completing the three lab assignments of ADC;
percentage completing them on time within parenthesis. The minimum admission grade
for each year and the percentage of each year who were done with 2/3 out of the courses
of the previous year are present for comparison. Those figures come from other sources.
The order of the lab assignments have changed during the years, and in 2012 the rewrite
lab was a new task. For the years 2011-2013, the number of students in the statistics
is higher because other than CS major students are present. E1 is the maxflow algo-
rithmic assignment, E2 is the refactoring/maintenance assingment and E3 is an natural
language indexing assignment, which has never been transferred to Kattis.

Year Nr. El E2 E3 Admission Done with 2/3
students (%) (%) (%) grade (min.) of first year
courses(%)

2000 115 96(86) 94(93) 94 (92) 18.28 -
2001 113 92(78) 91(90) 88(87) 17.84 -
2002 103 89(84) 90(88) 88(78) 17.55 -
2003 121 93(91) 97(97) 93(87) 16.96 -
2004 129 94 (82) 92(92) 88(78) 15.33 76
2005 107 83(67) 83(78) 77(64) 14.5 52
2006 92 T71(52) 83(79) 84(83) 16.18 55
2007 80 88(66) 89(88) 91(88) 15.7 67
2008 106 81(51) 85(83) 83(76) 11.52 66
2009 108 82(49) 87(82) 88(82) 15.1 63
2010 113 84 (46) 88(80) 89 (75) 15.43 64
2011 153 90(54) 88(83) 95(78) 16.51 70
2012 183 80(36) 95(87) 95(79) 18.77 64
2013 166 80(69) 94(90) 90 (77) 19.5 69

As mentioned by some student on the course evaluation that year, an assignment
can be perceived as far more difficult due to the more thorough testing and less flex-
ible assessment provided by an automated system. We believe that students previous
years, erroneously, were passing the lab assignments only because TAs were not able to
test the code thoroughly or spot some errors. They might also decide not to disappoint
someone who had algorithms that solved the problem, but did not follow the output
specification, for instance by presenting a path backwards, adding extra line breaks,
etc.

We can se in Table [[| that especially the number of students who finished E1 (pro-
gramming according to specification and implementing known algorithms), decreased,
but also that there was actually a decrease the previous year. The numbers within
parenthesis is the number of students who, according to the grade administration and
reporting system, finished the assignment before deadline and hence received a bonus
point for the exam. The E1 assignment consists of three separate tasks, in order to test
various steps independently of one another, and is a practice exercise on the problem
solving method of reduction.

The task E2 (maintaining and refactoring existing code to optimize it), was also
affected, but not to the same extent. That assignment is simpler, and only consists
of one task. E2 was in 2012 replaced by another task with the same structure and

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:18 E. Enstrdm and V. Kann

purpose, but requiring dynamic programming to be used. This task may be easier, or
just better framed by the rest of the course, but completion rate is back to the level of
before Kattis was introduced. The third task does not use Kattis at all, but still the
completion rate dropped in 2005, 2006 and 2008.

It is possible that students’ pre-requisite knowledge vary systematically between
years. Therefore, for comparison, the lowest admission grade of each year (statistics
from central admission office), and completion rate of the courses of previous year’s
courses (data from another administrative system at the university) are added. It is
unknown whether the student with the lowest admission grade was an outlier, and if
he or she was still studying, when the ADC course was given. However, around year
2000 the carrier option of computer science was very popular (“the IT boom”), and after
that bubble crashed, fewer people wanted to study CS and the admission grades fell.

For teachers considering using automated assessment of programming assignments,
this can be worth considering: Which assessment standards did the students previ-
ously have to conform with, and will these be changed? However, since the introduc-
tion of the tool on another, less advanced, course improved the student completion rate
on that course, we believe that the changes we could see in the ADC were mainly due
to more thorough checking of correctness than previous years, rather than due to the
tool Kattis being difficult. More on this can be found in [Enstrom et al. 2011].

Later, when Kattis was more established, putting any assignment there makes the
students feel more comfortable because they know how it works. Since there are new
students each year, this knowledge seems to reside in the collective experience of CS
students at KTH — in their culture. Kattis is now mostly experienced as a tool and a
resource, and something taken for granted, rather than being experiences as an exper-
iment that they need to deal with or, for those with that aim, something that makes
it more difficult to mislead the teacher. (The latter has not been investigated, and I
have no data on how common it is, but I have heard at least one narrative from former
KTH students’ personal experience, describing how they went about to distract a TA
from noticing errors in a program, that the students were already aware of, with the
purpose of not having to fix the errors.) The consequence of the greater acceptance of
Kattis is that students wanted a practice exercise on dynamic programming on Kattis
as well as a complexity practice exercise, which was introduced in the second cycle of
the project.

Two things in particular are worth mentioning about the Kattis results of [Enstrom
et al. 2011]: firstly, when assessed by an automated system, students cannot negoti-
ate the quality criteria as they try to do with a human teacher. This means that the
teacher’s quality criteria are enforced, while at the same time Kattis takes the blame
for being unreasonable. Secondly, when the feedback is limited, the feedback that is
actually there gets more emphasized. Since Kattis in her “vanilla” version only re-
sponds with the result (Wrong answer, Run time error, Time limit exceeded, Compile
error or Accepted being the most common outcomes), together with the CPU time, and
given that there is a time limit that in the case of ADC can be difficult to come down
to, students will start optimizing their code to reduce the CPU time. The competitive
side of the Kattis assignments is encouraged both by Kattis’ design and by TAs. In
this course, for all assignments apart from the complexity reduction assignment, this
is in line with the course goals. It is important, however, to clearly state if the received
feedback is not worth optimizing for. For the complexity assignment, the only thing to
optimize would be I/O, which is not among the course goals to optimize.

Kattis usually presents the CPU time of a submission to its author, and entertains
a “high score list” of the submissions with the lowest CPU requirements. Kattis also
offers teachers the option to provide other types of feedback to students, and in some
cases this is more relevant. For instance, some assignments have a grading program

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:19

that calculates a score depending on how good the solution was. This makes Kattis
present a high score list based on the score instead of lowest CPU consumption, which
is pedagogically preferable.

In conclusion, the result of introducing automated assessment can, as seen by this
example, include decreased passing rates for the course, if assignments get more dif-
ficult, or rather, if negotiating the quality criteria of the course gets more difficult. It
may also include a more positive relationship between students and TAs, if the latter
are not responsible of failing programs that do not work, and it may increase time-
on-task and engagement with the tasks if the feedback concerns some optimizable
characteristics of the program.

6.2. Framing of exercises/Verbal and non-verbal communication

In this section, we mention some observations from all of the cycles, regarding commu-
nication and language use.

The Kattis complexity assignment, described in [Enstrom and Kann 2010], was in-
troduced to help practicing theory in a more familiar setting: the lab assignment. It
was perceived as an extra task, increasing the course work, the first year, but also as
something that helped students learning complexity. At the same time, it was — and
still is — common that some students complain about the exercise being underspeci-
fied, tricking them into spending too much time on something that was really simple
if it had only been expressed from the beginning. It also happens that students shrug
and say that the task was completed in 30 minutes and needed only half a page of
code, a seemingly pointless exercise in comparison to the other tasks, or that TAs need
to stop people from trying to receive a lower running time of their program, since it
hardly does anything but reading input and writing output. A result of our approach
is then the views that the task is underspecified, too easy, or should be optimized like
the other assignments in the course. These are likely to be consequences of using this
familiar setting for an unfamiliar task.

The number of students who handed in homework solutions with useless reductions
(look, this problem can be solved if we can solve the hardest problems in NP!) seems to
have decreased since this assignment and other complexity activities were introduced.
Those who need hands-on experience to realize the implications of a reduction, can get
that experience before jeopardizing their grades by failing the homework.

The students’ expectations on a task sometimes differ from ours, and this can be
exemplified by language differences between teachers and students. Whereas teachers
typically want a student to present an algorithm, show that it is reasonably efficient,
show that it terminates and that it solves the problem it is designed for, as a response
to a “devise an algorithm that...” problem, our students tend to believe that the only
thing needed is to present an idea for the algorithm. This misconception can in at least
two ways be fostered by the teaching: sometimes, only the general idea and not the
details can be discussed at lectures. This can be taken for an example of an accepted
strategy. More often, lectures go through explaining the algorithm, writing pseudo
code, analyzing it and showing correctness for it, but students might perceive most of
these steps as some sort of pedagogical decoration of the main purpose of the task —
to get an algorithm idea. Instead of seeing the lecture as an example of how to solve
problems in the context of the ADC course, someone could believe that the teacher
just was keen to have everybody understanding the algorithm. The purpose of the
correctness arguments is not acknowledged.

Another language related, common issue is that for the complexity homework, when
asked to show that a problem X € N P, some students try to show that they can verify
one solution in polynomial time, while clear on the fact that you cannot verify any one
solution. In Swedish, the counting word for “one” and the definite article for common

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?2:20 E. Enstrdm and V. Kann

gender nouns both are “en”. So, if you believe that the task is specified word by word in
the problem statement and that no terms are special to the field of study, it is sufficient
to find one instance where the solution is verifiable in polynomial time.

There is another communicative feature of the research activities this course has
been subject to: the many surveys. It is unlikely that it does not in any way affect
students if we regularly ask them how certain they are that they can perform some
list of tasks. The items on the survey could probably function as check lists for “things
teachers want me to know”. This was brought up by some students during the first
year of self-efficacy surveys, and therefore we investigated whether this was common,
but most students did not consider the surveys part of the teaching and learning expe-
riences. Regardless of that opinion, it is a way in which these surveys can function. To
some extent, it depends on the students’ mind set when completing the survey if it also
becomes a moment of self-assessment, introspection and reflection. To some extent, it
depends on how the teachers present and describe the surveys.

6.3. The survey results

At the final written theory exam, in 2011-2013, each student received one of two eval-
uation surveys. The first one was an open question survey with questions about the
pedagogical purpose of each activity and whether this purpose was fulfilled. The sec-
ond survey consisted of closed questions on the meaningfulness and usefulness of the
activities. In 2011, all students who got this survey answered it except two students,
a total of 59. In 2012, all but one answered the survey, a total of 70, and in 2013 74
students responded. In 2013, there was an additional question asking which year they
took the course, and 68 of the responding students had participated in ADK 2013.

The results of the closed version of the surveys, for the questions concerning com-
plexity, are summarized in Table [[Il Similar responses were also given for dynprog-
related questions.

Each question also had “no opinion” as well as “did not participate” alternatives, and
these are not presented in the summary.

Most activities seem to have been perceived in similar ways all three years, with the
apparent exception of the motivational lecture, where more students were inclined to
answer “don’t know” in 2012 and 2013. Afterwards, many students expressed confusion
over the term “motivational lecture”, which explains this. The role of the motivational
lecture might have been most emphasized the first time it was given. Generally, when
students were less positive than in 2011, they chose “don’t know”, with the exception
of the visualizations, which were seen as not contributing to learning reductions by
almost half of the responding students in 2013. When asked whether visualizations
helped them learn dynprog, 35 % of these students said no. This number is more simi-
lar to how large fraction of students in 2012 and 2011 claimed that they did not learn
complexity.

Another change is that 40 % of the students in 2011 did not believe that the
clicker questions helped them learn computational complexity, whereas this fraction
decreased to less than half the relative size in the following years. This may caused by
the questions improving, students getting more used to them, or their function becom-
ing less of an experiment and more of a permanent arrangement. In 2011, the clicker
questions were only used for the lectures in complexity, but for subsequent years, ques-
tions were prepared for all topics of the course. Still, already the first year, most of the
students wanted more clicker questions [[Crescenzi et al. 2013].

In 2012 and 2013 we also asked the students to indicate on a cover sheet for the
homework assignments, where they learned what (multiple choice), see Table [[TI] and

Table V]

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics

?:21

Table II. Activity survey results (2011-2013). Answers are presented as first year/second year/third year

percentages. Similar results were obtained for dynamic programming.
1. Was the pedagogical purpose of the activity clear?

yes questionable no
motivational lecture 86/23/32% 11/16/6% 4/4/3%
clicker questions 92/90/94% 8/6/4% 0/1/0%
visualizations 80/81/71% 16/10/16% 3/1/3%
reduction computer lab 90/81/85% 6/10/9% 4/0/0%
2. Did you find the activity meaningful?
yes yes not not
very somewhat particularly at all
motivational lecture 21/10/9 61/17/21 7/10/7 -/-/1
clicker questions 38/59/54 44/36/32 13/3/9 4/0/1
visualizations 28/40/22 38/40/46 26/10/18 8/1/6
reduction computer lab 65/67/62 35/23/26 0/1/3 -/-/0
3. Did you learn some computational complexity by working with the activity?
yes no
clicker questions 50/69/65% 40/11/19%
visualizations 45/33/26% 34/34/46%
reduction computer lab 94/86/87% 4/6/6%

4. Do you think that activities like this one can make it easier to learn computational complexity?

yes no
clicker questions 69/73/74% 19/9/12%
visualizations 95/69/68% 5/7/10%
reduction computer lab 96/89/93% 2/3/0%

5. Did the activity add something to the course?

yes no
motivational lecture 75/27/28% 4/13/4%
clicker questions 83/94/91% 6/1/4%
visualizations 76/71/65% 13/6/13%
reduction computer lab 94/91/93% 2/1/3%

Table Ill. Where different dynprog tasks were perceived to have been
learned in 2013. Data from the cover sheet of homework 1. Multiple
choices possible. N=142.

Where did you learn to...

1. ...decide if an algorithm is using dynprog?
2. ...decide if a problem could be solved by dynprog?
3. ...design a recurrence relation for a simple problem?
4. ...choose an evaluation order, given a recurrence relation?
5. ...construct a solution given a dynprog algorithm that
returns the optimal value for the solution?
6. ...motivate correctness for a dynprog algorithm?
£ 3 3 3z B
0 ?g " 8 S =<9
3 =g S g o 2 s g 2 Eoy
= 2SS Sw g Q = e §59
B 2% o2 g £ =3 g=g
g 23 =< & 2 B2 =5E
1. 51% 26% 54% 49% 14% 1% 21%
2. 49% 24% 45% 42% 18% 4% 22%
3. 34% 30% 24% 18% 10% 6% 49%
4. 3T% 30% 25% 23% 10% 16% 29%
5. 35% 25% 32% 38% 16% 16% 18%
6. 43% 15% 9% 8% 31% 28% 19%

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?.22 E. Enstrdm and V. Kann

Table IV. Where different complexity tasks were perceived to have been learned in
2012/2013. Data from the cover sheet of homework 2. Multiple choices of answers avail-
able for respondents. N=148/N=126.

Where did you learn to...

1. .. tell if a decision problem is in NP?
2. ..describe the principles for an NP-completeness proof?
3. ..choose a suitable NP-complete problem to reduce?
4. ..construct a reduction between given problems?
5. .. prove correctness of an NP reduction?
6. ...reduce an optimization problem to a decision problem?
7. ..reduce a constructive problem to an optimization problem?
(]
ey g *E § o]
2% " = £g o 2 g5
ZEw 3 =g) 5 g 3 g = 2
s 3 | a8 < .Y 3 @ < g
o =90 S Qu =] W g =
il 3] =1 @ < @ 3 g = ©
<88 2 28 g 5 2 < w2
1. 20/19% 59/63% 37/42% 2/2% 43/41% 39/41% 43/43% 0/2%
2. 14/18% 59/56% 44/46% 1/2% 30/24% 34/40% 36/42% 0/1%
3. 17/20% 46/48% 36/29% 1/3% 14/13% 28/30% 51/55% 3/6%
4. 14/11% 41/44% 36/33% 0/2% 24/22% 57/54% 52/52% 1/10%
5. 16/17% 34/40% 32/37% 0/2% 13/9% 32/33% 43/46% 5/12%
6. 19/16% 36/57% 18/29% 0/1% 3/3% 5/6% 40/48% 18/6%
7. 11/13% 23/44% 15/29% 0/0% 1/1% 3/6% 38/36% 32/29%

These tables do not entirely evaluate the same phenomena as does the final survey,
and should not be used to decide what activities should be part of the course. They ask
about a number of tasks, sorted in increasing “quality” according to course grading
criteria, and where students have learned these tasks. Students are to mark each ac-
tivity that has helped them learn a task in a matrix on the cover page. The homework
assignment is the final test on these tasks. For instance, according to table[IV] the stu-
dents did not perceive that the visualizations had contributed much to their present
knowledge on the complexity items we asked about, yet 33% of the students on the
final survey stated that they had learned complexity from the visualizations, and that
these were meaningful and contributed to learning. Those answers were given later
and in retrospect, while the results in Table[IV]were supplied together with the second
homework assignment, and also on the latter, students might compare the relative
contributions of also the usual course activities, and judge these as more useful than
the visualizations. Apart from the visualizations, all activities were considered con-
tributing to learning. Lectures are for most tasks considered beneficial by the largest
fraction of the students. The lab theory assignments also seem to be useful for stu-
dents, but to decreasing extent as the teacher estimated difficulty level of the task
increases. The relative difficulty of the items seems to correspond well to the fraction
of students who have still not learned each task — this fraction increases row by row
in both table|[III|and table with the exception for complexity task 6. To reduce opti-
mization problems to decision problems is, according to the grading criteria, something
that lies on a reasonably high level (grade B(?)), but at least in 2013, more students
perceived designing reductions between two given problems difficult, than performing
optimization-to-decision problem reductions. The lab theory assignments are roughly
contributing to the learning of both dynprog and complexity tasks to decreasing extent
for each item in the matrix. This is consistent with the aim of the questions: to help
students consider relevant aspects of the problem, and choose appropriate approaches
and/or data structures for the task, rather than acquiring really difficult skills.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:23

The tasks involved in dynamic programming were more often already familiar to
students, before the course activities, than the complexity tasks. This is especially
true for the design of recurrence relations, which was something we had expected to
be perceived as more challenging.

Considering how many students claiming not to have learned each item, the most
difficult dynprog task is to motivate correctness. The most difficult computational com-
plexity task is, with the same interpretation, to solve construction versions of problems
given algorithms for the optimization version. This latter is the second least learned
task of dynprog — it is something that you may need to do regardless of whether you
are working with tractable or intractable problems.

6.4. Visualizations, clicker questions and new structure

As seen in the survey results, the visualizations were the least appreciated new ac-
tivity, yet most students were very positive towards them. Only a minority claimed
to have learned from them. It is in our opinion a good idea to address learners with
visual preferences as well as those preferring verbal instruction. Many complicated al-
gorithms can be easier described with visualizations than by tracing execution on the
board.

The questions at the lectures were extremely appreciated among the students, and
when asked on the free text answers surveys for the likely purpose of these exercises,
students mentioned activity, thinking, adopting standpoints, interaction, feedback to
the teacher and to the students about the lecture’s progress, and so on. The teachers
and students appeared to be in agreement on why the questions were there, and they
were appreciated by both groups, although it is the aggregated responses of the student
cohort that corresponds well to the teachers’ ideas. It did not put students off to have
to raise a colored card in class (compared to pressing an anonymous button), but when
a clicker system was borrowed and utilized, students liked it.

Once introduced, this type of questions during lectures are unlikely to disappear.
Reports on experiments with clickers often involve teachers being most appreciative
of the systems. This is likely not due to a feature of any particular system, but a con-
sequence of the new lecture planning and lecture process, that can be much more re-
warding for the teacher as well as for the students. Preparing good clicker questions,
even in the absence of clickers and even in the absence of response cards, is a practice
we recommend. The simultaneous vote is probably better than asking for one answer
option at the time, so for instance having students point at the right wall for “yes” and
the left wall for “no” seems to offer students less concerns about loosing their face than
asking first for yes answers and then for no answers.

Regarding the new structure of the dynprog lectures, many students were (fortu-
nately) unaware of this being an experiment. They did however appreciate all inter-
ventions we came up with, maybe consistent with the positive change bias.

6.5. Comparison to assessments

The homework assignments assessing the problem solving proficiency, the first is on
algorithm construction and the second one is on computational complexity, were de-
scribed in Section [2.1]

One of the main reasons for changing the course was to improve the performance
ratio of the first time students at the complexity homework, that is, the share of the
students passing the homework the first time it is given. The year before the project
started the performance ratio was 73%. The first year of the project the ratio was the
same, but the second year it was improved to 87%. In 2013, 69 % of the first time
students passed the second homework. This year, the tasks of the homework might
have been more difficult, or students less prepared for mathematical tasks.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:24 E. Enstrdm and V. Kann

Table V. Comparison of student performances at home-
work 1 and 2 (hw1 and hw2) depending on the number of
new activities attended (ADC), years 2011-2013.

Activities hwl grade | mean grade

attended <hw2 grade | hwl | hw2

>4 41% 3.2 3.6

year1l | >2and <4 36% 3.3 2.9
<2 20% 24 | 19

>4 49% 2.0 2.7

year2 | >2and <4 34% 1.7 2.1
<2 11% 1.7 | 2.0

>4 40% 2.5 2.8

year 3 | >2and <4 25% 2.2 1.9
<2 24% 20 | 14

How many students are passing the assignments is not all there is to know. In [En-
strom and Kann 2010] we found that the ration between number of students failing the
second assignment and those failing the first, was greater than one before the reduc-
tion lab assignment and smaller than one afterwards. This method, however, does not
show a stable trend. It is also not as useful once the teaching of algorithms became the
object of our refactoring efforts, since now both of the assignments are better framed
by other course activities, than was the case in 2008. In [Crescenzi et al. 2013]] we also
compared the results on the complexity homework with the number of attended activ-
ities: motivational lecture, clicker questions, demonstration of visualizations, student
use of visualizations on their own, peer review of lab theory, and submission of NP
reduction computer lab to Kattis. The NP reduction computer lab was counted as 1.5 if
submitted early (i.e. not later than the specified due date). Out of the students failing
the complexity homework in 2011, only a fourth had attended three or more of the six
activities.

Attending many activities might only indicate activity from the student’s part, and
active students are likely to receive better grades than those who are not studying as
hard, regardless of the quality of the activities provided. Therefore we compared the
attendance information on complexity activities to the two grades that a student re-
ceived for homework assignments. 114 students in 2011, 136 in 2012 and 135 in 2013,
handed in both homework assignments, 34/57/53 students received a better grade in
the second homework than in the first, 46/10/42 students received a better grade in the
first homework than in the second, and 34/69/40 students received the same grades.
The percentage of students who had higher grade on homework 2 than on homework
1 for the years 2011-2013 are presented in table split up into sub categories based
on how many activities the students had attended. The average grade (on a linear
scale where A is 5 and F is 0) for each subgroup on each of the homework assignments
are also present. For all three years, those attending many of the complexity activities
were more likely to have a higher grade on the second, complexity, homework than on
the algorithms homework. The average grade was consistently higher on the second
homework among those who attended more than four activities. This remained the
case also after the dynprog restructuring cycle of these action research interventions.

Note that the activity attendance information of 2011 is not complete. Some students
in the two lower attendance categories (<2) might actually belong in the middle or
upper category, since for those who supplied no attendance information, we only have
information about the mandatory and assessed course activities. For 2012 we have
full attendance information. Also, we know for 2012 that the correlation between the
attendance of the algorithm and complexity parts of the course is high.

This indicates that the activities on complexity had a positive effect, or possibly that
students benefit more from teaching in complexity than in algorithms. It is not possible

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:25

to use the homework grades in the same way for evaluating the dynprog activities,
as dynprog is only a minor part of the algorithms homework assignment, and the
dynprog task sometimes is the easiest one, and sometimes is the hardest one, on that
homework. It would however be surprising, and decrease the credibility of the method,
if the same type of result would be visible for the dynprog activities. In [Enstrom 2013,
Table 4], we performed that type of check for the data from 2012, and attending many
dynprog activities did not correlate with a higher grade on the algorithms homework
than on the complexity homework that year. (The average grades 2012 might have
been slightly better, in total, if some students would not have used dynprog too often,
choosing it in favor of a more efficient, greedy solution to the third task, but that is
unlikely to affect the average grades enough to change this situation.)

6.5.1. Self-efficacy on complexity. In 2012 and 2013 self-efficacy surveys on the computa-
tional complexity part of the course were given. They consisted of 8 items, see figure
The differences in self-efficacy scores of these surveys are presented in table V1]

Too few students out of those who completed both surveys had attended few activ-
ities. Hence, the activities’ possible impact on self-efficacy cannot be calculated from
these results.

The total results for both years are presented in Table |V as 2012/2013 results. The
items C4, C5, C6 and C8 relate closely to the three difficulties identified by us, and the
average final score is lower on these both years.

The lowest mean increase was for C4, both years, indicating that students after the
complexity teaching still were feeling less certain about directions of reductions for
various purposes. However, the median score for C4 on the second survey was 90 in
2013, so a majority did not feel uncertain. It is also worth noticing, that the teaching
assistants who were grading the homework and the oral exam where this assignment
was presented, reported in 2012 that this year (unlike all previous years) there were
no occurrences of reductions in the wrong direction. The students did not increase
their beliefs in their own abilities on this one as much as on the other items, but they
performed better than students had done before with respect to this particular item.

Items C5 and C8 concern correctness proofs, which we already believed to be dif-
ficult, and in the median values of 2013 it is particularly clear that these belong in
another category than the other items, together with C6 (choosing a suitable problem
to reduce), suggesting that comparing problems with respect to similarities and diffi-
culties, as in POI, in structure and purposes could be useful also for the complexity
part of the course.

Item C2 had a high starting score in 2012, and did therefore not increase much.
Most students increased their self-efficacy during the period, but there were some oc-
currences of decreased self-efficacy, one for item C5 and two for item C4.

Table VI. Statistics over self-efficacy scores for students (N=35/N=72) participating in both com-
plexity surveys 2012/2013. 79/78 students answered the first survey and 45/144 answered the
second survey.

Cco1 C02 Co3 C04 Co05 Co06 Co7 Co08

mean, survey 1 39/32 49/35 30/24 42/34 28/13 25/16 33/18 27/15
mean, survey 2 89/90 88/92 85/90 65/81 68/74 70/75 87/84 75/75
mean difference 50/568 39/66 55/66 22/47 40/61 45/59 54/66 48/60

median, surveyl 50/30 50/40 25/18 45/32 25/0 25/5 25/6 25/0
median, survey 2 95/98 90/95 90/95 75/90 75/75 75/75 95/88 75/75
median difference 50/55 40/52 50/72 25/50 50/65 45/70 50/75 50/65

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:26 E. Enstrdm and V. Kann

6.5.2. Self-efficacy on dynamic programming. Also surveys on self-efficacy in dynamic pro-
gramming were distributed both in 2012 and 2013. These consisted of 10 items, (see
figure [3). Statistics for these surveys are presented in table

Table VII. Statistics over self-efficacy scores for students (N=68/N=43) participating in both dynprog surveys
2012/2013. 110/73 students answered the first survey and 79/78 students answered the second survey.

dp01 dp02 dp03 dp04 dp05 dp06 dp07 dp08 dp09 dplO

mean, survey 1 76/59 49/567 70/51 88/83 34/36 49/44 71/65 69/55 47/38 36/37
mean, survey 2 90/87 84/89 87/85 95/97 68/76 78/81 88/89 80/82 67/75 65/67
mean difference 14/28 35/32 17/34 7/14 33/40 29/37 17/24 11/27 20/37 30/30

median, survey 1 ~ 80/67 50/60 75/50 96/100 25/25 50/40 75/75 75/60 50/35 28/30
median, survey 2 95/90 88/90 92/90 100/100 75/80 80/85 90/90 80/90 72/75 75/70
median difference 14/25 30/25 20/35 0/0 32/40 28/40 10/20 6/25 20/35 32/30

DP4 has the highest starting and final value both years, where for instance in 2013
the median is 100, signaling that students are comfortable with recurrence relations,
and contradicting the assumption that these might make dynprog seem difficult.

DP5 starts out at a low level, but the final average is comparable to other items.
It has the highest increase, so the “evaluation order” is an unknown concept in the
beginning, but is later not as strange. The same happens for DP10 and, in 2013, DP9.

The most difficult tasks are represented by items DP9 and DP5, related to seeing
the structure of subproblems and their solutions, choosing an appropriate evaluation
order, and solve an entire problem, and DP10, again indicating that constructing so-
lutions by reduction to an algorithm solving the existence of a solution, i.e. reducing
the construction version of a problem to the decision version, is difficult. This points
at reductions being difficult both in proofs by contradiction and in solving problems,
meaning that all difficulties with reduction in complexity might not be due to the
“backwards” application of them.

If we compare the figures in table VIl and those in table table[VI] the dynprog items
are both in the beginning and in the end, perceived as less challenging compared to
the complexity items. This is confirming the observation that algorithms and problem
solving are familiar to our students, while complexity is a new type of topic which they
are less used to dealing with.

6.6. Self-efficacy on pseudocode and proofs

In preparation for the third cycle, the students received a self-efficacy survey on pseu-
docode and proof at the exam 2012, together with the anonymous course survey.

The same survey was then used, non-anonymously like the others, in 2013 both
before and after the entire course. Unlike the previously investigated topics, these
topics are considered pre-requisite to some degree, and are not explicitly taught in
ADC.

The items are presented in figure |5/ (note that items P9 and B1 are not phrased as
self-efficacy items, which was commented by some respondents) and the results from
2013 in table Since both new and older students completed the survey in 2012,
all responses are counted, except for the rows about differences between the two 2013
occasions, where only the students who completed both surveys are counted.

The pseudocode items all start with higher values than does the complexity and dyn-
prog items. This is reassuring, since students should already be used to pseudocode.
The average increases are modest, with the exception of P9 which started at 49 and
increased to 80.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?2:27

Among pseudocode items, P5, P6, P8 and P9 seem to have been a bit more diffi-
cult than the other items. The two last items correspond to the choice of presentation
means, and we had already noticed that students often seemed unsure of what they
needed to include and how to present the algorithms. For P5 and P6, some sponta-
neous comments said that this would entirely depend on the difficulty level of the
questions/algorithms.

P6, dealing with the ability to translate pseudocode information to the real world
and possible macro perspective ideas like what task the algorithm is designed for,
initially had the median value of 60, just above P9. “Translating” various algorithms
to problem descriptions and decide whether any of them solves the described problem
started out higher, but both had final median only 80, which for this set of items is low.
Some students do recognize difficulties comparing understanding of an algorithm at
micro level, row by row, with understanding why the algorithm works like that. Going
in the other direction, from an algorithm solving a problem, to presenting it in pseudo
code (P7), is not perceived as difficult — but the differences are small.

The proof items are more similar to the complexity items, or start out even lower.
For B1 and B2, the increased self-efficacy both on average and as median, is large. Stu-
dents are more certain of what needs to be proven, and feel more comfortable valuing
proofs. Still, both median and mean values are around 70. For the two following tasks:
understanding why an algorithm works, explain it orally, students feel better prepared
already in the start. They do know about correctness, but are not certain what counts
as a proof, and continue to be marginally more certain of why an algorithm works
than what is required to prove it. They are also more comfortable actually attempting
to prove correctness, than to judge whether a given proof is sufficient!

In table [X| the responses about pseudocode from 2013 can be compared to the
responses from the anonymous survey in 2012. The same comparison of proof self-
efficacy beliefs are presented in table

In table [IX| the responses on the proof items are presented.

Table VIII. Differences in self-efficacy scores for students (N=112) participating in both proof/pseudocode
surveys S1 and S2 2013. 145 students answered the first survey and 144 students answered the second.

p01 p02 p03 p04 p05 p06 pO7 pOS p09 b0l bO2 b03 b04 b05

mean, S1 76 80 78 72 67 61 69 64 49 17 18 52 47 33
mean, S2 85 90 87 84 80 78 88 81 80 68 63 78 76 67
mean S2-S1 9 9 8 12 13 16 19 17 31 51 45 26 29 34
median, S1 75 80 75 75 75 60 75 70 50 10 10 50 50 25
median, S2 90 90 90 88 80 80 90 82 85 70 70 80 80 75

median S2-S1 5 10 8 10 13 15 17 15 30 50 50 25 28 35

Table IX. Self-efficacy scores for proof study. The increases
presented for 2013 are from before to after the course. In
2012, 130 students answered the anonymous final survey.
In 2013, 145 students answered the first survey and 144 stu-
dents answered the second. In total, 110 students responded
to both surveys in 2013.

median 2012 60 60 75 75 65
mean 2012 57 53 72 74 62
median 2013 70 70 80 75 175
mean 2013 68 63 78 75 67

median increase 2013 50 50 25 28 35
mean increase 2013 52 46 27 30 34

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?2:28 E. Enstrdm and V. Kann

Table X. Self-efficacy scores for pseudocode study. The increases from 2013 are in-
creases from before to after the course. In 2012, 130 students answered the anony-
mous final survey. In 2013, 145 students answered the first survey and 144 students
answered the second. In total, 110 students responded to both surveys in 2013.

P1 P2 P3 P4 P5 P6 P7 P8 P9

median 2012 80 90 8 8 75 75 90 78 75
mean 2012 83 89 84 80 73 68 8 77 71
median 2013 90 90 90 8 80 75 90 80 80
mean 2013 8 90 87 84 80 77 89 82 80

median increase 2013 5 10 8 100 13 15 19 15 30
mean increase 2013 9 10 9 12 14 17 20 18 32

In 2013, students were somewhat more certain (on average) that they could perform
the tasks compared to 2012. We can see that the increase in self-efficacy regarding
pseudo code was very small during the course, and that the differences between 2012
and 2013 seem rather similar for both proofs and pseudo code. This could imply that
the students in 2013 were “better” at these things than the 2012 students, or generally
more confident, rather than that the teaching caused the difference between years.

6.6.1. Correlation of self-efficacy value and performance. A property that we might want
the self-efficacy values to have is to correlate to the real mastery of the student’s abili-
ties, as measured by a classical assessment task. Therefore, we attempted to correlate
self-efficacy beliefs with actual performance on the course. Out of our 32 items, we
found one or several mandatory tasks, possible errors on homework assignments, and
particular exam or homework questions, that could be related to half of them. The
correlation between the second survey’s answers and these data on students’ perfor-
mance were very small and the plotted data points did not manifest any pattern. The
item with highest correlation was C8, to perform a correctness proof for a reduction,
for Whﬁh the correlation coefficient was 0.43 (Pearson). The plotted data is shown in
figure

Either the absolute values of the self-efficacy beliefs do not correlate with perfor-
mance, in the current wording of the items, or the difference in scope between the ex-
amination tasks and the items is too large and the data therefore too uncertain. Also,
the time between when students performed the assessed tasks and when they com-
pleted the surveys, might have brought about changes. Other steps need to be taken
to resolve this.

For the possible negative correlations, i.e. errors reported by TAs that, if the students
have “realistic” self-efficacy beliefs, could correlate negatively with the reported beliefs,
there were so few data points that this method was not used.

6.7. Different years and different students

When comparing course results for different years, potential differences between the
average student of each year is not taken into account. In Table[l} some additional data
about the students is included. We have also checked whether the admission grades
and the grades on pre-requisite courses are correlated to ADC. It appears to be the
case for pre-requisite courses, but not for admission grades.

In Table[XT] the average admission grade for students with each of the possible ADC
grades are presented for the years 2011-2013. Also for homework assignments, the
pre-requisite courses’ grades roughly correlate with performance, see Table

Comparison with admission grades can be seen in Table The same trend is by
no means present for this data. Admission grades do not seem to correlate with ADC
grades. Similar results were obtained for homework grades. Students are competing
to study at KTH either with their high school grades, or similar, or with their results

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:29

Self-efficacy item C8 vs. actual performance

100
|
o
000 @

80
0O O MOOOOO0D

Q

O @ 000000

Self-efficacy estimate
40 60

Q
[I [I I |

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of performance indicators

Fig. 6. Estimated self-efficacy for item C8 plotted against the fractions of (two) positive performance indi-
cators out of the mandatory and documented tasks of the ADC course (2013).

Table XI. Comparison of ADC first time students’ final ADC
grades with their average grades from four pre-requisite
courses. Maximum pre-requisite grade: 20.

Average grade (# of students)
Course grade 2011 2012 2013

14.43 (23) 14.67(18) 16.86 (14)
13.15(13) 16.17 (6) 11.00 (1)
12.36 (11) 14.35(23) 15.52(27)
14.71(7) 7.67 (3) 12.36 (11)
9.44 (43) 10.13(55) 10.69 (26)

HOQW >

on an admission test. In Table [XIII| various types of grades have been normalized to
the same scale, and two types of admission test scores, with maximum 2 and 2.5 re-
spectively, are merged. Some students were admitted based on previous study achieve-
ments at KTH and some based on foreign countries’ grading systems. The maximum
scores for these students are unclear, and they are not counted in this statistics. Ex-
plaining different year’s different ADC outcomes with the admission grades of that
year’s students is unsuitable. Some students may delay their study start at KTH, or
have a years’ leave for military service, pregnancy or other studies, which means that
the individuals who are first time students on ADC any year are not necessarily in-
cluded in the statistics, especially in Table [I, but a large group of them are, and the
statistics is valid for this group.

7. DISCUSSION
Some final thoughts on the three areas of this research.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:30

E. Enstrdm and V. Kann

Table XII. Comparison of ADC first time students’ homework grades
with their average grades from four pre-requisite courses. Maxi-

mum pre-requisite grade: 20

Homework Grade

Average grade (# of students)

2011 2012 2013

1 A 12.60 (15) 16.00 (8) 18.00 (5)
1 B 13.73 (22) 14.40 (5) -

1 C 11.41(22) 13.54(35) 13.94(53)
1 D 12.88 (17) 12.40 (5) 10.75 (8)
1 E 7.86 (29) 9.67 (69) 9.88 (32)
1 F 5.80 (5) 12.00 (3) 7.00 (2)
2 A 14.53 (34) 15.12(24) 16.68 (22)
2 B 11.00 (5) 16.11 (9) 13.29 (7)
2 C 12.18 (11) 12.19(21) 13.77 (22)
2 D 12.62(8) 10.78(18) 12.00 (6)
2 E 9.14 (42) 9.41 (51) 9.94 (16)
2 F 6.00 (5) 7.00 (2) 9.78 (23)

Table XIIl. Comparison of ADC 2011-2013 first time students’ grades with their average admis-
sion grades (G) or admission test results (T). Maximum G: 22.5, maximum T: 2.0

2011 average (#) 2012 average (#) 2013 average (#)

Course grade G T G T G T

A 1853 (17) 1.40(5) 20.75(14) 1.80 (4) 21.35(9) 1.63 (3)
B 18.49(9) 150(3) 20.43(5) 2.00 (1) 19.40 (1)

C 18.02(8) 1.60(1) 20.77(16) 1.66(5) 21.22(15) 1.61(10)
D 18.55 (6) 1.70 (1) 20.10 (2) 1.30 (1) 20.49 (5) 1.20 (1)
E 18.13(26) 1.55(8) 19.89(38) 1.55(10) 20.51(19) 1.64(5)

7.1. The information conveyed by self-efficacy beliefs

The proposed method of showing correlation between self-efficacy values and perfor-
mance by utilizing existing assignments in the course failed, see section On the
one hand, when describing the idea of self-efficacy, Bandura points out that the sur-
veys should not be presented in such a way that they suggest to respondents that there
is an objectively correct answer that their answers will be assessed with respect to. On
the other hand, when investigating correlation between self-efficacy values and per-
formance, it is likely to be important that not too much time passes by between the
survey and a measurement of the investigated abilities.

Utilizing already present tasks for evaluating the predictive value of the reported
self-efficacy beliefs conforms with the aim of not giving the impression of testing how
“true” the self-efficacy beliefs are, but to evaluate very precise abilities by tasks involv-
ing many other abilities as well, is maybe too blunt a method.

One reason for the failure of our evaluation of the items, may be that we required
too little information from those assessing the students. Preferably, short of designing
specific tests for all students just to check their actual abilities on all these tasks,
we could investigate a couple of items at a time, design course tasks that will provide
suitable information, and require TAs to give detailed reports on these particular tasks
and abilities.

Individual variation in the calibration of the self-efficacy values could also explain
the lack of correlation — the value 80 might for example mean very different levels of
mastering of the item for different students.

It is however also a possibility, that the self-efficacy items themselves are of too
low a quality, containing impossible ambiguities and making the responses arbitrary.
A couple of students experienced them in that way, and invented their own ways of

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:31

answering, for instance by assigning binary values to each item, or to respond with
intervals. The task an item concerns, can be of varying difficulty level depending on
how difficult the problem that the task is “illustrated with” is. There is bad pseudo
code to try reading, there are inherently tricky problems to solve, and so on.

7.2. The complexity assignment versus other lab assignments

The Kattis complexity assignment, described in [Enstrom and Kann 2010, is unusual
for the ADC course in several ways. Firstly, the time limit requirements are not diffi-
cult to meet with, provided you try solving the correct task. If you try an exhaustive
search approach to the new problem, instead of reducing something to it, it will of
course time out. Secondly, the programming in itself is not difficult. The task is actu-
ally only there to support the process of constructing a valid reduction, and the main
purpose is not to practice programming. Thirdly, the purpose of the task is more “con-
structed” and needs more explanation, than what is needed to motivate “solve this
problem”. Why do we need to show that this problem solves another problem?

This is not obvious to all students. As mentioned above, it is common both to receive
complaints because the assignment is too easy, and complaints about it being unclear
and underspecified. It is underspecified, if viewed within the “regular” Kattis context.
Usually, an assignment has a problem statement, input and output specifications, and
some sample inputs with corresponding sample answers. This is reasonable and the
right thing to include if the purpose is to solve a programming problem, or to practice
programming according to specification. However, for this particular exercise, the task
of constructing a (very simple) program that transforms the input of problem A to
input of problem B would be extremely decontextualized, and pointless.

To practice NP-completeness reductions, at least some trace of the “choose a problem
to reduce” must be present. Hence, the input cannot be definitely specified. Instead, in-
put of two problems is presented, and the students should choose which one resembles
the casting problem, that is the new problem with unknown complexity that is intro-
duced in the lab, the most — or look at the choices of most other people.

Then there is the problem of knowing what a reduction can be used for, and therefore
in which “direction” to reduce. This means that we do not want to specify what the
output format is, either. Students need to read the statement and understand what
the task is, which makes this assignment different from all other Kattis problems, but
similar to the type of problem dealt with in the course at this point. This context switch
is not clear to all students, and every year some students complain about “lost” time
when they were trying to reduce in the wrong direction. As teachers, we believe that
the experience of first trying to reduce the wrong problem, and then realizing this and
what should really be done, is most educating, and irreplaceable by instructions.

7.3. Complexity

In order to connect all three parts of reductions that students find especially hard,
coming up with an idea, prove correctness and understand the implications of a re-
duction, we believe that we should both teach each item separately, and show how the
parts relate to each other and to other parts of the students’ knowledge, for instance
by showing the connections to algorithm construction. If a student has the precon-
ception that everything in the course will be about algorithms, an exhaustive search
would seem just as good as any other algorithm for any purpose. On the other hand,
if a student clearly likes designing algorithms, it ought to be relatively easy to learn
what specific requirements are always posed for reductions in the context of proving
NP-completeness. By learning that there are such requirements and by learning them,
in a context free from details about the involved problems, the student could later feel
more comfortable in designing reductions.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

?:32 E. Enstrdm and V. Kann

In this study we have mainly addressed the students’ motivation and the implica-
tions of reductions in NP-completeness proofs. The assignment type in Figure 2| which
was not considered especially difficult on the exam, shows that this was maybe not
that hard after all. The fact that had been at the core of many difficulties was not
difficult in itself, after getting proper attention in teaching. The disposition to reduce
abstraction mentioned by [Armoni 2008; Armoni et al. 2006] also could not affect the
students’ thinking here, since nothing is known about the problems involved. It is still
unknown if this specific difficulty also disappears in more complicated tasks.

We found that the students liked the new activities and that most of them thought
that the activities helped them to learn computational complexity. It is hard to prove
that more students now will pass the exam, but the statistics indicate that the students
who attended most of the activities improved their grade by doing this.

Finally, we would like to emphasize that our cooperative course development model,
where we exchanged activities and discussed problems and solutions over university
and country borders, was very successful and satisfying.

7.4. Dynamic programming

The students in 2012 did not express that the recursion-related parts of dynamic pro-
gramming were particularly difficult, as suspected based on prior work on younger
students. It is likely that third year students have moved on to another level of under-
standing of recursion, and therefore do not find it difficult as is. We have, on the other
hand, a suspicion that the step of a problem solving exercise where students need to
come up with a recurrence relation, still can be difficult. Without seeing that the prob-
lem has this structure, there can be no dynamic programming. It remains clear that
when dealing with multi-dimensional dynprog problems, students often forget about
some dimension and produce incorrect solutions (which they, on the other hand, often
can modify so that they work during oral presentations of homework.)

7.5. Proof and pseudo code

These concepts have not been explicit course content. Instead, they are interweaved
in everything else in the course. Students seemed to feel a tiny bit more confident in
these areas in 2013, when we dedicated more attention to them, than in 2012, but only
marginally so.

Looking at the initial values on proofs, we see that students in 2013 increased their
reported self-efficacy quite a lot, from a low level. The ADC students are continuously
exposed to the proof practice of TCS — as presented in teaching situations — and hope-
fully gradually grow into the discipline.

As for pseudo code, the increase is very moderate, but regarding the tasks of present-
ing an algorithm with pseudo code, the increase is higher. This could be a consequence
of the two information texts we produced and the more frequent mentioning of pseudo
code during lectures, but also it could be related to the fact that the self-efficacy sur-
veys have made the students reflect on pseudo code, or to pure chance.

Topics like these are probably best tackled at a educational program level, combining
the efforts of various teachers into a coherent picture of what is required.

8. CONCLUSIONS

It has been illustrated here, that students can be very positive towards changes in the
“experienced curriculum”, and that they can be very happy that new methods are tried.
Non-anonymous versions of clicker systems, like the colored response cards we have
used, are valuable for both teachers and students to assess the progress of a lecture,
and this was acknowledged by students in their responses to the final survey.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

Iteratively Intervening with the “Most Difficult” Topics ?:33

When starting to use an automated assessment system, if the previous method was
to have a TA testing code, students might have a harder time passing the exercises
than before. On the other hand, when introducing automated assessment to a course
that previously did not have programming assignments, the completion rate can in-
crease. In any case, the use of an automated tool signals some type of context to stu-
dents, and they will interpret their tasks accordingly. If experimental tasks, like the
complexity lab assignment, are introduced, they might need extra explaining, since
they are in disguise.

The particular difficulties we have spotted in the ADC course concerns compu-
tational complexity, dynamic programming, and proof and pseudocode production
(maybe the very presentation of all other tasks in the course). Computational com-
plexity is a mathematical topic, and it appearing side by side with “ordinary” problem
solving tasks could confuse students. The mathematical language and context need
explaining.

When looking at computational complexity, choosing a problem to reduce, and prove
correctness are difficult tasks. Also performing reductions between problem types are
not perceived as equally easy as other parts of the content. The same difficulty arises
with dynamic programming exercises, together with the difficulty of imagining all di-
mensions that can vary and all parameters that are needed, in the case where a 2-
dimensional matrix is not sufficient to hold all calculated values. When it comes to
proving, the necessity of proving sometimes seems to be questioned by students. It
is likely the explaining aspect of the proof that they are not acquainted with, other
than for teaching purposes. The convincing aspect of a proof is maybe closer to every-
day experience, but on the other hand some students are convincing themselves of the
truth of a statement (or, more often, of the correctness of their algorithm) based on
experimentation and heuristics.

Given that these seem to be the most difficult aspects of the ADC course, it would be
interesting to interview students about what a correct program is, and how you know
that, and what a correct algorithm is with the corresponding methods for establishing
truth. The CS branches occupied with each of these tasks use different methods and
assumptions, and the students meet with both these perspectives during studies. They
may need some help to structure these impressions.

More information on how students experience the purpose and the quality criteria
of typical ADC tasks could also help shed light on what is, really, difficult among the
included topics.

ACKNOWLEDGMENTS

We would like to thank Monika Lundell and Anna Bjérklund who kindly have provided us with student
documentation and admission data.

References

ACM/IEEE-CS Joint Task Force on Computing Curricula. 2013. Computer Science Curricula 2013. Technical
Report. ACM Press and IEEE Computer Society Press. DOI : http:/dx.doi.org/10.1145/2534860

Michal Armoni. 2008. Reductive thinking in a quantitative perspective: the case of the algorithm course. In
ITiCSE ’08: Proceedings of the 13th annual conference on Innovation and technology in computer science
education. ACM, New York, NY, USA, 53-57. DOI : http://dx.doi.org/10.1145/1384271.1384288

Michal Armoni, Judith Gal-Ezer, and Orit Hazzan. 2006. Reductive thinking in undergraduate CS courses.
In ITICSE °06: Proc. 11th ann. SIGCSE conf. on Innovation and technology in Comp. Sci. education.
ACM, New York, NY, USA, 133-137. DOI : http://dx.doi.org/10.1145/1140124.1140161

Petek Askar and David Davenport. 2009. An Investigation of Factors Related to Self-Efficacy for Java Pro-
gramming Among Engineering Students. Turkish Online Journal of Educational Technology 8 (2009),
26-32.

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/1384271.1384288
http://dx.doi.org/10.1145/1140124.1140161

?:34 E. Enstrdm and V. Kann

Nicolas Balacheff. 1988. Aspects of proof in pupils’ practice of school mathematics. Mathematics, teachers
and children (1988), 216—235.

Albert Bandura. 1986. Social foundations of thought and action: A social cognitive theory. Prentice-Hall,
Englewood Cliffs, New Jersey.

Albert Bandura. 2006. Self-Efficacy Beliefs of Adolescents. Information Age Publishing, Chapter 14: Guide
for constructing self-efficacy scales, 307-337.

Benjamin S. Bloom, Max D. Engelhart, Edward J. Furst, Walker H. Hill, and David R. Kratwohl. 1956.
Taxonomy of educational objectives Handbook 1: cognitive domain. Longman Group Ltd., London.

Markus Andreas Bréndle. 2006. GraphBench: Exploring the Limits of Complexity with Educational Soft-
ware. Ph.D. Dissertation. Swiss Federal Institute of Technology.

Jane E Caldwell. 2007. Clickers in the large classroom: current research and best-practice tips. CBE Life
Sci Educ 6, 1 (2007), 9—20. DOI : http://dx.doi.org/10.1187/cbe.06-12-0205

Daniel Chazan. 1993. High School Geometry Students’ Justification for Their Views of Empirical Evidence
and Mathematical Proof. Educational Studies in Mathematics 24, 4 (1993), pp. 359-387. http://www.
jstor.org/stable/3482650

Pierluigi Crescenzi. 2010. Using AVs to Explain NP-completeness. In Proceedings of the Fifteenth Annual
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’10). ACM, New York,
NY, USA, 299-299. D01 : http://dx.doi.org/10.1145/1822090.1822175

Pierluigi Crescenzi, Emma Enstrém, and Viggo Kann. 2013. From Theory to Practice: NP-completeness for
Every CS Student. In ITiCSE ’13: Proceedings of the eighteenth annual conference on Innovation and
technology in computer science education. ACM, New York, NY, USA, 16-21. http:/doi.acm.org/10.1145/
24624776.246558

Douglas Duncan. 2006. Clickers: A new teaching aid with exceptional promise. Astronomy Education Review
5,1 (2006), 70-88.

Emma Enstrom. 2013. Dynamic programming — structure, difficulties and teaching. In 2013 Frontiers in
Education Conference (FIE 2013). Oklahoma City, USA.

Emma Enstrom and Viggo Kann. 2010. Computer lab work on theory. In ITiCSE ’10: Proceedings of the
fifteenth annual conference on Innovation and technology in computer science education. ACM, New
York, NY, USA, 93-97. http://doi.acm.org/10.1145/1822090.1822118

Emma Enstrom, Gunnar Kreitz, Fredrik Niemeld, Pehr Soderman, and Viggo Kann. 2011. Five Years with
Kattis — Using an Automated Assessment System in Teaching. In 2011 Frontiers in Education Confer-
ence (FIE 2013). Rapid City, USA.

Efraim Fischbein. 1982. Intuition and proof. For the learning of mathematics (1982), 9-24.

Gary Ford. 1982. A framework for teaching recursion. SIGCSE Bull. 14, 2 (June 1982), 32-39.
DOI : http://dx.doi.org/10.1145/989314.989320

David Ginat and Eyal Shifroni. 1999. Teaching recursion in a procedural environment-how much
should we emphasize the computing model?. In The proceedings of the thirtieth SIGCSE techni-
cal symposium on Computer science education (SIGCSE °99). ACM, New York, NY, USA, 127-131.
DOI: http://dx.doi.org/10.1145/299649.299718

Oded Goldreich. 2006. On Teaching the Basics of Complexity Theory. In Theoretical Computer Science, Oded
Goldreich, ArnoldL. Rosenberg, and AlanL. Selman (Eds.). Lecture Notes in Computer Science, Vol.
3895. Springer Berlin Heidelberg, 348-374. DOI : http:/dx.doi.org/10.1007/11685654_15

Gustav Grundin. 2011. Personal communication. (2011).

Bruria Haberman and Haim Averbuch. 2002. The case of base cases: why are they so difficult to rec-
ognize? Student difficulties with recursion. In Proceedings of the 7th annual conference on Innova-
tion and technology in computer science education (ITiCSE ’02). ACM, New York, NY, USA, 84-88.
DOI:http://dx.doi.org/10.1145/544414.544441

Bruria Haberman and Orna Muller. 2008. Teaching abstraction to novices: Pattern-based and
ADT-based problem-solving processes. In 2008 Frontiers in Education Conference (FIE 2008).
DOI:http://dx.doi.org/10.1109/FIE.2008.4720415

Paola Iannone and Matthew Inglis. 2010. Self efficacy and mathematical proof: are undergraduate students
good at assessing their own proof production ability?. In Proceedings of the 13th Conference on Research
in Undergraduate Mathematics Education. https://ueaeprints.uea.ac.uk/16104/ February 2010.

Keith Jones. 2000. The student experience of mathematical proof at university level. Interna-
tional Journal of Mathematical Education in Science and Technology 31, 1 (2000), 53-60.
DOI : http://dx.doi.org/10.1080/002073900287381

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

http://dx.doi.org/10.1187/cbe.06-12-0205
http://www.jstor.org/stable/3482650
http://www.jstor.org/stable/3482650
http://dx.doi.org/10.1145/1822090.1822175
http://doi.acm.org/10.1145/2462476.246558
http://doi.acm.org/10.1145/2462476.246558
http://doi.acm.org/10.1145/1822090.1822118
http://dx.doi.org/10.1145/989314.989320
http://dx.doi.org/10.1145/299649.299718
http://dx.doi.org/10.1007/11685654_15
http://dx.doi.org/10.1145/544414.544441
http://dx.doi.org/10.1109/FIE.2008.4720415
https://ueaeprints.uea.ac.uk/16104/
http://dx.doi.org/10.1080/002073900287381

Iteratively Intervening with the “Most Difficult” Topics ?:35

Hank Kahney. 1983. What do novice programmers know about recursion. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ‘83). ACM, New York, NY, USA, 235-239.
DOI:http://dx.do1.org/10.1145/800045.801618

Hank Kahney and Marc Eisenstadt. 1982. Programmers’ mental models of their programming tasks: The
interaction of real-world knowledge and programming knowledge. In Proceedings of the Fourth Annual
Conference of the Cognitive Science Society, Vol. 4. 143-145.

Jon Kleinberg and Eva Tardos. 2006. Algorithm Design. Pearson Education. http:/books.google.se/books?id=
25p3mHu3ij8C

Yi-Yin Ko and Eric Knuth. 2009. Undergraduate mathematics majors’ writing performance producing proofs
and counterexamples about continuous functions. The Journal of Mathematical Behavior 28, 1 (2009),
68 — 77. DOI: http://dx.doi.org/10.1016/j.jmathb.2009.04.005

G. Light, R. Cox, and S. Calkins. 2009. Learning and Teaching in Higher Education: The Reflective Profes-
sional. SAGE Publications. http://books.google.se/books?id=N9uqqXGujJsC

Andrea F. Lobo and Ganesh R. Baliga. 2006. NP-completeness for All Computer Science Undergraduates:
A Novel Project-based Curriculum. J. Comput. Sci. Coll. 21, 6 (June 2006), 53—63. http://dl.acm.org/
citation.cfm?id=1127442.1127450

Dino Mandrioli. 1982. On Teaching Theoretical Foundations of Computer Science. SIGACT News 14, 3 (July
1982), 36-53. DOI : http://dx.doi.org/10.1145/990511.990516

Ference Marton and Shirley Booth. 1997. Learning and Awareness (Educational Psychology Series). Rout-
ledge.

Orna Muller. 2005. Pattern oriented instruction and the enhancement of analogical reasoning. In Proceed-
ings of the first international workshop on Computing education research (ICER ’05). ACM, New York,
NY, USA, 57-67. DOI : http://dx.doi.org/10.1145/1089786.1089792

Orna Muller, David Ginat, and Bruria Haberman. 2007. Pattern-oriented instruction and its influence
on problem decomposition and solution construction. SIGCSE Bull. 39, 3 (June 2007), 151-155.
DOI : http://dx.doi.org/10.1145/1269900.1268830

Orna Muller and Bruria Haberman. 2008. Supporting abstraction processes in problem solv-
ing through pattern-oriented instruction. Computer Science Education 18, 3 (2008), 187-212.
DOI: http://dx.doi.org/10.1080/08993400802332548

Orna Muller and Amir Rubinstein. 2011. Work in progress; Courses dedicated to the develop-
ment of logical and algorithmic thinking. In 2011 Frontiers in Education Conference (FIE 2011).
DOI:http:/dx.doi.org/10.1109/FIE.2011.6142846

Frank Pajares and M. David Miller. 1994. Role of Self-Efficacy and Self-Concept Beliefs in Mathematical
Problem Solving: A Path Analysis. Journal of Educational Psychology 86, 2 (1994), 193—203. http://
www.eric.ed.gov/ERICWebPortal/detail?accno=EJ490260

Christos H Papadimitriou. 1997. NP-completeness: A retrospective. In Automata, languages and program-
ming. Springer, 2—6.

Christian Pape. 1998. Using Interactive Visualization for Teaching the Theory of NP-completeness. In Proc.
ED-MEDIA /ED-TELECOM. 1070-1075.

Vennila Ramalingan and Susan Wiedenbeck. 1998. Development and Validation of Scores on a Computer
Programming Self-Efficacy Scale and Group Analyses of Novice Programmer Self-Efficacy. Journal of
Educational Computing Research 19, 4 (1998), 367-381.

Justus J. Randolph. 2007. Meta-Analysis of the Research on Response Cards: Effects on Test Achievement,
Quiz Achievement, Participation, and Off-Task Behavior. Journal of Positive Behavior Interventions 9,
2 (April 2007), 113-128. DOI : http://dx.doi.org/doi:10.1177/10983007070090020201

Tamarisk Lurlyn Scholtz and Ian Sanders. 2010. Mental models of recursion: investigating students’
understanding of recursion. In Proceedings of the fifteenth annual conference on Innovation and
technology in computer science education (ITiCSE ’10). ACM, New York, NY, USA, 103-107.
DOI:http://dx.doi.org/10.1145/1822090.1822120

Michael Sipser. 2012. Introduction to the Theory of Computation. Thomson.

Andreas J. Stylianides and Thabit Al-Murani. 2010. Can a proof and a counterexample coexist? Students’
conceptions about the relationship between proof and refutation. Research in Mathematics Education
12, 1 (2010), 21-36. DOI :http://dx.doi.org/10.1080/14794800903569774

Franklyn Turbak, Constance Royden, Jennifer Stephan, and Jean Herbst. 1999. Teaching Recursion Before
Loops In Csl. (1999).

Thomas Varghese. 2011. Possible Student Justification of Proofs. School Science and Mathematics 111, 8
(2011), 409-415. D01 : http://dx.doi.org/10.1111/1.1949-8594.2011.00106.x

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

http://dx.doi.org/10.1145/800045.801618
http://books.google.se/books?id=25p3mHu3ij8C
http://books.google.se/books?id=25p3mHu3ij8C
http://dx.doi.org/10.1016/j.jmathb.2009.04.005
http://books.google.se/books?id=N9uqqXGujJsC
http://dl.acm.org/citation.cfm?id=1127442.1127450
http://dl.acm.org/citation.cfm?id=1127442.1127450
http://dx.doi.org/10.1145/990511.990516
http://dx.doi.org/10.1145/1089786.1089792
http://dx.doi.org/10.1145/1269900.1268830
http://dx.doi.org/10.1080/08993400802332548
http://dx.doi.org/10.1109/FIE.2011.6142846
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ490260
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ490260
http://dx.doi.org/doi: 10.1177/10983007070090020201
http://dx.doi.org/10.1145/1822090.1822120
http://dx.doi.org/10.1080/14794800903569774
http://dx.doi.org/10.1111/j.1949-8594.2011.00106.x

?:36 E. Enstrdm and V. Kann

Jessica M. Zerr and Ryan J. Zerr. 2011. Learning from Their Mistakes: Using Students’ Incorrect Proofs as
a Pedagogical Tool. PRIMUS 21, 6 (2011), 530-544. DOI : http://dx.doi.org/10.1080/10511970903386915

Received October 2014; revised ; accepted

ACM Transactions on Computing Education, Vol. ?, No. ?, Article ?, Publication date: October 2014.

http://dx.doi.org/10.1080/10511970903386915

	Introduction
	Potential NP-completeness related difficulties
	Potential dynamic programming difficulties
	On proofs

	The Course
	The homework assignments

	Method
	Activities improving the course
	Programming assignments
	The reduction computer lab
	The dynprog programming assignment

	Clickers and response cards during lectures
	Visualizations
	Visualizations of reductions
	Motivation and usefulness
	The NP-reducibility assignment
	Pattern Oriented Instruction
	New structure of the course content
	Phases, prototypes and patterns in dynamic programming

	Evaluation
	Self-efficacy
	The self-efficacy surveys
	Home assignment cover page
	Course surveys
	Results of the assessments
	Grading protocols from the individual assessments

	Results
	Automated assessment and programming assignments
	Framing of exercises/Verbal and non-verbal communication
	The survey results
	Visualizations, clicker questions and new structure
	Comparison to assessments
	Self-efficacy on complexity
	Self-efficacy on dynamic programming

	Self-efficacy on pseudocode and proofs
	Correlation of self-efficacy value and performance

	Different years and different students

	Discussion
	The information conveyed by self-efficacy beliefs
	The complexity assignment versus other lab assignments
	Complexity
	Dynamic programming
	Proof and pseudo code

	Conclusions

