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ABSTRACT
Summary: MrBayes 3 performs Bayesian phylogenetic
analysis combining information from different data par-
titions or subsets evolving under different stochastic
evolutionary models. This allows the user to analyze
heterogeneous data sets consisting of different data
types—e.g. morphological, nucleotide, and protein—
and to explore a wide variety of structured models mixing
partition-unique and shared parameters. The program em-
ploys MPI to parallelize Metropolis coupling on Macintosh
or UNIX clusters.
Availability: http://morphbank.ebc.uu.se/mrbayes.
Contact: fredrik.ronquist@ebc.uu.se

Computational complexity has long been a major ob-
stacle in the development of statistical approaches to
phylogenetic inference. Even moderate-sized empirical
problems have posed serious challenges to computational
biologists, forcing compromises in analytical accuracy.
However, the recent introduction of Bayesian inference
and Markov chain Monte Carlo (MCMC) techniques to
phylogenetics has changed this situation. Early Bayesian
phylogenetics papers showed that Markov chains based on
the Metropolis–Hastings algorithm were computationally
more efficient than the standard Maximum Likelihood
(ML) bootstrapping approach (Larget and Simon, 1999).
It is now known that problems with more than 350
sequences (taxa) can be analyzed successfully with mod-
erate computational effort using Bayesian inference and
an MCMC convergence acceleration technique known
as Metropolis coupling (Huelsenbeck et al., 2001). Such
problems are set on tree spaces many orders of magnitude
larger than those amenable to ML bootstrapping.
The increase in computational efficiency associated

with the Bayesian MCMC approach makes it possible to
analyze more complex and realistic evolutionary models
than previously. Currently, an important but commonly

∗To whom correspondence should be addressed.

invoked constraint on model complexity is the assumption
of data homogeneity. Many phylogenetic data sets now
include evidence from several different sources: morphol-
ogy and molecules, amino acid and nucleotide data, or
sequences from the mitochondrial, plastid and nuclear
genomes. However, the available software commonly
forces the investigator to either: (1) model the evolution
of such data using a single stochastic model; (2) analyze
the different data partitions or subsets separately and use
ad hoc methods to obtain a summary result; or (3) resort
to simple search algorithms or non-statistical methods.
None of these alternatives is particularly attractive.
MrBayes 3 is a completely rewritten and restructured

version of MrBayes, a command-driven program for
Bayesian phylogenetic inference (Huelsenbeck and
Ronquist, 2001). The hallmark of the new program is a
powerful framework for phylogenetic inference under
mixed models accommodating data heterogeneity. This
framework will help the user to specify mixed models and
exploit the computational efficiency of Bayesian MCMC
analysis in dealing with composite data sets.
Bayesian phylogenetic inference is based on Bayes’s

rule. Applied to the phylogeny problem, the rule can be
expressed as follows

f (τ, v, θ |X) = f (τ, v, θ) f (X |τ, v, θ)

f (X)

where X is the data matrix, τ is the topology of the tree, v
is a vector of branch (or edge) lengths on the tree, and θ is
a vector of substitution model parameters. The distribution
f (τ, v, θ) is referred to as the prior, and specifies the prior
probability of different parameter values; f (X |τ, v, θ) is
the likelihood function, describing the probability of the
data under different parameter values; and f (X) is the
total probability of the data summed and integrated over
the parameter space. Bayesian inference is based on the
so-called posterior distribution f (τ, v, θ |X).
Typically, it is not possible to calculate the posterior

probability distribution analytically; instead, MCMC tech-
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Prof. Entomology

MARKOV MODEL OF 
SEQUENCE EVOLUTION

The same position 

M(l)

M1= M(l1) M2= M(l2)

Human Mouse

A

C A



A C A C G T A G T G C C

MARKOV MODEL OF 
SEQUENCE EVOLUTION

Same gene, same positions 

A A A C G T A C T G C A

M(l)

M1= M(l1) M2= M(l2)

A C A C G T A C T G C G

Human Mouse

A C A C G T A G T G C C

MARKOV MODEL OF 
SEQUENCE EVOLUTION

A A A C G T A C T G C A

Human

Mouse

In general,

Uniform

A A C …………T A

MARKOV CHAINS 
(DISCRETE)

p1

q

p2

★Directed graph with 
transition probabilities 

★ We observe the 
sequence of visited vertices

MARKOV CHAINS 
(DISCRETE)

p1

p2

Probabilities on outgoing edges sum to one 

pd

∑i∈[d] pi =1



MCMC
★ In order to sample p, set up a MC M 

• select transition probabilities so that p = stationary distribution 
• sample from M

p
q

MC- EXISTENCE 
OF STATIONARY

Theorem: Every irreducible, 
aperiodic, finite state MC has a 
stationary distribution 

Theorem: Every irreducible, 
aperiodic, and recurrent MC has a 
stationary distribution  

We want to satisfy these 
conditions! 

The period of a state i 
    gcd{ t : p( i → i in t steps) > 0 }

Period 4

gcd - greatest common divisor

M is aperiodic if each states has period 1 

M is irreducible if ∀states i,j: p(i→j) > 0 

M is recurrent if ∀states i: p(i→i) = 1

MC- EXISTENCE 
OF STATIONARY

Theorem: Every irreducible, 
aperiodic, finite state MC has a 
stationary distribution 

Theorem: Every irreducible, 
aperiodic, and recurrent MC has a 
stationary distribution  

We want to satisfy these 
conditions! 

The period of a state i 
    gcd{ t : p( i → i in t steps) > 0 }

Period 1

gcd - greatest common divisor

M is aperiodic if each states has period 1 

M is irreducible if ∀states i,j: p(i→j) > 0 

M is recurrent if ∀states i: p(i→i) = 1

METROPOLIS 
HASTINGS (MH)
We want to compute p*(x) (typically 
p(x|D)) 

Implicitly construct Markov Chain  M 
with stationary distribution p*(x)  

Traverse it and sample every k:th visit  

Use good or random starting point  

Discard the first l:th samples 

The remaining samples x1,…,xS is an 
approximation of p*(x) 

p*(x) ≈ [ ∑i I(x=xi) ]/S

How?



IMPLICIT 
CONSTRUCTION OF 

MC WITH STATIONARY 
DISTRIBUTION P*(X)  

Transition when in state x: 

Propose state according to 
proposal distribution q(x´|x) 
(conditions later) 

Accept x´with probability 
min(1,α) 

� =
p�(x�)/q(x�|x)
p�(x)/q(x|x�)

=
p�(x�)q(x|x�)
p�(x)q(x�|x)

MC WITH STATIONARY 
DISTRIBUTION 

P*(X)=P(X|D)  

Transition when in state x: 

Propose state according to 
proposal distribution q(x´|x) 
(conditions later) 

Accept x´with probability 
min(1,α) 

We want and don’t have p*, but 
it is a ratio that is required! 

� =
p�(x�)q(x|x�)
p�(x)q(x�|x)

p�(x�)
p�(x)

=
p(x�|D)
p(x|D)

=
p(D|x�)p(x�)

p(D)

p(D|x)p(x)
p(D)

=
p(D|x�)p(x�)
p(D|x)p(x)

MC WITH STATIONARY 
DISTRIBUTION 

P*(X)=P(X|D)  

MH typically work when 
we cannot compute p*(x), 
but p*(x´)/p*(x) 

likelihood prior 

� =
p�(x�)q(x|x�)
p�(x)q(x�|x)

p�(x�)
p�(x)

=
p(x�|D)
p(x|D)

=
p(D|x�)p(x�)

p(D)

p(D|x)p(x)
p(D)

=
p(D|x�)p(x�)
p(D|x)p(x)

MH

� =
p�(x�)q(x|x�)
p�(x)q(x�|x)



DETAILED BALANCE 
EQUATIONS 

★ A transition matrix, i.e., Aij = p(i→j in 1 step) 

★ A regular if ∀k,l ∃n s/t (Ak,l)n>0 

★ Detailed balance equations ∀k,l  πkAkl = πlAlk  

★ Theorem: If MC M with regular transition matrix A that 
satisfies detailed balance wrt π, then π the stationary 
distribution of M.  

★ Proof: Note that  

 πlt+1=∑k πktAkl = ∑k πltAlk = πlt ∑k Alk = πlt

WHY MH 
WORKS

p*(x) the distribution we want to 
estimate 

α(x´|x)=(p*(x´)q(x|x´))/(p*(x)q(x´|x)) 

Let r(x´|x) = min(1,α(x´|x))  

The transition probability for x´≠x (x
´= x easy) p(x´|x) = q(x´|x) r(x´|x) 

 Assume p*(x)q(x´|x) ≥ p*(x´)q(x|x´), 
so r(x´|x)=α(x´|x) and r(x|x´)=1

We want p*(x)p(x′|x) = p*(x′)p(x|x′) 

p*(x)p(x′|x) = p*(x) q(x′|x)r(x′|x)  
 = p*(x)q(x′|x) (p*(x´)q(x|x´))/(p*(x)q(x´|x)) 
 = p*(x´)q(x|x´) 
 = p*(x´)q(x|x´)r(x|x´) 
 = p*(x´)p(x|x´) 

PRACTICAL 
CONSIDERATIONS

• Efficiency of proposal distribution 

• Burn-in 

• Convergence

THE CRAFTSMANSHIP  
OF PROPOSAL DESIGN  

• Conservative proposal - hard to move away from local optimum 
• Wild proposal -  few accepted proposals 
• 25-40% acceptance rate considered good (use pilot runs)
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MR BAYES PROPOSAL 
NODE (VERTEX) SLIDER

166 APPENDIX A. OVERVIEW OF MODELS AND MOVES

New values are picked uniformly from a sliding window
     of size  centered on x.
Tuning parameter: 
Bolder proposals: increase 
More modest proposals: decrease 

Works best when the effect on the probability of the
data is similar throughout the parameter range

Works well when changes in small values of x have
a larger effect on the probability of data than
changes in large values of x. Example: branch lengths.

Works well for proportions, such as revmat and statefreqs.

New values are picked from the equivalent of a
    sliding window on the log-transformed x axis.
Tuning parameter: 2 ln a
Bolder proposals: increase 
More modest proposals: decrease 

Two adjacent branches a and b are chosen at random
The length of a + b is changed using a multiplier with tuning
    paremeter 
The node x is randomly inserted on a + b according to a
    uniform distribution

An internal branch a is chosen at random
The length of a is changed using a multiplier with tuning
    paremeter 
The node x is moved, with one of the adjacent branches, in subtree A,
    one node at a time, each time the probability of moving one more
    branch is p (the extension probability).
The node y is moved similarly in subtree B.

Bolder proposals: increase 
More modest proposals: decrease 

Bolder proposals: increase 
More modest proposals: decrease 
Changing  has little effect on the boldness of the proposal

Bolder proposals: increase p
More modest proposals: decrease p
Changing  has little effect on the boldness of the proposal.

Three internal branches - a, b, and c - are chosen at random.
Their total length is changed using a multiplier with tuning
    paremeter 
One of the subtrees A or B is picked at random.
It is randomly reinserted on a + b + c according to a uni-
    form distribution

The boldness of the proposal depends heavily on the uniform
    reinsertion of x, so changing  may have limited effect

New values are picked from a Dirichlet (or Beta) distribution
     centered on x.
Tuning parameter: 
Bolder proposals: decrease 
More modest proposals: increase 

The most common proposal types used by MrBayes 3

MR BAYES PROPOSAL 
LOCAL TREE OPERATION

166 APPENDIX A. OVERVIEW OF MODELS AND MOVES

New values are picked uniformly from a sliding window
     of size  centered on x.
Tuning parameter: 
Bolder proposals: increase 
More modest proposals: decrease 

Works best when the effect on the probability of the
data is similar throughout the parameter range

Works well when changes in small values of x have
a larger effect on the probability of data than
changes in large values of x. Example: branch lengths.

Works well for proportions, such as revmat and statefreqs.

New values are picked from the equivalent of a
    sliding window on the log-transformed x axis.
Tuning parameter: 2 ln a
Bolder proposals: increase 
More modest proposals: decrease 

Two adjacent branches a and b are chosen at random
The length of a + b is changed using a multiplier with tuning
    paremeter 
The node x is randomly inserted on a + b according to a
    uniform distribution

An internal branch a is chosen at random
The length of a is changed using a multiplier with tuning
    paremeter 
The node x is moved, with one of the adjacent branches, in subtree A,
    one node at a time, each time the probability of moving one more
    branch is p (the extension probability).
The node y is moved similarly in subtree B.

Bolder proposals: increase 
More modest proposals: decrease 

Bolder proposals: increase 
More modest proposals: decrease 
Changing  has little effect on the boldness of the proposal

Bolder proposals: increase p
More modest proposals: decrease p
Changing  has little effect on the boldness of the proposal.

Three internal branches - a, b, and c - are chosen at random.
Their total length is changed using a multiplier with tuning
    paremeter 
One of the subtrees A or B is picked at random.
It is randomly reinserted on a + b + c according to a uni-
    form distribution

The boldness of the proposal depends heavily on the uniform
    reinsertion of x, so changing  may have limited effect

New values are picked from a Dirichlet (or Beta) distribution
     centered on x.
Tuning parameter: 
Bolder proposals: decrease 
More modest proposals: increase 

The most common proposal types used by MrBayes 3

BURN-IN
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CONVERGENCE DIAGNOSTICS 
- MULTIPLE CHAINS
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GIBBS SAMPLER
★ A way to define transition probabilities  

★ We seek p(x1,…,xK) 

★ States are vectors (x1,…,xK) 

★ Transitions possible only between states differing in one position  

★ t( ((x1,…,xi-1,x´i,xi+1,…,xK) |x) = p(x´i| x-i,D)        (from now D implicit) 

• where x-i=(x1,…,xi-1,xi+1,…,xK) 

★ Called full conditional  

MOTIVATION

Phylogenetic Consensus

Profile x

com
m

on m
otif

P
ro

fi le
 y

gene1
species1
species2
species3
species4

Conserved 
region

Conserved 
region

gene2
species1  
species2
species3
species4

Conserved 
region

Make profiles

Profile1-1

Profile1-2

Profile1-3

Profile2-1

Profile2-2

Compare

A

B

Alignment of profiles

Alignment of conserved regions

A  . . 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . .
C  . . 0 1 1 2 4 2 4 4 4 0 0 0 0 0 4 0 0 0 4 4 0 0 4 0 0 0 0 . .
G  . . 1 0 0 0 0 0 0 0 0 4 4 0 0 4 0 4 4 4 0 0 3 0 0 4 0 0 0 . .
T  . . 3 3 3 2 0 2 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 4 0 0 4 4 4 . .

A  . . 0 0 4 2 0 0 0 0 0 0 0 0 4 4 0 0 0 1 0 0 0 3 1 0 0 3 4 . .
C  . . 0 2 0 1 0 0 0 4 4 0 0 0 0 0 4 0 0 1 4 1 0 1 0 0 1 0 0 . .
G  . . 0 0 0 0 4 4 0 0 0 4 4 0 0 0 0 4 4 0 0 2 0 0 3 1 3 1 0 . .
T  . . 4 2 0 1 0 0 4 0 0 0 0 4 0 0 0 0 0 2 0 1 4 0 0 3 0 0 0 . .

A  . . 0 2 1 1 0 1 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 2 3 0 0 1 1 . .
C  . . 3 0 1 1 4 0 0 4 4 0 0 0 0 4 4 0 0 4 0 0 0 0 1 1 0 3 2 . .
G  . . 1 1 2 0 0 0 4 0 0 4 4 0 0 0 0 4 4 0 0 0 3 2 0 0 1 0 1 . .
T  . . 0 1 0 2 0 3 0 0 0 0 0 4 0 0 0 0 0 0 4 4 0 0 0 3 3 0 0 . .

YGL125W

YOR108W

YMR108W

Result of profile comparison

S. cerevisiae GAAAAAATAACAGCGACTTTTCTCCCGGTAGCGGGCCGTCGTTTAGTCATTCTATCCCTC
S. mikatae   AAAACATAACAGCGAATTTTCCTCCCGGTAGCGGGCCTTCGTTTAGTCATTCTCTCTCTT
S. bayanus   AAAAAATAACAGCGACTTTTCCCCCCGGTAGCGGGCCGTCGTTTAGTCATTCTCTCTCCC
S. kudriavzevii GAAAAAAAACAACGGCGGCCTCCCCCGGTAGCGGGCCGTCGTTTAGTCATTCTCTCTCTC

***** **** **   *** * *************************************

YGL125W LEU3

S. cerevisiae GCCATCATGGTCCGGTAACGGTCGTAGTGAATGACTCATATTTTTCCATCTCTTT
S. mikatae      GCCATCAAGGTCCGGTAACGGTCGTAGTGAATGACTCACATTTTCTTCGTTATTC
S. bayanus   ACCATTACGGTCCGGTAACGGACTTAGTGAATGATTCATCTTTTCTTCTTTTTTC
S. kudriavzevii GTCGTTAAGGTCCGGTAACGGCCCTCAGCGAATGATTCATAATTTCATTTTTTTC

***** * ************* * ********** ***  ****    *** ***

YOR108W

S. cerevisiae AACGCCTAGCCGCCGGAGCCTGCCGGTACCGGCTTGGCTTCAGTTGCTGATCTCGG
S. mikatae      CACAATGACACATACCTAACAGCCGGTACCGGCTTGAATGCCGCCGTTGGCTTCGG
S. bayanus ATCTTCTAGTCACCGCAGTCTGCCGGTACCGGCTTGAATTCCGCCGTTGATCCTGG
S. kudriavzevii CACATCTCTAGTCCGCGCTCTGCCGGTACCGGCTTAGACTAGCCACGAATCTCGGC

**  ***  * ****   *****************  *** ** * **     **

YMR108W

LEU3

LEU3

Fig. 1. How PhyloCon works. (A) A diagram of how PhyloCon organizes and processes data. Sequences are grouped based on orthology.
Many initial profiles are generated for conserved regions. Comparison of profiles from different orthologous groups reveals common motifs.
(B) Alignments of orthologous sequences of four yeast species show high conservation in the 5′UTR of three genes. Asterisks indicate
positions where at least three out of four letters are identical. Conservation extends beyond the true motifs (LEU3), making it difficult to
identify the motif by simply examining the phylogenetic relationship. However, the motif emerges after comparing profiles from different
orthologous groups.
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CONSERVED BINDING TRANSCRIPTION 
FACTORS BINDING SITES 

CO-REGULATED VS CO-
EXPRESS



GIBBS IS A SPECIAL 
CASE OF MH

★ In Gibbs we sample from the full conditional 

★ View Gibbs as MH and the full conditional as 
proposal 

★ This means that we always accept. Is that correct?

GIBBS IS A SPECIAL 
CASE OF MH

★ Proposal, pick an index i and then 

★ Acceptance (according to MH) x and x’ are neighbours so x-i=x’-i

q(x�|x) = p(x�i|x�i)I(x��i = x�i)

� =
p(x�)q(x|x�)
p(x)q(x�|x)

=
p(x�i|x��i)p(x��i)p(xi|x��i)
p(xi|x�i)p(x�i)p(x�i|x�i)

=
p(x�i|x�i)p(x�i)p(xi|x�i)
p(xi|x�i)p(x�i)p(x�i|x�i)

= 1

GIBBS SAMPLING
★ Pick initial state x1=(x1,1,…,x1,K) 

★ For s=1 to S 

• Sample k~u [K]  

• Sample xs+1,k ~ p(xs+1,k| xs,-k) 

• Let xs+1 = (xs,1,…,x1,k-1, xs+1,k,…, xs,K) 

• If k|s record xs+1 (thinning)
GIBBS SAMPLER FOR 
GMM

Notation

Hyperparameters 

Model

D = (x1, . . . , xN ), H = (z1, . . . , zN ), Nk =
�

n

I(zi = k)

� = (�1, . . . ,�k), µ = (µi, . . . , µk), � = (�i, . . . ,�k), and �k = 1/�2
k

�0 = (µ0,�0,�0,�0,�)

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)



A STATE

(H,�,µ,�)

LIKELIHOOD FOR GMM

Hyperparameters

Model

Likelihood

�0 = (µ0,�0,�0,�0,�)

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)

p(D,H, �,µ,�) =p(D,H|�,µ,�)p(�)p(µ,�)

=
�

n,k

[�kN(xn|µk,�k)]I(zn=k)Dir(�|�)

�

k

N(µk|µ0,�0)Ga(�k|�0,�0)

FULL CONDITIONAL  
ON H

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)

(H,�,µ,�)

p(zn|D,H�n,�,µ,�)

FULL CONDITIONAL  
ON H

� � Dir(�), µk � N(µ0,�0), �k � Ga(�0,�0), zi � Cat(�), and
p(xn|Zn = k) = N(µk,�k)

(H,�,µ,�)

p(zn = k|D, H�n,⇡,µ,�) / p(zn = k|⇡)N(xn;µk,�k)



FULL CONDITIONAL  
ON Π

• Categorial with Dirichlet prior has Dirichlet posterior

p(�|D,H, µ,�) = p(�|H) = Dir(�1 + N1, . . . ,�K + NK)

FULL CONDITIONAL ON 
THE PRECISION

• So posterior 

p(�k|D,H, �,µ,��k) � Ga(�k|�0,�0)
�

n:zn=k

�kN(xn|µk,�k)

� ��0�1
k e��k�0�Nk/2

k e
�k
2

P
n:zn=k(xn�µk)2

= ��0+Nk/2�1
k e�k(�0+ 1

2
P

n:zn=k(xn�µk)2)

Ga(�0 + Nk/2,�0 +
1
2

�

n:zn=k

(xn � µk)2)

-
-

GAUSSIAN 

• Easy “trick” when 
working with 
Gaussians

★ If  

• g(x) is a p.d.f.  

• g(x) ∝ exp(-ax2/2+bx+c) 

★ then 

• g is Gaussian 

• λ = a and μ = b/a

GAUSSIAN IS SELF 
CONJUGATE

★ D´={x´1,…,x´N´} 
★ p(x´i) = N(x´i | μ ´,λ ´ ) 

where 
• λ´  is given 
• p(μ´) is N(μ´ | μ0,λ0) 

p(µ�|D�,��, µ0,�0) =N(µ�|µ0,�0)
N ��

n�=1

N(x�n� |µ�,��)

�
�

�0e
��0

2 (µ��µ0)
2
(��)N �/2e�

��
2

P
n� (x

�
n��µ�)2



GAUSSIAN IS SELF 
CONJUGATE

The log is

Let M � =
�

n�

xn��
�

�0e
��0

2 (µ��µ0)
2
(��)N �/2e�

��
2

P
n� (x

�
n��µ�)2
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GAUSSIAN IS SELF 
CONJUGATE

★ If 
• D´={x´1,…,x´N´} 
• p(x´i) = N(x´i | μ´,λ´) where 

✴ λ´  is given 
✴ N(μ´ | μ0,λ0) 

★ then 
• p(μ´ | D´,λ´,μ0,λ0) = N(μ´ | μ, λ) 

where  
• λ = λ0 + λ´N´ 

• μ  = (λ0μ0 + λ´M´)/λ

The log is
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FULL CONDITIONAL ON 
MEAN

p(µk|D,H, �,µ�k,�) � N(µk|µ0,�0)
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RECALL AND APPLY

´

and got N(μ´ | μ, λ) where λ = λ0 + λ´N´  &   μ  = (λ´μ0 + λ´M´)/λ

We had

and get N(μk | μ,λ) where λ = λ0 + λ Nk  &   μ = (λμ0 + λMk)/λ

We now have
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THE END


