

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH Notes

Notes

Lecture 1: Channel Equalization 1 Advanced Digital Communications $(\sf{EQ2410})^{1}$

> Ming Xiao CommTh/EES/KTH

Tuesday, Jan. 20, 2015 8:15-10:00, D42

 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008

 $1/1$

Overview

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Channel Model

Notes

Intersymbol interference (ISI)

 \Rightarrow Successive symbols interfere with each other.

ISI is caused by

- Multi-path propagation
	- Radio communications: signals are reflected by walls, buildings, hills, ionosphere, ...
	- Underwater communications: signals are reflected by the ground, the surface, interface between different water layers,...
- Frequency-selective and bandlimited channels
	- Cables and wires are modeled by (linear) LCR circuits.
	- Frequency division multiplexing (FDM) requires limited bandwidth per channel.

Mathematical model

- ISI can be modeled by a linear filter. (implicit assumption: linearity)
- In general: time-variant linear filter.

Channel Model

${b[n]}$	Transmit filter	$u(t)$	Channel filter	$y(t)$
Rate $1/T$	$gr(t)$	1	1	
Example 1	$g_C(t)$	2		
Transmitted signal: $u(t) = \sum_{n=-\infty}^{\infty} b[n]g_T(t - n)$				
Example 1	$g_T(t)$: symbol sequence transmitted at rate $1/T$			
For $g_T(t)$: impulse response of the transmit filter				
For T : duration of one symbol				
Received signal: $y(t) = \sum_{n=-\infty}^{\infty} b[n]p(t - n)$ + $n(t)$				
For $p(t) = (g_T * g_C)(t)$: impulse response of the cascade of the transmit and channel filters ² .				
For $g_C(t)$: channel impulse response				
For $g_C(t)$: complex additive white Gaussian noise (AWGN) with variance $\sigma^2 = N_0/2$ per dimension				
Channel equalization: extract $\{b[n]\}$ from $y(t)$				

²Convolution of two signals $a(t)$ and $b(t)$: $q(t) = (a * b)(t) = \int a(u)b(t-u)du$.

Notes

3 / 1

Receiver Front End

Theorem (Optimality of the Matched Filter)

The optimal receiver filter is matched to the equivalent pulse $p(t)$ and is specified in the time and frequency domain as follows:

$$
g_{R,opt}(t) = p_{MF}(t) = p^*(-t)
$$

\n
$$
G_{R,opt}(f) = P_{MF}(f) = P^*(f).
$$

In terms of a decision on the symbol sequence $\{b[n]\}$, there is no loss of relevant information by restricting attention to symbol rate samples of the matched filter output given by

$$
z[n]=(y\star p_{MF})(nT)=\int y(t)p_{MF}(nT-t)dt=\int y(t)p^{*}(t-nT)dt.
$$

[U. Madhow, Fundamentals of Dig. Comm., 2008]

5 / 1

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Eye Diagrams

- Visualization of the effect of ISI (for the noise-free case)
- Received signal (noise free): $r(t) = \sum_{n} b[n]x(t nT)$
- Effective impulse response: $x(t) = (g_T * g_C * g_R)(t)$ (incl. transmit, channel, and receive filter)
- Eye diagram

 \rightarrow superimpose the waveforms $\{r(t - kT), k = \pm 1, \pm 2, ...\}$

- Example
	- (a) BPSK signal with ISI free pulse in (open eye);
	- (b) BPSK signal with ISI (closed eye).

Notes

Nyquist Criterion

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Theorem (Nyquist³ Criterion and Nyquist Rate)

The received signal after sampling (sampling rate $1/T$) is given as

$$
z(nT) = \sum_{m=-\infty}^{\infty} b[m] \cdot x(nT - mT) + n(nT) = b[n] \cdot x(0) + \sum_{m \neq n} b[m] \cdot x(nT - mT) + n(nT),
$$

with the effective impulse response: $x(t) = (g_T * g_C * g_R)(t)$. Under the assumption that $X(f) = \mathcal{F}{x(t)} = G_T(f)G_C(f)G_R(f) = 0$ for $|f| > W$, the transmission system is ISI free if

$$
x(nT) = \begin{cases} 1 & \text{for } n = 0 \\ 0 & \text{for } n \neq 0 \end{cases} \Leftrightarrow \sum_{m} X\left(f - \frac{m}{T}\right) = T.
$$

ISI-free transmission at symbol rate R is possible if $0 < R < R_N$ where the upper bound R_N is given by the Nyquist rate $R_N = 2W$.

³ Harry Nyquist 1928 (Swedish/American inventor)

7 / 1

α=0 α=0.5 α=1

fT

Nyquist Criterion 11 L

 $\overline{}$ 0.2 0.4 0.6 0.8

 \sim

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

(a)

−4 −3 −2 −1 0 1 2 3 4 −0.4 −0.2

- Pulse shaping for ISI-free transmission
- Raised-cosine pulses can be designed to be ISI free for $0 < R < 2W$
- In time domain (see plot (a))

$$
x_{rc}(t) = \text{sinc}\left(\frac{t}{T}\right) \frac{\cos \pi \alpha t/T}{1 - 4\alpha^2 t^2/T^2}
$$

• In frequency domain (see plot(b))

$$
X_{rc}(f)=\begin{cases} \displaystyle\frac{T}{2} \\[0.2cm] \displaystyle\frac{T}{2}\left[1+\cos\left(\frac{\pi T}{\alpha}\left(|f|-\frac{1-\alpha}{2T}\right)\right)\right] & ,\text{ for } \displaystyle\frac{1-\alpha}{2T}<|f|<\frac{1+\alpha}{2T} \\[0.2cm] \displaystyle\frac{1+\alpha}{2T} & ,\text{ for } |f|>\frac{1+\alpha}{2T} \end{cases}
$$

• Design of the transmit and receive filters (matched filters):

$$
|G_T(f)| = K_1 \frac{|X_{rc}(f)|^{1/2}}{|G_C(f)|^{1/2}}
$$
 and $|G_R(f)| = K_2 \frac{|X_{rc}(f)|^{1/2}}{|G_C(f)|^{1/2}}$

with K_1 so that $\int_{-\infty}^{\infty} g_T^2(t)dt = E_b$ and K_2 arbitrary.

Notes

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Maximum Likelihood Sequence Estimation

Notes

Notes

Based on the continuous-time model

• Goal: find **b** that maximizes the likelihood function⁴

$$
L(y|\mathbf{b}) = \frac{p(y|\mathbf{b})}{p(y)} = \exp\left(\frac{1}{\sigma^2}(\text{Re}(\langle y, s_{\mathbf{b}} \rangle) - ||s_{\mathbf{b}}||^2/2)\right) \text{ with } s_{\mathbf{b}}(t) = \sum_{n} b[n]p(t - nT).
$$

• Or equivalently: find b that maximizes the cost function

$$
\Lambda(\mathbf{b}) = \text{Re}(\langle y, s_{\mathbf{b}} \rangle) - ||s_{\mathbf{b}}||^2/2
$$

- Brute-force detector
	- try out all realizations of b
	- \Rightarrow not feasible: N symbols with M-ary modulation lead to M^N possible sequences b.

⁴ Inner product of two signals $a(t)$ and $b(t)$: $\langle a, b \rangle = \int a(t)b^{*}(t)dt$.

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Maximum Likelihood Sequence Estimation – Decomposition of Λ(b)

• Useful definition:

$$
h[m] = \int p(t)p^{*}(t-mT)dt = (p \star p_{MF})(mT) = x(mT)
$$

- \rightarrow sampled effective impulse response (transmit/channel/receiver filter) \rightarrow useful property: $h[-m] = h^*[m]$
- First term in $\Lambda(b)$ (see e.g. textbook, p. 205)

$$
\mathsf{Re}(\langle y, s_{\mathbf{b}} \rangle) = \mathsf{Re}\left(\sum_{n} b^{*}[n] \int y(t) p^{*}(t - nT) dt\right) = \sum_{n} \mathsf{Re}(b^{*}[n]z[n])
$$

• Second term in $\Lambda(b)$ (see e.g. textbook, p. 206)

$$
||s_{\mathbf{b}}||^2 = \langle s_{\mathbf{b}}, s_{\mathbf{b}} \rangle = \sum_{n} \sum_{m} b[n]b^*[m]h[m-n] = \dots
$$

= $h(0) \sum_{n} |b[n]|^2 + \sum_{n} \sum_{m < n} 2\text{Re}(b^*[n]b[m]h[n-m])$

9 / 1

Maximum Likelihood Sequence Estimation – Decomposition of Λ(b)

Notes

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Intermediate result

$$
\Lambda(\mathbf{b}) = \sum_{n} \left\{ \text{Re}(b^*[n]z[n]) - \frac{h[0]}{2} |b[n]|^2 - \text{Re}\left(b^*[n] \sum_{m < n} b[m]h[n-m] \right) \right\}
$$

- \rightarrow The cost function is additive in *n*.
- \rightarrow The *n*-th summand of the sum is a function of the "current" symbol $b[n]$ and the "past" symbols $\{b[m], m < n\}$.
- \rightarrow Interpretation: the sum over *m* removes the ISI from previously transmitted symbols from $z[n]$.

Maximum Likelihood Sequence Estimation – Viterbi Algorithm

Notes

11 / 1

 Δ

• Assumption: the system has a limited impulse response, i.e., $h[n] = 0$, $|n| > L$, and we get

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

$$
\Lambda(\mathbf{b}) = \sum_{n} \{ \text{Re}(b^*[n]z[n]) - \frac{h[0]}{2} |b[n]|^2 - \text{Re}\left(b^*[n] \sum_{m=n-L}^{n-1} b[m]h[n-m]\right) \}
$$

- \rightarrow good approximation for practical systems! \rightarrow only the previous L symbols cause ISI.
- State definition: $s[n] = (b[n-L], \ldots, b[n-1])$, M^L states.
- Branch metric:

$$
\lambda_n(s[n] \to s[n+1]) = \lambda_n(b[n], s[n])
$$

= Re(b^{*}[n]z[n]) - $\frac{h[0]}{2}|b[n]|^2$ - Re $\left(b^*[n] \sum_{m=n-L}^{n-1} b[m]h[n-m]\right)$

• Accumulated metric (AM) at time k

$$
\Lambda_k(\mathbf{b}) = \sum_{n=1}^k \lambda_n(s[n] \to s[n+1]) = \lambda_k(s[k] \to s[k+1]) + \Lambda_{k-1}(\mathbf{b})
$$

$$
= \sum_{n=1}^k \lambda_n(b[n], s[n]) = \lambda_k(b[k], s[k]) + \Lambda_{k-1}(\mathbf{b})
$$

Maximum Likelihood Sequence Estimation – Example Viterbi Algorithm⁵

Notes

Notes

• BPSK-modulated signal, $h[0] = 3/2$, $h[1] = h[-1] = -1/2$, i.e., $L = 1$.

[U. Madhow, Fundamentals of Dig. Comm., 2008]

- \rightarrow Each length-k path through the trellis is associated with a length-k symbol sequence and an AM $\Lambda_k(\mathbf{b})$
- \rightarrow At any given state, only the incoming path with the best AM $\Lambda_k(\mathbf{b})$ (survivor) has to be kept.
- \rightarrow Let $\Lambda^*(1:k,s')$ be the AM of the survivor at state $s[k] = s'$. The AM for the path emerging from $s[k] = s'$ and ending at $s[k+1] = s$ is given as

$$
\Lambda_0(1:k+1,s'\rightarrow s)=\Lambda^*(1:k,s')+\lambda_{k+1}(s'\rightarrow s)
$$

and we have

– Alternative Formulation

$$
\Lambda^*(1:k+1,s)=\max_{s'}\Lambda_0(1:k+1,s'\to s)
$$

 \rightarrow If the end of the trellis is reached, the best survivor is the maximum likelihood sequence.

 5 See Figure 5.5-6 in [U. Madhow, *Fundamentals of Dig. Comm.*, 2008]

13 / 1

Lecture 1 Channel Equalization Ming Xiao CommTh/EES/KTH

Based on the discrete-time model
\n
$$
\underbrace{\{b[n]\}}_{\text{Rate 1/T}} \underbrace{\underbrace{\text{Transmit filter}}_{gr(t)} \underbrace{\text{Transmit filter}}_{g_T(t)} \underbrace{\text{Channel filter}}_{g_C(t)} \underbrace{\text{Planar filter}}_{g_C(t)} \underbrace{\text{Planar filter}}_{h(t)} \underbrace{\text{Pl}(\text{Matched filter})}_{h(t)} \underbrace{\text{N}}_{\text{Fitter}} \underbrace{\text{V}^{[n]}_{\text{Filter}} \underbrace{\text{Whitening}}_{\text{Filter}} \underbrace{\text{v}[k]}_{\text{Filter}}
$$

- After matched filtering, the additive noise in $z[n]$ is colored; a whitening filter is required.
- Model for the received sequence:

Maximum Likelihood Sequence Estimation

$$
v[k] = \sum_{n=0}^{L} f[n]b[k-n] + \eta_k, \quad \text{with}
$$

- \rightarrow discrete-time impulse response $f[n]$ describing the cascade of transmit, channel, receive, and whitening filter;
- \rightarrow complex additive white Gaussian noise η_k with noise variance σ^2 per dimension.
- Cost function to be minimized

$$
g(\mathbf{b}) = \sum_{k} |v[k] - \sum_{n=0}^{L} f[n]b[k-n]|^{2}
$$

 \rightarrow ML sequence can be found with the Viterbi algorithm.