Lecture 2 Ciphers

Douglas Wikström KTH Stockholm dog@csc.kth.se

January 23, 2015

DD2448 Foundations of Cryptography

Januari 23, 2015

Introduction to Ciphers

DD2448 Foundations of Cryptography

Januari 23, 2015

Cipher (Symmetric Cryptosystem)

Ceasar Cipher (Shift Cipher)

Consider English, with alphabet A-Z_, where _ denotes space, thought of as integers 0-26, i.e., \mathbb{Z}_{27}

- Key. Random letter $k \in \mathbb{Z}_{27}$.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k \mod 27$.

Ceasar Cipher Example

Encoding. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ 000102030405060708091011121314151617181920212223242526

Key: G = 6Plaintext. B R I B E _ L U L A _ T O _ B U Y _ J A S Plaintext. 011708010426112011002619142601202426090018 Ciphertext. 072314071005172617060525200507260305150624 Ciphertext. H X O H K F R _ R G F Z U F H _ D F P G Y Statistical Attack Against Ceasar (1/3)

Decrypt with all possible keys and see if some English shows up, or more precisely...

Statistical Attack Against Ceasar (2/3)

Written English Letter Frequency Table $F[\cdot]$.

А	0.072	J	0.001	S	0.056
В	0.013	Κ	0.007	Т	0.080
С	0.024	L	0.035	U	0.024
D	0.037	Μ	0.021	V	0.009
Ε	0.112	Ν	0.059	W	0.021
F	0.020	0	0.066	Х	0.001
G	0.018	Ρ	0.017	Υ	0.017
Н	0.054	Q	0.001	Ζ	0.001
I	0.061	R	0.053	_	0.120

Note that the same frequencies appear in a ciphertext of written English, but in shifted order!

Statistical Attack Against Ceasar (3/3)

- Check that the plaintext of our ciphertext has similar frequencies as written English.
- ► Find the key k that maximizes the inner product T(E_k⁻¹(C)) · F, where T(s) and F denotes the frequency tables of the string s and English.

This usually gives the correct key k.

Affine Cipher

Affine Cipher.

- Key. Random pair k = (a, b), where a ∈ Z₂₇ is relatively prime to 27, and b ∈ Z₂₇.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = am_i + b \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = (c_i b)a^{-1} \mod 27$.

Substitution Cipher

Ceasar cipher and affine cipher are examples of substitution ciphers.

Substitution Cipher.

- ► Key. Random permutation σ ∈ S of the symbols in the alphabet, for some subset S of all permutations.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = \sigma(m_i)$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = \sigma^{-1}(c_i)$.

Digrams and Trigrams

- A digram is an ordered pair of symbols.
- A trigram is an ordered triple of symbols.
- It is useful to compute frequency tables for the most frequent digrams and trigrams, and not only the frequencies for individual symbols.

Generic Attack Against Substitution Cipher

- 1. Compute symbol/digram/trigram frequency tables for the candidate language and the ciphertext.
- 2. Try to match symbols/digrams/trigrams with similar frequencies.
- Try to recognize words to confirm your guesses (we would use a dictionary (or Google!) here).
- 4. Backtrack/repeat until the plaintext can be guessed.

This is hard when several symbols have similar frequencies. A large amount of ciphertext is needed. How can we ensure this?

Vigénère

Vigénère Cipher.

- Key. $k = (k_1, \dots, k_l)$, where $k_i \in \mathbb{Z}_{27}$ is random.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k_i \mod l \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k_i \mod l \mod 27$.

Vigénère

Vigénère Cipher.

- Key. $k = (k_1, \dots, k_l)$, where $k_i \in \mathbb{Z}_{27}$ is random.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_i + k_i \mod l \mod 27$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_i k_i \mod l \mod 27$.

We could even make a variant of Vigénère based on the affine cipher, **but is Vigénère really any better than Ceasar?**

Attack Vigénère (1/2)

Index of Coincidence.

- ► Each probability distribution p₁,..., p_n on n symbols may be viewed as a point p = (p₁,..., p_n) on a n − 1 dimensional hyperplane in ℝⁿ orthogonal to the vector 1
- ▶ Such a point $p = (p_1, ..., p_n)$ is at distance $\sqrt{F(p)}$ from the origin, where $F(p) = \sum_{i=1}^n p_i^2$.
- ► It is clear that p is closest to the origin, when p is the uniform distribution, i.e., when F(p) is minimized.
- ► F(p) is invariant under permutation of the underlying symbols → tool to check if a set of symbols is the result of *some* substitution cipher.

Attack Vigénère (2/2)

1. For l = 1, 2, 3, ..., we form

$$\begin{pmatrix} C_1 \\ C_2 \\ \vdots \\ C_l \end{pmatrix} = \begin{pmatrix} c_1 & c_{l+1} & c_{2l+1} & \cdots \\ c_2 & c_{l+2} & c_{2l+2} & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ c_l & c_{2l} & c_{3l} & \cdots \end{pmatrix}$$

and compute $f_i = \frac{1}{7} \sum_{i=1}^{l} F(F_i)$, where F_i is the frequency table of C_i .

- 2. A local maximum with smallest *l* is probably the right length.
- 3. Then attack each C_i separately to recover k_i, using the attack against the Ceasar cipher.

Hill Cipher

Hill Cipher.

- Key. k = A, where A is an invertible $I \times I$ -matrix over \mathbb{Z}_{27} .
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^n$ gives ciphertext $c = (c_1, ..., c_n)$, where (computed modulo 27):

$$(c_{i+0},\ldots,c_{i+l-1})=(m_{i+0},\ldots,m_{i+l-1})A$$
.

▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^n$ gives plaintext $m = (m_1, ..., m_n)$, where (computed modulo 27):

$$(m_{i+0},\ldots,m_{i+l-1})=(c_{i+0},\ldots,c_{i+l-1})A^{-1}$$

for $i = 1, l + 1, 2l + 1, \ldots$

Permutation Cipher (Transposition Cipher)

The permutation cipher is a special case of the Hill cipher.

Permutation Cipher.

- Key. Random permutation π ∈ S for some subset S of the set of permutations of {1, 2, ..., I}.
- ▶ **Encrypt.** Plaintext $m = (m_1, ..., m_n) \in \mathbb{Z}_{27}^l$ gives ciphertext $c = (c_1, ..., c_n)$, where $c_i = m_{\pi(i \mod l)}$.
- ▶ **Decrypt.** Ciphertext $c = (c_1, ..., c_n) \in \mathbb{Z}_{27}^l$ gives plaintext $m = (m_1, ..., m_n)$, where $m_i = c_{\pi^{-1}(i \mod l)}$.

DD2448 Foundations of Cryptography

Januari 23, 2015

► For every key a block-cipher with plaintext/ciphertext space {0,1}ⁿ gives a permutation of {0,1}ⁿ.

What would be an ideal cipher?

► For every key a block-cipher with plaintext/ciphertext space {0,1}ⁿ gives a permutation of {0,1}ⁿ.

What would be an ideal cipher?

► The ideal cipher is one where each key gives a randomly chosen permutation of {0,1}ⁿ.

Why is this not possible?

► For every key a block-cipher with plaintext/ciphertext space {0,1}ⁿ gives a permutation of {0,1}ⁿ.

What would be an ideal cipher?

► The ideal cipher is one where each key gives a randomly chosen permutation of {0,1}ⁿ.

Why is this not possible?

The representation of a single typical function
 {0,1}ⁿ → {0,1}ⁿ requires roughly n2ⁿ bits
 (130 million TB for n = 64)

► For every key a block-cipher with plaintext/ciphertext space {0,1}ⁿ gives a permutation of {0,1}ⁿ.

What would be an ideal cipher?

► The ideal cipher is one where each key gives a randomly chosen permutation of {0,1}ⁿ.

Why is this not possible?

- The representation of a single typical function
 {0,1}ⁿ → {0,1}ⁿ requires roughly n2ⁿ bits
 (130 million TB for n = 64)
- What should we look for instead?

Something Smaller

Idea. Compose smaller permutations into a large one. Mix the components "thoroughly".

Something Smaller

Idea. Compose smaller permutations into a large one. Mix the components "thoroughly".

Shannon (1948) calls this:

- Diffusion. "In the method of diffusion the statistical structure of M which leads to its redundancy is dissipated into long range statistics..."
- Confusion. "The method of confusion is to make the relation between the simple statistics of E and the simple description of K a very complex and involved one."

- **Block-size.** We use a block-size of $n = \ell \times m$ bits.
- ► Key Schedule. Each round r uses its own round key K_r derived from the key K using a key schedule.
- **Each Round.** In each round we invoke:
 - 1. Round Key. xor with the current round key.
 - Substitution. ℓ substitution boxes each acting on one *m*-bit block (*m*-bit S-Boxes).
 - 3. **Permutation.** A permutation π_i acting on $\{1, \ldots, n\}$ to reorder the *n* bits.

 U_{i-1}

Ki

DD2448 Foundations of Cryptography

A Simple Block Cipher (1/2)

- ► |P| = |C| = 16
- 4 rounds
- ► |*K*| = 32
- rth round key K_r consists of the 4rth to the (4r + 16)th bits of key K.
- 4-bit S-Boxes

A Simple Block Cipher (2/2)

S-Boxes the same $(S \neq S^{-1})$

• Y = S(X)

Can be described using 4 boolean functions

Input	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Output	E	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

A Simple Block Cipher (2/2)

S-Boxes the same $(S \neq S^{-1})$

• Y = S(X)

Can be described using 4 boolean functions

Input	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
Output	E	4	D	1	2	F	В	8	3	Α	6	С	5	9	0	7

16-bit permutation ($\pi = \pi^{-1}$)

Input	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Output	1	5	9	13	2	6	10	14	3	7	11	15	4	8	12	16

DD2448 Foundations of Cryptography

Januari 23, 2015

Basic Idea – Linearize

Find an expression of the following form with a high probability of occurrence.

$$P_{i_1} \oplus \cdots \oplus P_{i_p} \oplus C_{j_1} \oplus \cdots \oplus C_{j_c} = K_{\ell_1, s_1} \oplus \cdots \oplus K_{\ell_k, s_k}$$

Each random plaintext/ciphertext pair gives an estimate of

$$K_{\ell_1,s_1} \oplus \cdots \oplus K_{\ell_k,s_k}$$

Collect many pairs and make a better estimate based on the majority vote.

How do we come up with the desired expression?

How do we compute the required number of samples?

Bias

Definition. The bias $\epsilon(X)$ of a binary random variable X is defined by

$$\epsilon(X) = \Pr\left[X=0
ight] - rac{1}{2}$$
 .

Bias

Definition. The bias $\epsilon(X)$ of a binary random variable X is defined by

$$\epsilon(X) = \Pr\left[X = 0
ight] - rac{1}{2}$$
 .

 $\approx 1/\epsilon^2(X)$ samples are required to estimate X (Matsui)

.

Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

$$Y = S(X)$$
 .

We consider the bias of linear combinations of the form

$$a \cdot X \oplus b \cdot Y = \left(\bigoplus_i a_i X \right) \oplus \left(\bigoplus_i b_i Y \right)$$

Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X).

We consider the bias of linear combinations of the form

$$a \cdot X \oplus b \cdot Y = \left(\bigoplus_i a_i X \right) \oplus \left(\bigoplus_i b_i Y \right)$$

Example: $X_2 \oplus X_3 = Y_1 \oplus Y_3 \oplus Y_4$ The expression holds in 12 out of the 16 cases. Hence, it has a bias of (12 - 8)/16 = 4/16 = 1/4.

Linear Approximation of S-Box (2/3)

- Let $N_L(a, b)$ be the number of zero-outcomes of $a \cdot X \oplus b \cdot Y$.
- The bias is then

$$\epsilon(a\cdot X\oplus b\cdot Y)=\frac{N_L(a,b)-8}{16} ,$$

since there are four bits in X, and Y is determined by X.

Linear Approximation Table (3/3)

 $N_L(a,b)-8$

								0	Dutpu	t Sur	n						
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
1	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
n	4	0	+2	0	-2	-2	-4	-2	0	0	-2	0	+2	+2	-4	+2	0
P U	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
t	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
S	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
u	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
m	А	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
	в	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
	С	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
	Е	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

This gives linear approximation for one round.

How do we come up with linear approximation for more rounds?

Piling-Up Lemma

Lemma. Let X_1, \ldots, X_t be independent binary random variables and let $\epsilon_i = \epsilon(X_i)$. Then

$$\epsilon\left(\bigoplus_{i} X_{i}\right) = 2^{t-1}\prod_{i} \epsilon_{i} \; .$$

Proof. Case t = 2:

$$\begin{aligned} \Pr\left[X_1 \oplus X_2 = 0\right] &= \Pr\left[(X_1 = 0 \land X_1 = 0) \lor (X_1 = 1 \land X_1 = 1)\right] \\ &= \left(\frac{1}{2} + \epsilon_1\right)\left(\frac{1}{2} + \epsilon_2\right) + \left(\frac{1}{2} - \epsilon_1\right)\left(\frac{1}{2} - \epsilon_2\right) \\ &= \frac{1}{2} + 2\epsilon_1\epsilon_2 \quad . \end{aligned}$$

By induction $\Pr[X_1 \oplus \cdots \oplus X_t = 0] = \frac{1}{2} + 2^{t-1} \prod_i \epsilon_i$

DD2448 Foundations of Cryptography

Linear Trail

Four linear approximations with $|\epsilon_i| = 1/4$

Combine them to get:

$$U_{4,6} \oplus U_{4,8} \oplus U_{4,14} \oplus U_{4,16} \oplus P_5 \oplus P_7 \oplus P_8 = \bigoplus K_{i,j}$$

with bias $|\epsilon| = 2^{4-1}(\frac{1}{4})^4 = 2^{-5}$

Attack Idea

- Our expression (with bias 2⁻⁵) links plaintext bits to input bits to the 4th round
- Partially undo the last round by guessing the last key. Only 2 S-Boxes are involved, i.e., 2⁸ = 256 guesses
- ► For a correct guess, the equation holds with bias 2⁻⁵. For a wrong guess, it holds with bias zero (i.e., probability close to 1/2).

Attack Idea

- Our expression (with bias 2⁻⁵) links plaintext bits to input bits to the 4th round
- Partially undo the last round by guessing the last key. Only 2 S-Boxes are involved, i.e., 2⁸ = 256 guesses
- ► For a correct guess, the equation holds with bias 2⁻⁵. For a wrong guess, it holds with bias zero (i.e., probability close to 1/2).

Required pairs $2^{10} \approx 1000$ Attack complexity $2^{18} \ll 2^{32}$ operations

Linear Cryptanalysis Summary

- 1. Find linear approximation of S-Boxes.
- 2. Compute bias of each approximation.
- 3. Find linear trails.
- 4. Compute bias of linear trails.
- 5. Compute data and time complexity.
- 6. Estimate key bits from many plaintext-ciphertexts pairs.

Linear cryptanalysis is a known plaintext attack.