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Cipher (Symmetric Cryptosystem)
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Ceasar Cipher (Shift Cipher)

Consider English, with alphabet A-Z , where denotes space,
thought of as integers 0-26, i.e., Z27

◮ Key. Random letter k ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where ci = mi + k mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where mi = ci − k mod 27.
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Ceasar Cipher Example

Encoding.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
000102030405060708091011121314151617181920212223242526

Key: G = 6
Plaintext. B R I B E L U L A T O B U Y J A S

Plaintext. 011708010426112011002619142601202426090018

Ciphertext. 072314071005172617060525200507260305150624

Ciphertext. H X O H K F R R G F Z U F H D F P G Y
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Statistical Attack Against Ceasar (1/3)

Decrypt with all possible keys and see
if some English shows up, or more
precisely...
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Statistical Attack Against Ceasar (2/3)

Written English Letter Frequency Table F [·].

A 0.072 J 0.001 S 0.056
B 0.013 K 0.007 T 0.080
C 0.024 L 0.035 U 0.024
D 0.037 M 0.021 V 0.009
E 0.112 N 0.059 W 0.021
F 0.020 O 0.066 X 0.001
G 0.018 P 0.017 Y 0.017
H 0.054 Q 0.001 Z 0.001
I 0.061 R 0.053 0.120

Note that the same frequencies appear in a ciphertext of written
English, but in shifted order!
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Statistical Attack Against Ceasar (3/3)

◮ Check that the plaintext of our ciphertext has similar
frequencies as written English.

◮ Find the key k that maximizes the inner product
T (E−1

k (C )) · F , where T (s) and F denotes the frequency
tables of the string s and English.

This usually gives the correct key k.
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Affine Cipher

Affine Cipher.

◮ Key. Random pair k = (a, b), where a ∈ Z27 is relatively
prime to 27, and b ∈ Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where ci = ami + b mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where mi = (ci − b)a−1 mod 27.
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Substitution Cipher

Ceasar cipher and affine cipher are examples of substitution ciphers.

Substitution Cipher.

◮ Key. Random permutation σ ∈ S of the symbols in the
alphabet, for some subset S of all permutations.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where ci = σ(mi ).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where mi = σ−1(ci ).
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Digrams and Trigrams

◮ A digram is an ordered pair of symbols.

◮ A trigram is an ordered triple of symbols.

◮ It is useful to compute frequency tables for the most frequent
digrams and trigrams, and not only the frequencies for
individual symbols.
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Generic Attack Against Substitution Cipher

1. Compute symbol/digram/trigram frequency tables for the
candidate language and the ciphertext.

2. Try to match symbols/digrams/trigrams with similar
frequencies.

3. Try to recognize words to confirm your guesses (we would use
a dictionary (or Google!) here).

4. Backtrack/repeat until the plaintext can be guessed.

This is hard when several symbols have similar frequencies. A large
amount of ciphertext is needed. How can we ensure this?
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Vigénère

Vigénère Cipher.

◮ Key. k = (k1, . . . , kl ), where ki ∈ Z27 is random.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where ci = mi + ki mod l mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where mi = ci − ki mod l mod 27.
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Vigénère

Vigénère Cipher.

◮ Key. k = (k1, . . . , kl ), where ki ∈ Z27 is random.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where ci = mi + ki mod l mod 27.

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where mi = ci − ki mod l mod 27.

We could even make a variant of Vigénère based on the affine
cipher, but is Vigénère really any better than Ceasar?
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Attack Vigénère (1/2)

Index of Coincidence.

◮ Each probability distribution p1, . . . , pn on n symbols may be
viewed as a point p = (p1, . . . , pn) on a n − 1 dimensional
hyperplane in R

n orthogonal to the vector 1

◮ Such a point p = (p1, . . . , pn) is at distance
√

F (p) from the
origin, where F (p) =

∑n
i=1 p

2
i .

◮ It is clear that p is closest to the origin, when p is the uniform
distribution, i.e., when F (p) is minimized.

◮ F (p) is invariant under permutation of the underlying symbols
−→ tool to check if a set of symbols is the result of some

substitution cipher.
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Attack Vigénère (2/2)

1. For l = 1, 2, 3, . . ., we form











C1

C2
...
Cl











=











c1 cl+1 c2l+1 · · ·
c2 cl+2 c2l+2 · · ·
...

...
...

. . .

cl c2l c3l · · ·











and compute fl =
1
l

∑l
i=1 F (Fi ), where Fi is the frequency

table of Ci .

2. A local maximum with smallest l is probably the right length.

3. Then attack each Ci separately to recover ki , using the attack
against the Ceasar cipher.
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Hill Cipher

Hill Cipher.

◮ Key. k = A, where A is an invertible l × l -matrix over Z27.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
n
27 gives ciphertext

c = (c1, . . . , cn), where (computed modulo 27):

(ci+0, . . . , ci+l−1) = (mi+0, . . . ,mi+l−1)A .

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
n
27 gives plaintext

m = (m1, . . . ,mn), where (computed modulo 27):

(mi+0, . . . ,mi+l−1) = (ci+0, . . . , ci+l−1)A
−1 .

for i = 1, l + 1, 2l + 1, . . .
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Permutation Cipher (Transposition Cipher)

The permutation cipher is a special case of the Hill cipher.

Permutation Cipher.

◮ Key. Random permutation π ∈ S for some subset S of the
set of permutations of {1, 2, . . . , l}.

◮ Encrypt. Plaintext m = (m1, . . . ,mn) ∈ Z
l
27 gives ciphertext

c = (c1, . . . , cn), where ci = mπ(i mod l).

◮ Decrypt. Ciphertext c = (c1, . . . , cn) ∈ Z
l
27 gives plaintext

m = (m1, . . . ,mn), where mi = cπ−1(i mod l).
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Substitution-Permutation

Networks
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Ideal Block Cipher

◮ For every key a block-cipher with plaintext/ciphertext space
{0, 1}n gives a permutation of {0, 1}n .

What would be an ideal cipher?
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Ideal Block Cipher

◮ For every key a block-cipher with plaintext/ciphertext space
{0, 1}n gives a permutation of {0, 1}n .

What would be an ideal cipher?

◮ The ideal cipher is one where each key gives a randomly

chosen permutation of {0, 1}n .

Why is this not possible?
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Ideal Block Cipher

◮ For every key a block-cipher with plaintext/ciphertext space
{0, 1}n gives a permutation of {0, 1}n .

What would be an ideal cipher?

◮ The ideal cipher is one where each key gives a randomly

chosen permutation of {0, 1}n .

Why is this not possible?

◮ The representation of a single typical function
{0, 1}n → {0, 1}n requires roughly n2n bits
(130 million TB for n = 64)
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Ideal Block Cipher

◮ For every key a block-cipher with plaintext/ciphertext space
{0, 1}n gives a permutation of {0, 1}n .

What would be an ideal cipher?

◮ The ideal cipher is one where each key gives a randomly

chosen permutation of {0, 1}n .

Why is this not possible?

◮ The representation of a single typical function
{0, 1}n → {0, 1}n requires roughly n2n bits
(130 million TB for n = 64)

◮ What should we look for instead?
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Something Smaller

Idea. Compose smaller permutations into a large one. Mix the
components “thoroughly”.
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Something Smaller

Idea. Compose smaller permutations into a large one. Mix the
components “thoroughly”.

Shannon (1948) calls this:

◮ Diffusion. “In the method of diffusion the statistical
structure of M which leads to its redundancy is dissipated into
long range statistics...”

◮ Confusion. “The method of confusion is to make the relation
between the simple statistics of E and the simple description
of K a very complex and involved one.”
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Substitution-Permutation Networks (1/2)

◮ Block-size. We use a block-size of n = ℓ×m bits.

◮ Key Schedule. Each round r uses its own round key Kr

derived from the key K using a key schedule.

◮ Each Round. In each round we invoke:

1. Round Key. xor with the current round key.

2. Substitution. ℓ substitution boxes each acting on one m-bit
block (m-bit S-Boxes).

3. Permutation. A permutation πi acting on {1, . . . , n} to
reorder the n bits.
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Substitution-Permutation Networks (2/2)

Ui−1

Ki
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Substitution-Permutation Networks (2/2)

Ui−1

Ki

⊕

xor with
round key

Xi
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Substitution-Permutation Networks (2/2)

Ui−1

Ki

⊕

xor with
round key

Xi

Si ,1 Si ,2 Si ,3 Si ,4 substitute
blocks

Yi
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Substitution-Permutation Networks (2/2)

Ui−1

Ki

⊕

xor with
round key

Xi

Si ,1 Si ,2 Si ,3 Si ,4 substitute
blocks

Yi

πi permute

Ui

DD2448 Foundations of Cryptography Januari 23, 2015



Introduction to Ciphers Substitution-Permutation Networks Linear Cryptanalysis

Substitution-Permutation Networks (2/2)

Ui−1

Ki

⊕

xor with
round key

Xi

Si ,1 Si ,2 Si ,3 Si ,4 substitute
blocks

Yi

permute

Ui
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Substitution-Permutation Networks (2/2)

Ui−1

Ki

Ui

Round i
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A Simple Block Cipher (1/2)

◮ |P | = |C | = 16

◮ 4 rounds

◮ |K | = 32

◮ r th round key Kr consists of
the 4r th to the (4r + 16)th
bits of key K .

◮ 4-bit S-Boxes
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A Simple Block Cipher (2/2)

S-Boxes the same (S 6= S−1)

◮ Y = S(X )

◮ Can be described using 4 boolean functions

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
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A Simple Block Cipher (2/2)

S-Boxes the same (S 6= S−1)

◮ Y = S(X )

◮ Can be described using 4 boolean functions

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7

16-bit permutation (π = π−1)
Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Output 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
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Linear Cryptanalysis
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Basic Idea – Linearize

Find an expression of the following form with a high probability of
occurrence.

Pi1 ⊕ · · · ⊕ Pip ⊕ Cj1 ⊕ · · · ⊕ Cjc = Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Each random plaintext/ciphertext pair gives an estimate of

Kℓ1,s1 ⊕ · · · ⊕ Kℓk ,sk

Collect many pairs and make a better estimate based on the
majority vote.
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How do we come up with the desired expression?

How do we compute the required number of
samples?

DD2448 Foundations of Cryptography Januari 23, 2015



Introduction to Ciphers Substitution-Permutation Networks Linear Cryptanalysis

Bias

Definition. The bias ǫ(X ) of a binary random
variable X is defined by

ǫ(X ) = Pr [X = 0]−
1

2
.
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Bias

Definition. The bias ǫ(X ) of a binary random
variable X is defined by

ǫ(X ) = Pr [X = 0]−
1

2
.

≈ 1/ǫ2(X ) samples are required to estimate X

(Matsui)
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Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X ) .

We consider the bias of linear combinations of the form

a · X ⊕ b · Y =

(

⊕

i

aiX

)

⊕

(

⊕

i

biY

)

.
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Linear Approximation of S-Box (1/3)

Let X and Y be the input and output of an S-box, i.e.

Y = S(X ) .

We consider the bias of linear combinations of the form

a · X ⊕ b · Y =

(

⊕

i

aiX

)

⊕

(

⊕

i

biY

)

.

Example: X2 ⊕ X3 = Y1 ⊕ Y3 ⊕ Y4

The expression holds in 12 out of the 16
cases. Hence, it has a bias of
(12 − 8)/16 = 4/16 = 1/4.
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Linear Approximation of S-Box (2/3)

◮ Let NL(a, b) be the number of zero-outcomes of a · X ⊕ b · Y .

◮ The bias is then

ǫ(a · X ⊕ b · Y ) =
NL(a, b)− 8

16
,

since there are four bits in X , and Y is determined by X .
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Linear Approximation Table (3/3)

NL(a, b)− 8
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This gives linear approximation for one round.

How do we come up with linear approximation for more rounds?
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Piling-Up Lemma

Lemma. Let X1, . . . ,Xt be independent binary random variables
and let ǫi = ǫ(Xi). Then

ǫ

(

⊕

i

Xi

)

= 2t−1
∏

i

ǫi .

Proof. Case t = 2:

Pr [X1 ⊕ X2 = 0] = Pr [(X1 = 0 ∧ X1 = 0) ∨ (X1 = 1 ∧ X1 = 1)]

= (
1

2
+ ǫ1)(

1

2
+ ǫ2) + (

1

2
− ǫ1)(

1

2
− ǫ2)

=
1

2
+ 2ǫ1ǫ2 .

By induction Pr [X1 ⊕ · · · ⊕ Xt = 0] = 1
2 + 2t−1

∏

i ǫi
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Linear Trail

Four linear approximations with |ǫi | = 1/4

S12 : X1 ⊕ X3 ⊕ X4 = Y2

S22 : X2 = Y2 ⊕ Y4

S32 : X2 = Y2 ⊕ Y4

S34 : X2 = Y2 ⊕ Y4

Combine them to get:

U4,6⊕U4,8⊕U4,14⊕U4,16⊕P5⊕P7⊕P8 =
⊕

Ki ,j

with bias |ǫ| = 24−1(14)
4 = 2−5
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Attack Idea

◮ Our expression (with bias 2−5) links plaintext bits to input
bits to the 4th round

◮ Partially undo the last round by guessing the last key. Only 2
S-Boxes are involved, i.e., 28 = 256 guesses

◮ For a correct guess, the equation holds with bias 2−5. For a
wrong guess, it holds with bias zero (i.e., probability close to
1/2).

DD2448 Foundations of Cryptography Januari 23, 2015



Introduction to Ciphers Substitution-Permutation Networks Linear Cryptanalysis

Attack Idea

◮ Our expression (with bias 2−5) links plaintext bits to input
bits to the 4th round

◮ Partially undo the last round by guessing the last key. Only 2
S-Boxes are involved, i.e., 28 = 256 guesses

◮ For a correct guess, the equation holds with bias 2−5. For a
wrong guess, it holds with bias zero (i.e., probability close to
1/2).

Required pairs 210 ≈ 1000
Attack complexity 218 ≪ 232 operations
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Linear Cryptanalysis Summary

1. Find linear approximation of S-Boxes.

2. Compute bias of each approximation.

3. Find linear trails.

4. Compute bias of linear trails.

5. Compute data and time complexity.

6. Estimate key bits from many plaintext-ciphertexts pairs.

Linear cryptanalysis is a known plaintext attack.
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