

Lecture 4 Channel Coding 1 Ming Xiao CommTh/EES/KTH

Overview

Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Codes LDPC Decoding Density Evolution Code Design Lecture 4: Channel Coding 1 Advanced Digital Communications (EQ2410)¹

> Ming Xiao CommTh/EES/KTH

Wednesday, Jan. 28, 2014 10:00-12:00, V01

¹Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

 $1 \, / \, 16$

Ming Xiao CommTh/EES/KTH

Overview

Lecture 1-3

- ISI channel and equalization
- $\rightarrow\,$ Signal processing methods to improve the received signal

Digital Communications

- Block codes
- Convolutional codes
- Random Coding (information theoretical concept)

Lecture 4: Channel Coding 1 (LDPC Codes)

1 Overview

- 2 Linear Block Codes
- **3** Tanner Graph
- 4 LDPC Codes
- **5** Irregular LDPC Codes
- 6 LDPC Decoding
 - Gallager's Algorithm A Belief Propagation
- **7** Density Evolution
- 8 Code Design

Notes

Overview

Notes

• LDPC codes were invented by Robert G. Gallager in the 1960s and forgotten for three decades.

Lecture 4 Channel Coding 1 *Ming Xiao* CommTh/EES/KTH

Overview Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Codes LDPC Decoding Density Evolution Code Design

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

[source: http://lids.mit.edu/]

- After Turbo codes were invented 1993, LDPC codes found new attention.
- First channel codes, which provably allow to achieve the capacity limit of the binary erasure channel and to approach the capacity limit for other important channel models.

3/16

Linear Block Codes

- Information word $\mathbf{u} = [u_1, \dots, u_k] \Rightarrow 2^k$ codewords $\mathbf{x} = [x_1, \dots, x_n]$
- Code C
 - Set of all codewords $C = \{\mathbf{x}_1, \dots, \mathbf{x}_{2^k}\}$
 - Code rate R = k/n
 - A linear block code spans a $k\text{-dimensional subspace }\mathcal{C}$ in the n-dimensional binary space.

• Encoder

- Mapping from the information word space into the codeword space
- Linear encoding with generator matrix **G**: $\mathbf{x} = \mathbf{u}\mathbf{G}$, dimension $k \times n$
- \rightarrow The rows **v**_i of **G** are basis vectors of the subspace C.

• Check matrix **H**

- Each codeword $\mathbf{x} \in \mathcal{C}$ satisfies $\mathbf{H}\mathbf{x}^T = \mathbf{H}\mathbf{G}^T\mathbf{u} = \mathbf{0}$.
- **H** spans the (n k)-dimensional subspace C^{\perp} orthogonal to C.
- **H** is the generator matrix of the dual code \mathcal{C}^{\perp} of the code \mathcal{C} .
- Syndrome $\mathbf{c} = \mathbf{H} \mathbf{x}^{\mathsf{T}}$; i.e., for all $\mathbf{x} \in \mathcal{C}$ we have $\mathbf{c} = \mathbf{0}$.
- Linearity
 - For $\textbf{x}_0 = \textbf{u}_0 \textbf{G}$ and $\textbf{x}_1 = \textbf{u}_1 \textbf{G}$ we can see that
 - $\mathbf{x}_2 = \mathbf{x}_0 + \mathbf{x}_1 = \mathbf{u}_0 \mathbf{G} + \mathbf{u}_1 \mathbf{G} = (\mathbf{u}_0 + \mathbf{u}_1) \mathbf{G} \in \mathcal{C}.$
 - Convenient for performance evaluation: distance properties can be expressed by the weight distribution (e.g., $d_{min} = w_{min}$).

Lecture 4 Channel Coding 1

Tanner Graph

Notes

Bipartite graph representing the parity-check matrix.

CommTh/EES/KTH
Overview X1
inear Block Codes
fanner Graph X2
DPC Codes
rregular LDPC Codes
DPC Decoding X4

- Variable nodes (left) represent the code symbols *x_i* in **x**.
- Check nodes (right) represent the symbols c_j of the syndrome **c**.
- A variable node x_i is connected to a check node c_j by an edge in the graph if x_i is included in the check equation specifying c_j (i.e., if H_{ji} = 1).
- Degree of a node
 - Number of outgoing edges of a node
 - Variable node degree d_v
 - Check node degree d_c

5/16

KTH vetenskap och konst

LDPC Codes

Low-density parity-check (LDPC) codes

d_c edges

(n-k) check nodes

(n - k) check node:

d. edges C

• Codes with a sparse parity-check matrix (i.e., only few elements $H_{ij} = 1$ in **H**).

- Regular (d_v, d_c) LDPC code
 Sparse H where each variable node has degree d_v and each check node has
 - degree d_v and each check node holds degree d_c .
- Code rate
 - Number of edges in the Tanner graph

$$N = n \cdot d_v = (n-k) \cdot d_c$$

• With
$$R = k/n$$
 we get
$$R = 1 - \frac{d_v}{d_c}.$$

Code construction

 As suggested by the figure above, the problem of finding the H matrix can be interpreted as the problem of finding the edge permutation Π (edge interleaver).

Irregular LDPC Codes

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Overview Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Code LDPC Decoding Density Evolution Code Design

- Variable-node and check-node degrees are not constant; the degrees are chosen according to a predefined degree distribution.
- Degree distribution for the variable-node degrees and check-node degrees $\sum_{i=1}^{i} i = 1$

$$\lambda(x) = \sum_i \lambda_i x^{i-1}$$
 and $ho(x) = \sum_i
ho_i x^{i-1}$

with coefficients

- $\lambda_i = \Pr[\text{an edge is connected to a variable node with } d_v = i]$
- $\rho_i = \Pr[\text{an edge is connected to a check node with } d_c = i]$

Example, (3,6) LDPC code: $\lambda(x) = x^2$ and $\rho(x) = x^5$

Code rate

- Number of edges connected to degree-*i* variable nodes: $N\lambda_i$
- Number of variable nodes with degree $d_v = i$: $N\lambda_i/i$

$$\Rightarrow n = N \sum_{i} \frac{\lambda_{i}}{i} = N \int_{0}^{1} \lambda(x) dx \quad \text{and similarly} \quad (n-k) = N \sum_{i} \frac{\rho_{i}}{i} = N \int_{0}^{1} \rho(x) dx$$
$$P = \frac{k}{1} = \int_{0}^{1} \rho(x) dx$$

$$R = \frac{1}{n} = 1 - \frac{\int_0^1 \lambda(x) dx}{\int_0^1 \lambda(x) dx}$$

• Fractions of degree-*i* variable nodes and degree-*j* check nodes

$$ilde{\lambda}_i = rac{\lambda_i/i}{\sum_l \lambda_l/l} \quad ext{and} \quad ilde{
ho}_i = rac{
ho_i/i}{\sum_l
ho_l/l}$$

LDPC Decoding

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Overview Linear Block Code: Tanner Graph LDPC Codes Irregular LDPC Co LDPC Decoding *Algorithm A Belief Propagation* Density Evolution

Code Design

 y_1 x_1 y_2 y_2 x_2 Π y_2 y_3 y_4 x_2 y_4 y_5 y_6 y_1 y_6 y_1 y_1 y_2 y_2

Iterative decoding on the Tanner graph

- Code symbols are transmitted over a channel characterized by p(y_i|x_i)
 (→ received symbols y_i).
- Nodes are replaced by local decoders.
 → Variable node decoder (repetition code)
 - → Check node decoder (single-parity-check code)
- Decoders exchange "messages" along the edges (e.g., log-likelihood ratios or estimates of the bits).

Notes

Notes

7/16

LDPC Decoding

- Gallager's Algorithm A (suboptimal)

else

Assumption: BSC with error probability ϵ (i.e., $Pr(x_i \neq y_i) = \epsilon$). Variable-node decoder

Lecture 4 Channel Coding 1

Overview

Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Cod LDPC Decoding Algorithm A Belief Propagation

 $v_i =$

Check-node decoder

 Messages received from the variable nodes: v_i ("decoder input")

• Messages received by the variable node from

the check nodes: u_j ("decoder input")
Messages from the variable node to check

• Message from the channel: $u_0 = y$

nodes: v_i ("decoder output")

 $u_1 = \ldots = u_{i-1} = u_{i+1} = \ldots = u_{d_v} = \bar{u}_0$

• Messages from the check node to the variable nodes: *u_i* ("decoder output")

$$u_j = \sum_{l=1, l \neq j}^{d_c} v_l \mod 2$$

Decoding is successful if all check equations after an iteration are fulfilled.

9/16

KTH VETENSKAP

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Algorithm A Belief Propagation

LDPC Decoding – Belief Propagation

- Variable-node decoder and check-node decoder are realized by the respective soft-input/soft-output decoders.
- Extrinsic log-likelihood ratios (LLRs) are exchanged.
- Suboptimal algorithm with close-to-optimal performance

Variable-node decoder

• Message from the channel:

$$u_0 = \log(p(y|x=0)/p(y|x=1))$$

• BSC, $\Pr(y \neq x) = \epsilon$:

 $u_0 = (-1)^x \log((1-\epsilon)/\epsilon)$

- AWGN, $y = A(-1)^{x} + w$: $u_0 = 2A/\sigma^2 y$
- LLRs received by the variable node from the check nodes: u_q ("decoder input")
- LLRs from the variable node to check nodes: v_p ("decoder output")

$$v_{
ho} = u_0 + \sum_{q=1, q
eq
ho}^{d_v} u_q \qquad
ightarrow ext{ extrinsic information}$$

TH LDP - Beli

LDPC Decoding – Belief Propagation

Check-node decoder

Lecture 4 Channel Coding 1 *Ming Xiao* CommTh/EES/KTH

CommTh/EES/KT

Overview Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Codes LDPC Decoding Algorithm A Belief Propagation Density Evolution Code Design

- LLRs received from the variable nodes: v_q ("decoder input")
- LLRs u_p from the check node to the variable nodes ("decoder output") satisfy

$$anh\left(rac{u_{
ho}}{2}
ight)=\prod_{q=1,q
eq p}^{d_c} anh\left(rac{v_q}{2}
ight) \qquad (1)$$

$$u_p = 2 \cdot \tanh^{-1} \left(\prod_{q=1, q \neq p}^{d_c} \tanh\left(\frac{v_l}{2} \right)
ight)$$

 \rightarrow extrinsic information!

- Remark
 - Given the LLR / for a bit b, the estimate of b given I is E[b|I] = tanh(b/2).

or

• Interpretation of Eq. (1): the expected value of the output LLR is given by the product of the expected values of the incoming LLRs.

11 / 16

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Density Evolution – General Idea

- Tool for analyzing iterative decoding and predicting the convergence of the iterative decoder.
- Track how the distribution of the messages u_i , v_j at the output of the component decoders evolve from iteration to iteration.
- Without loss of generality the analysis can be restricted to the case where the all-zero codeword is transmitted.
- To simplify the analysis, one typically parameterizes the densities by a single parameter (approximation, only optimal in special cases):
 - AWGN channel and message passing with LLRs: variance or mean of the LLRs (both are coupled; see problem 7.12(f) in the textbook).
 - BSC channel and binary messages (e.g., Algorithm A): error probability (optimal).
 - Binary erasure channel (messages are either the erasure symbol or the correct bit): erasure probability (optimal).
- EXIT charts (see Chapter 7.2.5): special case of density evolution where the densities are represented by their mutual information.

Notes

Density Evolution

– Algorithm A

Notes

- Binary messages are exchanged.
- Assuming that the all-zero codeword was transmitted, the error probabilities p(I), q(I) at the decoder outputs during the *I*-th iteration are:
 - $p(I) = \Pr[\text{message sent by variable node in iteration } I \text{ is } 1]$
 - $q(I) = \Pr[$ message sent by check node in iteration I is 1]
- Analysis for the check-node decoder, I-th iteration
 - Input to the check-node decoder: binary messages with error probability p(I)
 - Output message at edge *i* is incorrect if the input to the check decoder on the remaining edges $j \neq i$ includes an odd number of errors.
 - Marginalizing over all error events yields

$$q(l) = \sum_{j=1,j \text{ odd}}^{d_c-1} {\binom{d_c-1}{j}} p(l)^j (1-p(l))^{d_c-1-j}$$
$$= \frac{1-(1-2p(l))^{d_c-1}}{2}$$

13/16

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Density Evolution – Algorithm A

- Analysis for the variable node decoder, *I*-th iteration
 - Input to the variable-node decoder: binary messages with error probability q(I)
 - Output message at edge *i* is incorrect if
 - (1) Channel message u_0 is right and all incoming messages u_i at edges $j \neq i$ are wrong, or
 - 2 Channel message u_0 is wrong and not all incoming messages u_i at edges $j \neq i$ are right.
 - It follows that

$$p(l) = p(0)[1 - (1 - q(l))^{d_v - 1}] + (1 - p(0))q(l)^{d_v - 1}$$

(with the error probability of the channel $p(0) = \epsilon$)

• Combining the terms for p(1) and q(1) yields

$$p(l) = p(0) - p(0) \left(\frac{1 + (1 - 2p(l-1))^{d_c-1}}{2}\right)^{d_v-1} + (1 - p(0)) \left(\frac{1 - (1 - 2p(l-1))^{d_c-1}}{2}\right)^{d_v-1}$$

 \rightarrow If $p(l) \rightarrow 0$ as $l \rightarrow \infty$, Algorithm A converges to the correct solution.

KTH vetenskap vetenskap

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH Notes

- AWGN channel: $u_0 = 2/\sigma^2 y$ (A = 1) Considering that the all-zero codeword was transmitted, we get $u_0 \sim \mathcal{N}(2/\sigma^2, 2 \cdot (2/\sigma^2)) = \mathcal{N}(m_{u_0}, 2m_{u_0})$, with $m_{u_0} = 2/\sigma^2$.
- Gaussian assumption
 - The messages u_i , v_j at the outputs of the check-node and variable-node decoders are Gaussian with means m_{u_i} , m_{v_j} and variances $2m_{u_i}$, $2m_{v_i}$.
 - \rightarrow Density evolution by tracking the means $m_{u_i}(I), m_{v_j}(I)$ over the number of iterations *I*.
- Variable-node decoder: $m_v(l) = m_{u_0} + (d_v 1)m_u(l 1)$ by considering independence of the incoming messages.
- Check-node decoders: quite involved....
- → If $m_u(l) \rightarrow \infty$ as $l \rightarrow \infty$, belief propagation converges to the correct solution.

 $15 \, / \, 16$

Code Design

Lecture 4 Channel Coding 1

Ming Xiao CommTh/EES/KTH

Overview Linear Block Codes Tanner Graph LDPC Codes Irregular LDPC Codes LDPC Decoding Density Evolution Code Design

- Choose the degree distributions λ(x), ρ(x) such that the rate R is maximized while the chosen decoder converges provably to the correct solution for the given channel (i.e., p(l) → 0 for Algorithm A, m_u(l) → ∞ for belief propagation).
- So far, density evolution for regular LDPC codes; for irregular codes the error probabilities or means can be obtained by averaging over the degree distributions.

Example: Algorithm A:

$$p(l) = \sum_{i} p(l|d_v = i)\lambda_i$$
$$q(l) = \sum_{i} q(l|d_c = i)\rho_i$$

Finding G: generate H satisfying λ(x), ρ(x), bring it into a systematic format, and generate G.