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Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

Overview
Lecture 1-3

e ISl channel and equalization
— Signal processing methods to improve the received signal

Digital Communications

e Block codes
e Convolutional codes
e Random Coding (information theoretical concept)

Lecture 4: Channel Coding 1 (LDPC Codes)

@ Overview

@® Linear Block Codes

© Tanner Graph

O LDPC Codes

@ Irregular LDPC Codes

@ LDPC Decoding
Gallager’s Algorithm A
Belief Propagation

@ Density Evolution

@® Code Design
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Overview

e LDPC codes were invented by Robert G. Gallager in the 1960s and

forgotten for three decades.

An Interview with
~~Brofessor Robert Gallager

[source: http://lids.mit.edu/]

o After Turbo codes were invented 1993, LDPC codes found new
attention.

e First channel codes, which provably allow to achieve the capacity
limit of the binary erasure channel and to approach the capacity

limit

for other important channel models.

Linear Block Codes

e Information word u = [uy, . .

., ux] = 2% codewords x = [xi, ...

e Code C

Set of all codewords C = {xy,.
Code rate R = k/n

A linear block code spans a k-dimensional subspace C in the
n-dimensional binary space.

.,,sz}

e Encoder

e Mapping from the information word space into the codeword space
e Linear encoding with generator matrix G: x = uG, dimension k X n

—

The rows v; of G are basis vectors of the subspace C.

e Check matrix H

Each codeword x € C satisfies Hx" = HGTu = 0.

H spans the (n — k)-dimensional subspace C orthogonal to C.
H is the generator matrix of the dual code Ct of the code C.
Syndrome ¢ = HxT; i.e., for all x € C we have c = 0.

e Linearity

For xg = ugG and x; = u; G we can see that
X2 = X0 + X1 = ugG + u;G = (uo-l-ul)GEC.

7X'7]

e Convenient for performance evaluation: distance properties can be

expressed by the weight distribution (e.g., dmin = Wimin)-
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Tanner Graph

Bipartite graph representing the parity-check matrix.

o Variable nodes (left) represent the code
symbols x; in x.

o Check nodes (right) represent the symbols ¢;

* - of the syndrome c.
" e A variable node x; is connected to a check
X ’ node ¢; by an edge in the graph if x; is
; included in the check equation specifying ¢;
’ o (i.e. if Hj = 1).
e o Degree of a node
x o Number of outgoing edges of a node

e Variable node degree d,

e Check node degree dc

5/16
LDPC Codes

Low-density parity-check (LDPC) codes

e Codes with a sparse parity-check matrix
(i.e., only few elements H;j =1 in H).

'< >@ « Regular (d,, dc) LDPC code

e Sparse H where each variable node has

Typical variable node Typical check node

nvariable nodes (n- k) check rodes

e - degree d, and each check node has
* @i, v {’«5@@ @ degree dc.
. m . e Code rate
. N * e Number of edges in the Tanner graph
= . N=n-d,=(n—k)-dc
[ D )
< \. n (- k) check nodes ° Wlth R = k/n We get
n variable nodes .
Q‘Nsucke{s// R = - ﬂ
dc

Code construction

e As suggested by the figure above, the problem of finding the H
matrix can be interpreted as the problem of finding the edge
permutation I (edge interleaver).
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Irregular LDPC Codes

e Variable-node and check-node degrees are not constant; the degrees
are chosen according to a predefined degree distribution.

o Degree distribution for the variable-node degrees and check-node
degrees A(x) = Z)\ixi_l and  p(x) = Zpixi_l

with coefficients
e )\; = Pr[an edge is connected to a variable node with d, = ]
e p; = Pr[an edge is connected to a check node with dc = ]

Example, (3,6) LDPC code: A\(x) = x* and p(x) = x°

e Code rate
e Number of edges connected to degree-i variable nodes: NX;
e Number of variable nodes with degree d, = i: NX;/i

Ai 1 i 1
= n= NZ = N/ A(x)dx  and similarly  (n—k) = NZ & = N/ p(x)dx
7 i 0 B 1 0

k. 1 fol p(x)dx
— o
n Jo A(x)dx

e Fractions of degree-i variable nodes and degree-j check nodes
g A/ pili

)\;— and N,':
SN/ A S
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LDPC Decoding

Iterative decoding on the Tanner graph

e Code symbols are transmitted over a
g T D channel characterized by p(yi|x;)
L h.é >_ (— received symbols y;).
" i s e Nodes are replaced by local decoders.
- }4.{ >‘ — Variable node decoder (repetition
i code)

— Check node decoder
(single-parity-check code)

Y| 1 o < > e Decoders exchange “messages” along
| Channel , the edges (e.g., log-likelihood ratios or

estimates of the bits).
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LDPC Decoding

- Gallager's Algorithm A (suboptimal)
Assumption: BSC with error probability € (i.e., Pr(x; # yi) = €).
Variable-node decoder

o o Message from the channel: up =y
%}Z o Messages received by the variable node from
'”L.@/’:“ the check nodes: u; (“decoder input”)
\M e Messages from the variable node to check
\vdu nodes: v; (“decoder output”)
v — o U=...=U1=U41=...=U4, = o
! ug else

Check-node decoder
o Messages received from the variable nodes: v;

("decoder input”)

Z:E o Messages from the check node to the variable
A nodes: uj (“decoder output”)
ydc/ de
i uj = Z vi mod 2
I=1,1%#j

Decoding is successful if all check equations after an iteration are
fulfilled.

9/16
LDPC Decoding
- Belief Propagation
e Variable-node decoder and check-node decoder are realized by the
respective soft-input/soft-output decoders.
e Extrinsic log-likelihood ratios (LLRs) are exchanged.
e Suboptimal algorithm with close-to-optimal performance
Variable-node decoder
o Message from the channel:
Uy
//ﬁm uo = log(p(y|x = 0)/p(y|x = 1)
U
UL@//‘;UZ e BSC, Pr(y 75 X) = €:
\: up = (—1)"log((1 —€)/¢)
‘\:Zd“ o AWGN, y = A(=1)* +w: up = 2A/0%y
dy

o LLRs received by the variable node from
the check nodes: ug (“decoder input”)

e LLRs from the variable node to check nodes: v, (“decoder output”)

dV
Vp = Up + g uq — extrinsic information

q=1,q9#p
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LN Check-node decoder ] )
e LLRs received from the variable nodes: vq
Chanmel Cading 1 (“decoder input”)
o010 R e LLRs u, from the check node to the variable
nodes (“decoder output”) satisfy

Overview ul\

G
Linear Block Codes uz& up dc Va
Tanner Graph UQ} tanh (5) = H tanh (5) (1)
LDPC Codes : q=1,9#p
Irregular LDP-C Codes Udn;// or
LDPC Decoding Ud, "
Algorithm A B c v

up =2 -tanh ™ H tanh (—/)
Density Evolution q:l,q#p 2
Code Design
— extrinsic information!
Remark
e Given the LLR / for a bit b, the estimate of b given | is
E[b|/] = tanh(b/2).
e Interpretation of Eq. (1): the expected value of the output LLR is
given by the product of the expected values of the incoming LLRs.
11/16

& i Density Evolution
£ KTH ¥ Notes

% VETENSKAP % - General Idea
3o ocH KONST &%

S

e Tool for analyzing iterative decoding and predicting the convergence
e G of the iterative decoder.

CommTIRE KTH e Track how the distribution of the messages uj, v; at the output of
the component decoders evolve from iteration to iteration.

Overview

Linear Block Codes e Without loss of generality the analysis can be restricted to the case

Tanner Graph where the all-zero codeword is transmitted.

LDPC Codes

e To simplify the analysis, one typically parameterizes the densities by

Irregular LDPC Codes . . . . . .
a single parameter (approximation, only optimal in special cases):

LDPC Decoding

o AWGN channel and message passing with LLRs: variance or mean

e of the LLRs (both are coupled; see problem 7.12(f) in the textbook).

e BSC channel and binary messages (e.g., Algorithm A): error
probability (optimal).

e Binary erasure channel (messages are either the erasure symbol or
the correct bit): erasure probability (optimal).

o EXIT charts (see Chapter 7.2.5): special case of density evolution
where the densities are represented by their mutual information.
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e e Binary messages are exchanged.
Lecture 4 e Assuming that the all-zero codeword was transmitted, the error
i) S probabilities p(/), g(/) at the decoder outputs during the /-th
CommTHESKTH iteration are:
et p(/) = Pr[message sent by variable node in iteration / is 1]
Linear Block Cod q(/) = Pr[message sent by check node in iteration / is 1]
Tanner Graph
LDPC Codes e Analysis for the check-node decoder, /-th iteration
Irregular LDPC Codes e Input to the check-node decoder: binary messages with error
LDPC Decoding probability p(/)
e Output message at edge i is incorrect if the input to the check
Code Design decoder on the remaining edges j # i includes an odd number of
errors.
e Marginalizing over all error events yields
e de-1
aty = > (%7 )ey - p()*t
j=1jodd =
1 (1—2p(1))%1
N 2
13/16
& I\TH%G Density Evolution \
?ﬂé‘, verensiar pill - Algorithm A otes
Sorsess
e o Analysis for the variable node decoder, /-th iteration
Chak:;‘“gsd‘:ng . e Input to the variable-node decoder: binary messages with error
probability g(/)
Ming Xiao
CommThyEES/KTH e Output message at edge i is incorrect if
. @ Channel message up is right and all incoming messages u; at edges j # i
Qi are wrong, or
Linear Block Codes @ Channel message up is wrong and not all incoming messages u; at edges
Tanner Graph J ;é i are right.
LDPC Codes e |t follows that
p() = P(O)[1 = (1= g()* 1]+ (1 = p(O))a()™ !

Sl (with the error probability of the channel p(0) =€)

e Combining the terms for p(/) and q(/) yields

ode Design - - et 1
pll) = p(O)—p(O)(”‘l 261 = 1)) )

_ _ _ de—1 d,—1
- prop (A2

— If p(I) = 0 as | — oo, Algorithm A converges to the correct solution.

14/16
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Density Evolution
- Belief Propagation for AWGN Channels

AWGN channel: vy = 2/0%y (A=1)

Considering that the all-zero codeword was transmitted, we get

w ~ N(2/0%,2-(2/0%)) = N(mu,, 2my,), with my, = 2/0°.

Gaussian assumption

e The messages uj, v; at the outputs of the check-node and
variable-node decoders are Gaussian with means my;, m,; and
variances 2my;, 2m.,j..
— Density evolution by tracking the means my,(/), my;(/) over the

number of iterations /.

Variable-node decoder: m, (/) = my, + (d, — 1)my(/ — 1) by

considering independence of the incoming messages.

Check-node decoders: quite involved....

If muy(/) = oo as | — oo, belief propagation converges to the
correct solution.

15/16

Code Design

e Choose the degree distributions A\(x), p(x) such that the rate R is

maximized while the chosen decoder converges provably to the
correct solution for the given channel (i.e., p(/) — 0 for Algorithm
A, my(l) — oo for belief propagation).

So far, density evolution for regular LDPC codes; for irregular codes
the error probabilities or means can be obtained by averaging over
the degree distributions.

Example: Algorithm A:
p(/)

Zp(/|dv =)

) = S alllde = i)pi

i

Finding G: generate H satisfying A(x), p(x), bring it into a
systematic format, and generate G.

16/16

Notes

Notes




	Overview
	Linear Block Codes
	Tanner Graph
	LDPC Codes
	Irregular LDPC Codes
	LDPC Decoding
	Gallager's Algorithm A
	Belief Propagation

	Density Evolution
	Code Design

