
SCI/NA SF2521, Spring 15
JOp/OR/KatG p 1 (4)

Homework 1

Heat equation (Max. 5.0 p)
Deadline Mon. 9 Feb, 2015

Topics: Heat equation, finite volume method, conservation, variable coefficients, boundary
conditions.

Purpose: This exercise builds on the basic course in numerical treatment of differential
equations. We will compute approximate solutions to a time-dependent PDE on a 2D domain.
Of particular interest is the derivation of a basic finite volume method and how to represent
the discrete problem in a way that is practical for analysis and implementation.

Instructions: Hand in a written report no later than the deadline. Reports should contain
answers to all questions stated and proper motivation for each, e.g. derivations. Append the
code to the report.

1 Heat equation
A classical example of a parabolic PDE is the heat equation on a square. Let),,(tyxq denote
non-dimensional temperature. Then,

�

qt = ∇⋅ (∇q) + S, (x,y)∈ 0,1[] × 0,1[], t ≥ 0 (1)
q(x,y,0) = 0 (2)
n⋅ ∇q = 0 (x,y) on the boundary (3)

where n is the outward unit normal to the boundary. We consider first a smooth heat source

�

S(x,y) = exp −
(x − xS)

2 + (y − yS)
2

w2

⎛

⎝
⎜

⎞

⎠
⎟ ,

centered at the point xS = (1/2,1/2) with width w=0.2. Second, we consider a time-variable
point heat source, which may be described by a “delta-function”,

⎩
⎨
⎧

≥
<

=

−−=

4/1,0
4/1,2

)(

)(),(),,(

t
t

tg

tgyyxxtyxS SSδ

The boundary conditions (3) state that there is no heat flux across boundaries. Physically, we
have a plate that is insulated from its surroundings and initially at zero temperature. In the
first case it is continuously heated with a diffuse source in the middle. In the second case it is
heated at a point for 0.25 seconds and then the source is turned off.

1.1 Analytical preamble (0.5 p)

1. What is the flux vector for the heat equation (1)?

2. Determine ∫ ∫=
1

0

1

0
),,()(dxdytyxqtQ as a function of t.

SCI/NA SF2521, Spring 15
JOp/OR/KatG p 2 (4)

0

1

1
0

1 m

1

n

x

y

Figure 1: Finite volume grid

2 Discretization and implementation (1.5 p)
Let Qij denote the cell average of q over cell (i,j) (see Figure 1) and introduce cell sizes Δx
and Δy such that mΔx = nΔy=1. The square is covered by mn rectangular cells.

1. Derive a finite volume method for the spatial part of (1) by integrating and forming cell

averages. Take care that the source term gets included correctly. Show that you obtain an
expression of the form

 njmiSQQ
dt
d

ijijij ,...,1,,...,1,5 ==+Δ=

where Δ5 is the classical five-point Laplacian stencil familiar from finite difference
methods. What stencils do you get at the boundaries?

2. Integrate in time using the first order implicit Euler scheme and state the fully discrete

problem. Why is this more appropriate to use the implicit Euler scheme than using the
explicit Euler scheme? Hint: time-step restriction.

3. Let Q be an m x n array that contains the Qij values. The Laplacian can be expressed as

 QTQTQ yx +=Δ5

where T represents the second derivative difference operator in 1D for each dimension
respectively. Why is this convenient? Hint: Boundary conditions.

i. Use this idea to state the fully discrete problem in matrix form.
ii. Prove that the finite volume scheme is exactly conservative.

4. Implement the finite volume method, e.g. in Matlab. A linear system has to be solved in

each time-step. Due to the boundary conditions, its coefficient matrix has a block diagonal
structure (it is not simply diagonal). Constructing it can be fairly hard in a Matlab
program, and possibly very computationally inefficient (see example in “Notes on Efficient
Matlab Programming"). One option is to use Kronecker products
(en.wikipedia.org/wiki/Kronecker product)

SCI/NA SF2521, Spring 15
JOp/OR/KatG p 3 (4)

 to construct this difference matrix. The corresponding function is called kron in Matlab.
It is highly recommended to use the function reshape for rearranging m x n arrays into
mn x 1 column vectors and vice versa.

 You are strongly encouraged to write an efficient program, which can handle fine

resolutions in reasonable time. Take care to make the code clean and readable. On an
average workstation the solver should be able to handle m = n = 800 or more without
much trouble aside from plotting such a large data set. To get this efficiency, move as
much work as possible out of the time loop and obviously use sparse format. Use the
Matlab profiler! Hint: Is the matrix in the linear system constant in time? The time
step? Consider LU-factorization using the function lu … with proper parameters in and
out, use help lu.

3 Numerical results (1.0)
In your report, please include the following computational results:

1. Solution plots: Show plots of the solution for some time levels before and after t = 1/4,

for both source functions S.

2. Convergence: Choose a point (x0,y0) and compile a table (or a plot) which shows that the

error behaves like

)()(rp hOtO +Δ

 where h = Δx = Δy . Determine p and r. Try the smooth S(x,y) first. What values would one

anticipate from theory?

Next, try the time-variable point source S(x,y,t). What p and r do you get? Why is it a bad
idea to look at the error in ∞ - or L2-norm for this case?

3. Numerical conservation: Demonstrate that the method is numerically conservative by

looking at

 ∑∫ ΔΔ= ijQyxqdxdy

 for 0 < t < 2. Compare the computed result to the expression computed in Section 1.1.

Note: Conservation in “eye norm" is not enough!
Think about

i. Time-discretization and how your code handles the discontinuity in g(t)
ii. Space-discretization; where in the cell does (x,y)=(1/2,1/2) appear? Different for odd

or even m,n.

4 Refinements (2.0 p)
Now we move on to slightly more advanced problems. The framework developed thus far in
this lab should be very helpful when you tackle these problems. Do not proceed with these
tasks until the program above works as expected!

4.1 Variable coefficients
Consider
 Sqxbqyaq yyxxt ++=)()(

SCI/NA SF2521, Spring 15
JOp/OR/KatG p 4 (4)

instead of the PDE (1). Choose a(y) and b(x) as smooth and positive functions.

i. Formulate the fully discrete problem for the variable coefficient case, preferably in
the Kronecker notation. Hint: Multiplication from the left with a diagonal matrix
scales each row of a matrix. How do you scale the columns?

ii. Implement a solver for the variable coefficient problem. With the Kronecker product
construction, this should be fairly simple. Present convergence and conservation
results as in Section 3.

4.2 Boundary conditions
Change the boundary conditions (3) to

13sin

3
1),1,(,sin1),0,(

1),,1(,1),,0(

+==

−=−=

xtxqxtxq

tyqtyq xx

π
π

π
π

 (4)

You may choose a different set of boundary conditions if you want to, as long as you include
at least one non-homogeneous Neuman and Dirichlet condition.

Implement this new boundary condition with the following approach: Construct 1D
difference matrices for each dimension and make sure they express the right boundary
conditions. Then assemble the 2D difference matrix from the 1D matrices using Kronecker
products.

Hint: In the matrix form of the fully discrete problem only one of the T operators needs to
change for the suggested new BC (4). There are different options to enforce Dirichlet BCs in
a finite volume method. For the conditions (4), you may choose a grid as shown in given in
Figure 1, only shifted half a cell in the y-direction so the cell midpoints (and not cell
boundaries) are found at y = 0 and y = 1. Present convergence results as in section 3 and
discuss conservation in the context of non-homogenous boundary conditions.

