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METROPOLIS 
HASTINGS (MH)
We want to compute p*(x) (typically 
p(x|D)) 

Implicitly construct Markov Chain  M 
with stationary distribution p*(x)  

Traverse it and sample every k:th visit  

Use good or random starting point  

Discard the first l:th samples 

The remaining samples x1,…,xS is an 
approximation of p*(x) 

p*(x) ≈ [ ∑i I(x=xi) ]/S

How?

GIBBS SAMPLING
★ Pick initial state x1=(x1,1,…,x1,K) 

★ For s=1 to S 

• Sample k~u [K]  

• Sample xs+1,k ~ p(xs+1,k| xs,-k) 

• Let xs+1 = (xs,1,…,x1,k-1, xs+1,k,…, xs,K) 

• If k|s record xs+1 (thinning)
GIBBS SAMPLER FOR 
GMM

Notation

Hyperparameters 

Model

D = (x1, . . . , xN ), H = (z1, . . . , zN ), Nk =
�

n

I(zi = k)

� = (�1, . . . ,�k), µ = (µi, . . . , µk), � = (�i, . . . ,�k), and �k = 1/�2
k

�0 = (µ0,�0,�0,�0,�)

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)



A STATE

(H,�,µ,�)

LIKELIHOOD FOR GMM

Hyperparameters

Model

Likelihood

�0 = (µ0,�0,�0,�0,�)

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)

p(D,H, �,µ,�) =p(D,H|�,µ,�)p(�)p(µ,�)

=
�

n,k

[�kN(xn|µk,�k)]I(zn=k)Dir(�|�)

�

k

N(µk|µ0,�0)Ga(�k|�0,�0)

COLLAPSING 

Integrating out some 
components of the state 
is called collapsing 

It always improves 
convergence 
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Standard Gibbs Sampler
Rao−Blackwellized Sampler
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Standard Gibbs Sampler
Rao−Blackwellized Sampler

COLLAPSING 

Integrating out some 
components of the 
posterior is called 
collapsing 

It always improves 
convergence 
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COLLAPSED 
GIBBS SAMPLER 
FOR GMM

Integrate out π, μ, and λ from 

p(D,H,μ,λ,π,ϴ0) 

ϴ0  is all the hyperparameters 

Only full conditionals on zn remain 

Same joint as before except from 
conjugate prior on μk and λk 

NEW FULL 
CONDITIONAL 

“easy” with a conjugate prior on μk and λk 

but varies as we vary H 

=3

p(zn|D,H�n,�0)

=
p(zn, D|H�n,�0)

p(D|H�n,�0)
� p(zn, D|H�n,�0)
� p(zn|H�n,�0)p(D|zn,H�n,�0)
� p(zn|H�n,�0)p(xn|D�n, zn,H�n,�0)p(D�n|zn,H�n,�0)
� p(zn|H�n,�0)p(xn|D�n, zn,H�n, , �0)

FULL CONDITIONAL

So,

� =
�

k

�kwhere

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)

Recall,

I.e., marginal

THE COLLAPSED 
ALGORITHM



CONVERGENC
E COLLAPSED 
VS STANDARD

• Blue is standard 

• Red is collapsed  

• x iterations 

• y loglikelihood
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THE END
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FIGURE 1. An overview of the PosetSMC algorithmic framework. A PosetSMC algorithm maintains a set of partial states (three partial states
are shown in the leftmost column in the figure; each partial state is a forest over the leaves A, B, C, and D). Associated with each partial state is a
positive-valued weight. The algorithm iterates the following three steps: (i) resample from the weighted partial states to obtain an unweighted
set of partial states, (ii) propose an extension of each partial state to a new partial state in which two trees in the forest have been connected, and
(iii) calculate the weights associated with the new partial states.

we give a simple concrete example of a proposal distri-
bution in the case of ultrametric trees.

In an ultrametric setup, the examples we consider are
based on S defined as the set of ultrametric forests over
X. An ultrametric forest s= {(ti,Xi)} is a set of ultramet-
ric Xi-trees ti such that the disjoint union of the leaves
yields the set of observed taxa: !Xi=X. The rank of such
a forest is defined as |X|− |s|.

Defining the height of an ultrametric forest as the
height of the tallest tree in the forest, we can now intro-
duce the partial order relationship we use for ultramet-
ric setups. Let s and s′ be ultrametric forests. We deem
that s ≺ s′ if all the trees in s appear as subtrees in s′ with
matching branch lengths and if the height of s′ is strictly
greater than the height of s. As we will see shortly, any
proposal that simply merges a pair of trees and strictly
increases the forest height is a valid proposal.

Algorithm Description
Once these two ingredients are specified—a proposal

and an extension—the algorithm proceeds as follows. At
each iteration r, we assume that a list of K partial states
is maintained (each element of this list is called a parti-
cle). These particles are denoted by sr,1, . . . , sr,K ∈ S . We

also assume that there is a positive weight wr,k associated
with each particle sr,k. Combined together, these form an
empirical measure:

πr,K(·) =
K∑

k=1

wr,kδsr,k(·), (1)

where δx(A) = 1 if x ∈ A and 0 otherwise.
Initially, s0,k=⊥ and w0,k= 1/K for all k. Given the list

of particles and weights from the previous iteration r−1,
a new list is created in three steps. The first step can be
understood as a method for pruning unpromising par-
ticles. This is done by sampling independently K times
from the normalized empirical distribution π̄r−1,K. The
result of this step is that some of the particles (mostly
those of low weight) will be pruned. (Other sampling
schemes, such as stratified sampling and dynamic on-
demand resampling, can be used to further improve
performance; see Doucet et al. 2001.) We denote the
sampled particles by s̃r−1,1, . . . , s̃r−1,K. The second step
is to create new particles, sr,1, . . . , sr,K, by extending the
partial states of each of the sampled particles from the
previous iteration. This is done by sampling K times
from the proposal distribution, sr,k ∼ νs̃r−1,k . The third
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FIGURE 2. To illustrate how PosetSMC sequentially samples from the space of trees, we present a subset of the Hasse diagram induced
by the naive proposal described in the Examples section. Note that this diagram is not a phylogenetic tree: The circles correspond to partial
states (phylogenetic forests), organized in rows ordered by their rank ρ, and edges denote a positive transition density between pairs of partial
states. The forests are labeled by the union of the sets of nontrivial rooted clades over the trees in the forest. The dashed lines correspond to
the proposal moves forbidden by the strict height increase condition (Assumption 2(b) in the text). Note that we show only a subset of the
Hasse graph since the branch lengths make the graph infinite. The subset shown here is based on an intersection of height function fibers: Given
a subset of the leaves X′ ⊂ X, we define the height function hX′ (s) as the height of the most recent common ancestor of X′ in s, if X′ is a clade
in one of the trees in s, and ω otherwise, where ω /∈ R. Given a map f : 2X → [0,∞), the subset of the vertices of the Hasse diagram shown
is given by ∩X′⊂Xh−1

X′ ({f (X
′),ω}). The graph shown here corresponds to any f such that f ({A,B}) < f ({C,D}), f ({A,C}) < f ({B,D}), and

f ({A,D}) < f ({B,C}).

assume there are no observations at the leaves, the ex-
pected fraction of particles with a caterpillar topology of
each type is 1/18 (because there are 18 distinct paths in
Fig. 2), whereas the expected fraction of particles with a
balanced topology of each type is 2/18= 1/9. However,
since we have assumed there are no observations, the
posterior should be equal to the prior, a uniform distri-
bution. Therefore, the naive proposal leads to a biased
approximate posterior.

The strict height increase condition incorporated in
our proposal addresses this issue. The dashed lines in
Figure 2 show which naive proposals are forbidden by
the height increase condition. After this modification,
the bias disappears:

PROPOSITION 5 Proposals over ultrametric forests that
merge one pair of trees while strictly increasing the
height of the forest satisfy Assumption 2.

Proof. It is enough to show that each s ∈ S covers at most
one s′ ∈ S . If s = ⊥, this holds trivially. If s =/ ⊥, there
is a unique s′ covered by s, given by splitting the unique
tallest tree in the forest (removing the edges connected
to the root). !

The proposals used in Teh et al. (2008) all fall in this
category. For example, for the “PriorPrior” proposal νs,
a pair of trees in the forest s is sampled uniformly at
random, and the height increment of the forest is sam-
pled from an exponential with rate

(|s|
2

)
, the prior wait-

ing time between two coalescent events.
Again, many other options are available. For exam-

ple, even when the prior is the coalescent model, one
may want use a proposal with fatter tails to take into
account deviation from the prior brought by the likeli-
hood model. One way to achieve this is the “PostPost”
proposal discussed by Teh et al. (2008), where local pos-
teriors are used for both the height increment and the
choice of trees to coalesce (see Appendix 2 for further

discussion of this proposal). That approach has some
drawbacks, however; it is complex to implement and
is only applicable to likelihoods obtained from Brown-
ian motion. Simpler heavy-tailed proposal distributions
may be useful.

Proposals can also be informed by heuristics H as dis-
cussed in the next section. This can be done, for example,
by giving higher proposal density to pairs of trees that
form a subtree in H(s).

In the nonclock case, we let S be the set of rooted non-
clock forests over X. A nonclock forest, s= {(ti,Xi)}, is a
set of nonclock Xi-trees ti such that the disjoint union of
the leaves consists in the set of observed taxa, #Xi = X.
Defining the diameter of a rooted forest as twice the max-
imum distance between a leaf and a root over all trees in
the forest, we get that any proposal that merges a pair of
trees and strictly increases the forest diameter is a valid
proposal. The unique state covered by s =/ ⊥ is the one
obtained by splitting the tree with the largest diameter.

Extensions
We turn to the specification of extensions, γ∗, of the

density γ from T to S. There is a simple recipe for ex-
tensions that works for both nonclock and ultrametric
trees: Given a posterior distribution model πY , set the
extension over a forest s= {(ti,Xi)} to be equal to

γ∗(s) =
∏

(ti,Xi)∈s

γY(Xi)(ti). (6)

We call this extension the natural forest extension. This
definition satisfies Assumption 3 by construction.

More sophisticated possibilities exist, with different
computational trade-offs. For example, it is possible to
connect the trees in the forest on the fly, by using a fast
heuristic such as neighbor joining (Saitou and Nei 1987).
If we let H :S → T denote this heuristic, we then get this
alternate extension:
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FIGURE 3. Comparison of the convergence time of PosetSMC and MCMC. We generated coalescent trees of different sizes and data sets
of 1000 nucleotides. We computed the L1 distance of the minimum Bayes risk reconstruction to the true generating tree as a function of the
running time (in units of the number of peeling recursions, on a log scale). The missing MCMC data points are due to MrBayes stalling on these
executions.

γ∗(s) = γ(H(s)).

As long as all the trees in s appear as subtrees of H(s),
this definition also satisfies Assumption 3. This ap-
proach can also be less greedy, by taking into account
the effect of the future merging operations. We present
other examples of extensions in Appendix 2.

EXPERIMENTS

In this section, we present experiments on real and
synthetic data. We first show that for a given error
level, SMC takes significantly less time to converge to
this error level than MCMC. For the range of tree sizes
considered (5–40), the speed gap of SMC over MCMC
was around two orders of magnitude. Moreover, this
gap widens as the size of the trees increases. We then
explore the impact of different likelihoods, tree priors,
and proposal distributions. Finally, we consider experi-
ments with real data, where we observe similar gains in
efficiency as with the simulated data.

Computational Efficiency
We compared our method with MCMC, the standard

approach to approximating posterior distributions in
Bayesian phylogenetic inference (see Huelsenbeck et al.
2001 for a review). We implemented the PosetSMC al-
gorithm in Java and used MrBayes (Huelsenbeck and
Ronquist 2001) as the baseline MCMC implementation.
A caveat in these comparisons is that our results depend
on the specific choice of proposals that we made.

In the experiments described in this section, we gen-
erated 40 trees from the coalescent distribution of sizes
{5, 10, 20, 40} (10 trees of each size). For each tree, we
then generated a data set of 1000 nucleotides per leaf
from the Kimura two-parameter model (K2P) (Kimura
1980) using the Doob–Gillespie algorithm (Doob 1945).
In this section, both the PosetSMC and MCMC algo-
rithms were run with the generating K2P model and
coalescent prior, fixing the parameters. We use the Pri-
orPrior proposal as described in Teh et al. (2008). Pri-
orPrior chooses the trees to merge and the diameter of
the new state from the prior; that is, the trees are chosen

uniformly over all pairs of trees, whereas the new diam-
eter is obtain by adding an appropriate exponentially
distributed increment to the old diameter. We consider
bigger trees as well as other proposals and models in
the next sections.

For each data set, we ran MCMC chains with increas-
ing numbers of iterations from the set {103, 104, 105, 106}.
We also ran PosetSMC algorithms with increasing num-
bers of particles from the set {101, 102, 103, 104}. Each
experiment was repeated 10 times, for a total of 3200
executions.

We computed consensus trees from the samples and
measured the distance of this reconstruction to the gen-
erating tree (using the metrics defined in the Back-
ground and Notation section). The results are shown in
Figure 3 for the L1 metric. For each algorithm setting
and tree size, we show the median distance across 100
executions, as well as the first and third quartiles. A
speedup of over two orders of magnitudes can be seen
consistently across these experiments.

In both the PosetSMC and MCMC algorithms, the
computational bottleneck is the peeling recurrence
(Felsenstein 1981), which needs to be computed at each
speciation event in order to evaluate γ(t). Each call re-
quires time proportional to the number of sites times
the square of the number of characters (this can be ac-
celerated by parallelization, but parallelization can be
implemented in both MCMC and PosetSMC samplers
and thus does not impact our comparison). We therefore
report running times as the number of times the peeling
recurrence is calculated. As a sanity check, we also did a
controlled experiment on real data in a single user pure
Java setting, showing similar gains in wall clock time.
(These results are presented in the Experiments on Real
Data section).

In Figures 4 and 5, we show results derived from the
series of experiments described above for other met-
rics. Note, in particular, the result in Figure 4; we see
that for a fixed computational budget, the gap between
PosetSMC and MCMC increases dramatically as the size
of the tree increases.
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