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Channel Model

Intersymbol interference (ISI)

⇒ Successive symbols interfere with each other.

ISI is caused by

• Multi-path propagation
• Radio communications: signals are reflected by walls, buildings, hills,

ionosphere, ...
• Underwater communications: signals are reflected by the ground, the

surface, interface between different water layers,...

• Frequency-selective and bandlimited channels
• Cables and wires are modeled by (linear) LCR circuits.
• Frequency division multiplexing (FDM) requires limited bandwidth

per channel.

Mathematical model

• ISI can be modeled by a linear filter.
(implicit assumption: linearity)

• In general: time-variant linear filter.
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Channel Model

{b[n]}

Rate 1/T

Transmit filter
gT (t)

Channel filter
gC(t)

u(t)

n(t)ISI Channel

y(t)

• Transmitted signal: u(t) =
∞∑

n=−∞
b[n]gT (t − nT )

• {b[n]}: symbol sequence transmitted at rate 1/T
• gT (t): impulse response of the transmit filter
• T : duration of one symbol

• Received signal: y(t) =
∞∑

n=−∞
b[n]p(t − nT ) + n(t)

• p(t) = (gT ? gC )(t): impulse response of the cascade of the transmit
and channel filters2.

• gC (t): channel impulse response
• n(t): complex additive white Gaussian noise (AWGN) with variance
σ2 = N0/2 per dimension

• Channel equalization: extract {b[n]} from y(t)

2Convolution of two signals a(t) and b(t): q(t) = (a ? b)(t) =
∫
a(u)b(t − u)du.
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Receiver Front End

Channel filter
gC(t)

Transmit filter
gT (t)Rate 1/T

{b[n]}

n(t)Equivalent pulse p(t) = (gT ⋆ gC)(t)

y(t)
Matched filter

pMF (t) = p∗(−t)

z[n]

Sampling, t = nT

Theorem (Optimality of the Matched Filter)

The optimal receiver filter is matched to the equivalent pulse p(t) and is
specified in the time and frequency domain as follows:

gR,opt(t) = pMF (t) = p∗(−t)

GR,opt(f ) = PMF (f ) = P∗(f ).

In terms of a decision on the symbol sequence {b[n]}, there is no loss of
relevant information by restricting attention to symbol rate samples of
the matched filter output given by

z[n] = (y ? pMF )(nT ) =

∫
y(t)pMF (nT − t)dt =

∫
y(t)p∗(t − nT )dt.

[U. Madhow, Fundamentals of Dig. Comm., 2008]
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Eye Diagrams
• Visualization of the effect of ISI (for the noise-free case)

• Received signal (noise free): r(t) =
∑

n b[n]x(t − nT )

• Effective impulse response: x(t) = (gT ? gC ? gR)(t)
(incl. transmit, channel, and receive filter)

• Eye diagram
→ superimpose the waveforms {r(t − kT ), k = ±1,±2, . . .}

• Example
(a) BPSK signal with ISI free pulse in (open eye);
(b) BPSK signal with ISI (closed eye).

[U. Madhow, Fundamentals of Dig. Comm., 2008]
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Nyquist Criterion

Channel filter
gC(t)

Transmit filter
gT (t)Rate 1/T

{b[n]}

n(t)Equivalent pulse p(t) = (gT ⋆ gC)(t)

y(t)
Matched filter

pMF (t) = p∗(−t)

z[n]

Sampling, t = nT

Theorem (Nyquist3 Criterion and Nyquist Rate)

The received signal after sampling (sampling rate 1/T ) is given as

z(nT ) =
∞∑

m=∞
b[m] · x(nT − mT ) + n(nT ) = b[n] · x(0) +

∑
m 6=n

b[m] · x(nT − mT ) + n(nT ),

with the effective impulse response: x(t) = (gT ? gC ? gR)(t). Under the
assumption that X (f ) = F{x(t)} = GT (f )GC (f )GR(f ) = 0 for |f | >W ,
the transmission system is ISI free if

x(nT ) =

{
1 for n = 0
0 for n 6= 0

⇔
∑
m

X
(
f − m

T

)
= T .

ISI-free transmission at symbol rate R is possible if 0 < R ≤ RN where
the upper bound RN is given by the Nyquist rate RN = 2W .

3Harry Nyquist 1928 (Swedish/American inventor)
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Nyquist Criterion
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Pulse shaping for ISI-free transmission
• Raised-cosine pulses can be designed to be ISI free for 0 < R ≤ 2W
• In time domain (see plot (a))

xrc (t) = sinc

(
t

T

)
cosπαt/T

1− 4α2t2/T 2

• In frequency domain (see plot(b))

Xrc (f ) =


T , for |f | ≤ 1−α

2T
T
2

[
1 + cos

(
πT
α

(
|f | − 1−α

2T

))]
, for 1−α

2T
< |f | < 1+α

2T

0 , for |f | > 1+α
2T

• Design of the transmit and receive filters (matched filters):

|GT (f )| = K1
|Xrc (f )|1/2

|GC (f )|1/2
and |GR (f )| = K2

|Xrc (f )|1/2

|GC (f )|1/2

with K1 so that
∫∞
−∞ g 2

T (t)dt = Eb and K2 arbitrary.
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Maximum Likelihood Sequence Estimation

Based on the continuous-time model

Channel filter
gC(t)

Transmit filter
gT (t)Rate 1/T

n(t)Equivalent pulse p(t) = (gT ⋆ gC)(t)

y(t)sb(t) ML Sequence
Estimator

{b̂[n]}{b[n]}

• Goal: find b that maximizes the likelihood function4

L(y|b) =
p(y|b)

p(y)
= exp

(
1

σ2
(Re(〈y, sb〉)− ||sb||

2
/2)

)
with sb(t) =

∑
n

b[n]p(t − nT ).

• Or equivalently: find b that maximizes the cost function

Λ(b) = Re(〈y , sb〉)− ||sb||2/2

• Brute-force detector
• try out all realizations of b
⇒ not feasible: N symbols with M-ary modulation lead to MN possible

sequences b.

4Inner product of two signals a(t) and b(t): 〈a, b〉 =
∫
a(t)b∗(t)dt.
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Maximum Likelihood Sequence Estimation
– Decomposition of Λ(b)

• Useful definition:

h[m] =

∫
p(t)p∗(t −mT )dt = (p ? pMF )(mT ) = x(mT )

→ sampled effective impulse response (transmit/channel/receiver filter)
→ useful property: h[−m] = h∗[m]

• First term in Λ(b) (see e.g. textbook, p. 205)

Re(〈y , sb〉) = Re

(∑
n

b∗[n]

∫
y(t)p∗(t − nT )dt

)
=
∑
n

Re(b∗[n]z[n])

• Second term in Λ(b) (see e.g. textbook, p. 206)

||sb||2 = 〈sb, sb〉 =
∑
n

∑
m

b[n]b∗[m]h[m − n] = . . .

= h(0)
∑
n

|b[n]|2 +
∑
n

∑
m<n

2Re(b∗[n]b[m]h[n −m])
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Maximum Likelihood Sequence Estimation
– Decomposition of Λ(b)

Intermediate result

Λ(b) =
∑
n

{
Re(b∗[n]z[n])− h[0]

2
|b[n]|2 − Re

(
b∗[n]

∑
m<n

b[m]h[n −m]

)}

→ The cost function is additive in n.

→ The n-th summand of the sum is a function of the “current”
symbol b[n] and the “past” symbols {b[m],m < n}.

→ Interpretation: the sum over m removes the ISI from previously
transmitted symbols from z[n].
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Maximum Likelihood Sequence Estimation
– Viterbi Algorithm

• Assumption: the system has a limited impulse response, i.e.,
h[n] = 0, |n| > L, and we get

Λ(b) =
∑
n

{Re(b∗[n]z[n])−h[0]

2
|b[n]|2−Re

b∗[n]

n−1∑
m=n−L

b[m]h[n −m]

}
→ good approximation for practical systems!
→ only the previous L symbols cause ISI.

• State definition: s[n] = (b[n − L], . . . , b[n − 1]), ML states.

• Branch metric:

λn(s[n]→ s[n + 1]) = λn(b[n], s[n])

= Re(b∗[n]z[n])− h[0]

2
|b[n]|2 − Re

b∗[n]

n−1∑
m=n−L

b[m]h[n −m]


• Accumulated metric (AM) at time k

Λk (b) =
k∑

n=1

λn(s[n]→ s[n + 1]) = λk (s[k]→ s[k + 1]) + Λk−1(b)

=
k∑

n=1

λn(b[n], s[n]) = λk (b[k], s[k]) + Λk−1(b)

12 / 1

Notes

Notes



Lecture 1
Channel Equalization

Ming Xiao
CommTh/EES/KTH

Maximum Likelihood Sequence Estimation
– Example Viterbi Algorithm5

• BPSK-modulated signal, h[0] = 3/2, h[1] = h[−1] = −1/2, i.e., L = 1.

[U. Madhow, Fundamentals of Dig. Comm., 2008]

→ Each length-k path through the trellis is associated with a length-k
symbol sequence and an AM Λk (b)

→ At any given state, only the incoming path with the best AM Λk (b)
(survivor) has to be kept.

→ Let Λ∗(1 : k, s′) be the AM of the survivor at state s[k] = s′. The AM for
the path emerging from s[k] = s′ and ending at s[k + 1] = s is given as

Λ0(1 : k + 1, s′ → s) = Λ∗(1 : k, s′) + λk+1(s′ → s)

and we have

Λ∗(1 : k + 1, s) = max
s′

Λ0(1 : k + 1, s′ → s)

→ If the end of the trellis is reached, the best survivor is the maximum
likelihood sequence.

5See Figure 5.5-6 in [U. Madhow, Fundamentals of Dig. Comm., 2008]
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Maximum Likelihood Sequence Estimation
– Alternative Formulation

Based on the discrete-time model

Channel filter
gC(t)

Transmit filter
gT (t)Rate 1/T

{b[n]}

n(t)Equivalent pulse p(t) = (gT ⋆ gC)(t)

y(t)
Matched filter

pMF (t) = p∗(−t)

z[n]

Sampling, t = nT

Whitening
Filter

v[k]

• After matched filtering, the additive noise in z[n] is colored; a
whitening filter is required.

• Model for the received sequence:

v [k] =
L∑

n=0

f [n]b[k − n] + ηk , with

→ discrete-time impulse response f [n] describing the cascade of
transmit, channel, receive, and whitening filter;

→ complex additive white Gaussian noise ηk with noise variance σ2 per
dimension.

• Cost function to be minimized

g(b) =
∑
k

|v [k]−
L∑

n=0

f [n]b[k − n]|2

→ ML sequence can be found with the Viterbi algorithm.
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