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Homework 1 

Heat equation (Max. 5.0 p) 
Deadline Mon. 9 Feb, 2015 

 
Topics: Heat equation, finite volume method, conservation, variable coefficients, boundary 
conditions. 
 
Purpose: This exercise builds on the basic course in numerical treatment of differential 
equations. We will compute approximate solutions to a time-dependent PDE on a 2D domain. 
Of particular interest is the derivation of a basic finite volume method and how to represent 
the discrete problem in a way that is practical for analysis and implementation. 
 
Instructions: Hand in a written report no later than the deadline. Reports should contain 
answers to all questions stated and proper motivation for each, e.g. derivations.  Append the 
code to the report.  
 

1 Heat equation 
A classical example of a parabolic PDE is the heat equation on a square. Let ),,( tyxq  denote 
non-dimensional temperature. Then, 
 

 

� 

qt = ∇⋅ (∇q) + S,    (x,y)∈ 0,1[ ] × 0,1[ ],     t ≥ 0 (1)
q(x,y,0) = 0                                                        (2)
n⋅ ∇q = 0 (x,y) on the boundary                     (3)

 

 
where n is the outward unit normal to the boundary. We consider first a smooth heat source 
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centered at the point xS  =  (1/2,1/2) with width w=0.2. Second, we consider a time-variable 
point heat source, which may be described by a “delta-function”, 
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The boundary conditions (3) state that there is no heat flux across boundaries. Physically, we 
have a plate that is insulated from its surroundings and initially at zero temperature. In the 
first case it is continuously heated with a diffuse source in the middle. In the second case it is 
heated at a point for 0.25 seconds and then the source is turned off. 

1.1  Analytical preamble (0.5 p) 
 
1. What is the flux vector for the heat equation (1)? 

2. Determine ∫ ∫=
1

0

1

0
),,()( dxdytyxqtQ as a function of t. 
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Figure 1: Finite volume grid 

2 Discretization and implementation (1.5 p) 
Let Qij denote the cell average of q over cell (i,j) (see Figure 1) and introduce cell sizes Δx 
and Δy such that mΔx = nΔy=1. The square is covered by mn rectangular cells. 
 
1.  Derive a finite volume method for the spatial part of (1) by integrating and forming cell 

averages. Take care that the source term gets included correctly. Show that you obtain an 
expression of the form 

 

  njmiSQQ
dt
d

ijijij ,...,1,,...,1,5 ==+Δ=  

 
where Δ5 is the classical five-point Laplacian stencil familiar from finite difference 
methods. What stencils do you get at the boundaries? 

 
2.  Integrate in time using the first order implicit Euler scheme and state the fully discrete 

problem. Why is this more appropriate to use the implicit Euler scheme than using the 
explicit Euler scheme? Hint: time-step restriction.  

 
3.  Let Q be an m x n array that contains the Qij values. The Laplacian can be expressed as 
   
  QTQTQ yx +=Δ5  

 
where T represents the second derivative difference operator in 1D for each dimension 
respectively. Why is this convenient? Hint: Boundary conditions. 

i. Use this idea to state the fully discrete problem in matrix form. 
ii. Prove that the finite volume scheme is exactly conservative. 

 
4.  Implement the finite volume method, e.g. in Matlab. A linear system has to be solved in 

each time-step. Due to the boundary conditions, its coefficient matrix has a block diagonal 
structure (it is not simply diagonal). Constructing it can be fairly hard in a Matlab 
program, and possibly very computationally inefficient (see example in “Notes on Efficient 
Matlab Programming"). One option is to use Kronecker products 
(en.wikipedia.org/wiki/Kronecker product)  
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 to construct this difference matrix. The corresponding function is called kron in Matlab. 
It is highly recommended to use the function reshape for rearranging m x n arrays into 
mn x 1 column vectors and vice versa. 

 
 You are strongly encouraged to write an efficient program, which can handle fine 

resolutions in reasonable time. Take care to make the code clean and readable. On an 
average workstation the solver should be able to handle m = n = 800 or more without 
much trouble aside from plotting such a large data set. To get this efficiency, move as 
much work as possible out of the time loop and obviously use sparse format. Use the 
Matlab profiler! Hint: Is the matrix in the linear system constant in time? The time 
step? Consider LU-factorization using the function lu … with proper parameters in and 
out, use help lu. 

3 Numerical results (1.0) 
In your report, please include the following computational results: 
 
1.  Solution plots: Show plots of the solution for some time levels before and after t = 1/4, 

for both source functions S. 
 
2.  Convergence: Choose a point (x0,y0) and compile a table (or a plot) which shows that the 

error behaves like  
 
  )()( rp hOtO +Δ  
 
 where h = Δx = Δy . Determine p and r. Try the smooth S(x,y) first. What values would one 

anticipate from theory?  
 

Next, try the time-variable point source S(x,y,t). What p and r do you get? Why is it a bad 
idea to look at the error in ∞ - or L2-norm for this case? 

 
3. Numerical conservation: Demonstrate that the method is numerically conservative by 

looking at 
  
  ∑∫ ΔΔ= ijQyxqdxdy  
  
 for 0 < t < 2. Compare the computed result to the expression computed in Section 1.1. 

Note: Conservation in “eye norm" is not enough!  
Think about  

i. Time-discretization and how your code handles the discontinuity in g(t) 
ii. Space-discretization; where in the cell does (x,y)=(1/2,1/2) appear? Different for odd 

or even m,n. 
 

4 Refinements (2.0 p) 
Now we move on to slightly more advanced problems. The framework developed thus far in 
this lab should be very helpful when you tackle these problems. Do not proceed with these 
tasks until the program above works as expected! 

4.1 Variable coefficients 
Consider 
 Sqxbqyaq yyxxt ++= )()(  
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instead of the PDE (1). Choose a(y) and b(x) as smooth and positive functions. 
 

i. Formulate the fully discrete problem for the variable coefficient case, preferably in 
the Kronecker notation. Hint: Multiplication from the left with a diagonal matrix 
scales each row of a matrix. How do you scale the columns? 

ii. Implement a solver for the variable coefficient problem. With the Kronecker product 
construction, this should be fairly simple. Present convergence and conservation 
results as in Section 3. 

4.2 Boundary conditions 
Change the boundary conditions (3) to 
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You may choose a different set of boundary conditions if you want to, as long as you include 
at least one non-homogeneous Neuman and Dirichlet condition. 
 
Implement this new boundary condition with the following approach: Construct 1D 
difference matrices for each dimension and make sure they express the right boundary 
conditions. Then assemble the 2D difference matrix from the 1D matrices using Kronecker 
products.  
 
Hint: In the matrix form of the fully discrete problem only one of the T operators needs to 
change for the suggested new BC (4). There are different options to enforce Dirichlet BCs in 
a finite volume method. For the conditions (4), you may choose a grid as shown in given in 
Figure 1, only shifted half a cell in the y-direction so the cell midpoints (and not cell 
boundaries) are found at y = 0 and y = 1. Present convergence results as in section 3 and 
discuss conservation in the context of non-homogenous boundary conditions. 
 


