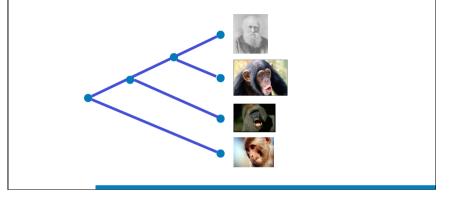
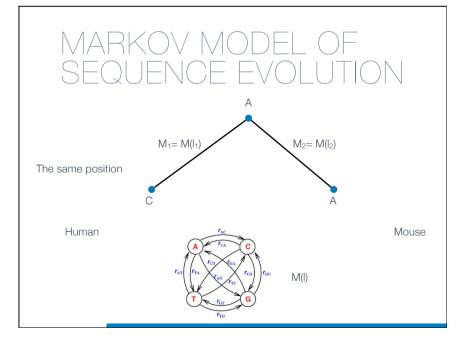
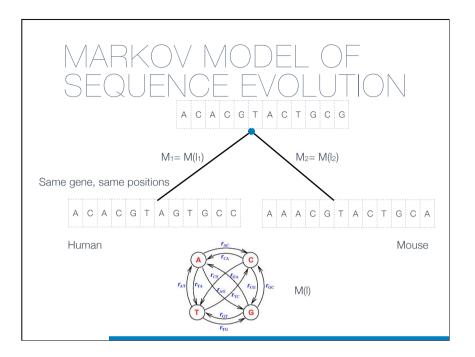


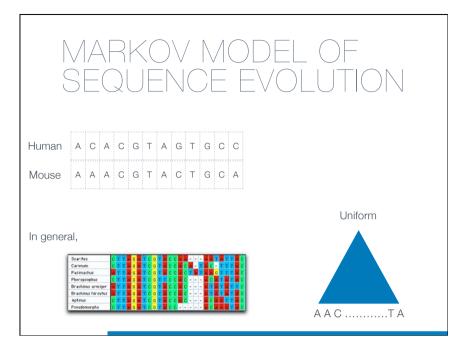
PHYLOGENY

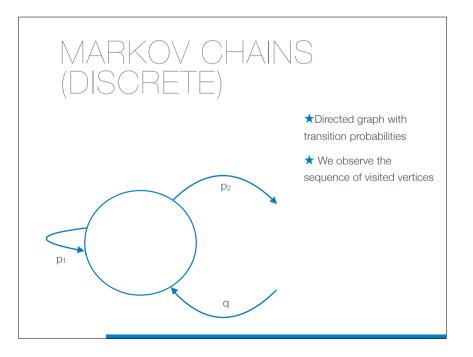
Input: species Output: tree where proximity correlates with similarity

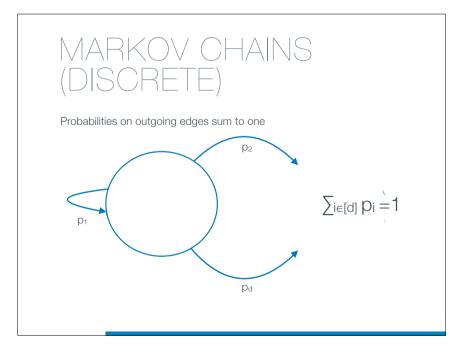


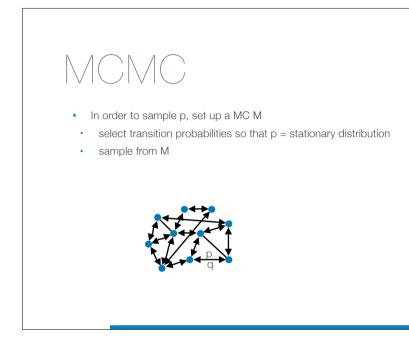


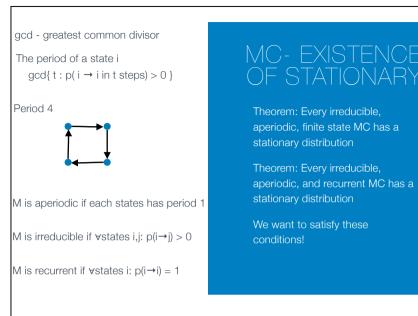












gcd - greatest common divisor The period of a state i gcd{ t : p(i → i in t steps) > 0 } Period 1

M is aperiodic if each states has period 1 M is irreducible if ∀states i,j: p(i→j) > 0

M is recurrent if \forall states i: $p(i \rightarrow i) = 1$

1C- EXISTENCE)F STATIONARY

Theorem: Every irreducible, aperiodic, finite state MC has a stationary distribution

Theorem: Every irreducible, aperiodic, and recurrent MC has a stationary distribution

We want to satisfy these conditions!

METROPOLIS HASTINGS (MH)

We want to compute $p^{*}(x)$ (typically How?

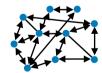
Implicitly construct Markov Chain M with stationary distribution p*(x)

Traverse it and sample every k:th visit

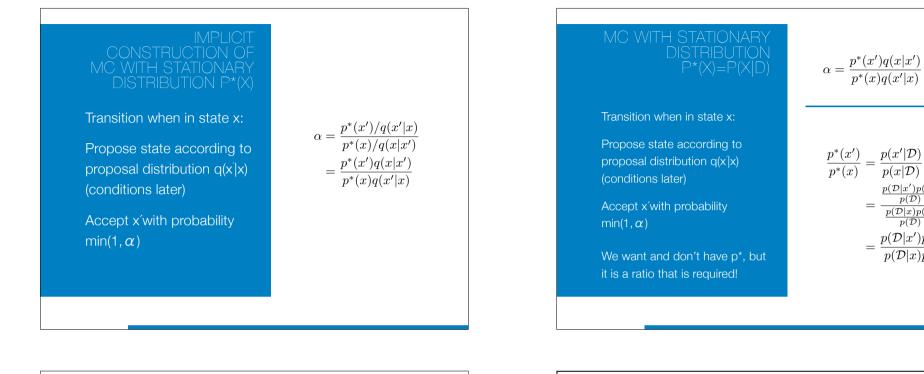
Use good or random starting point

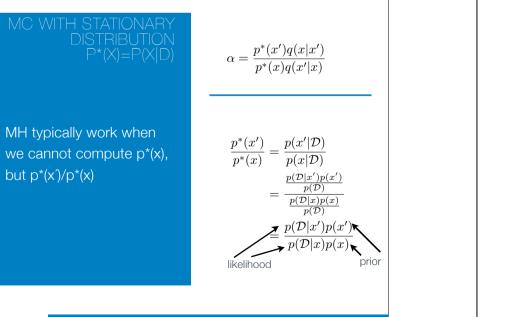
Discard the first I:th samples

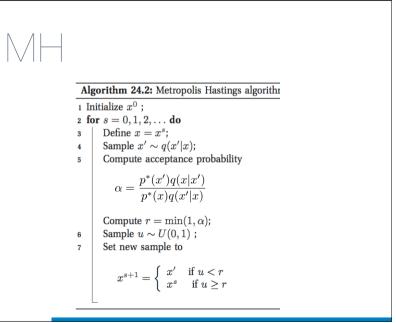
The remaining samples x_1, \ldots, x_S is an approximation of $p^*(x)$



 $p^*(x)\approx [\;\sum_i I(x{=}x_i)\;]/S$







 $\frac{p(\mathcal{D}|x')p(x')}{p(\mathcal{D})}$

 $\frac{p(\mathcal{D}|x)p(x)}{p(\mathcal{D})}$

 $= \frac{p(\mathcal{D}|x')p(x')}{p(\mathcal{D}|x)p(x)}$

= -

DETAILED BALANCE EQUATIONS

- * A transition matrix, i.e., $A_{ij} = p(i \rightarrow j \text{ in 1 step})$
- ★ A regular if ∀k,l ∃n s/t (A_{k,l})ⁿ>0
- * Detailed balance equations $\forall k, l \ \pi_k A_{kl} = \pi_l A_{lk}$
- * Theorem: If MC M with regular transition matrix A that satisfies detailed balance wrt π , then π the stationary distribution of M.
- * Proof: Note that
 - $\pi_{l}^{t+1} = \sum_{k} \pi_{k}^{t} A_{kl} = \sum_{k} \pi_{l}^{t} A_{lk} = \pi_{l}^{t} \sum_{k} A_{lk} = \pi_{l}^{t}$

WHY MH WORKS

p*(x) the distribution we want to estimate

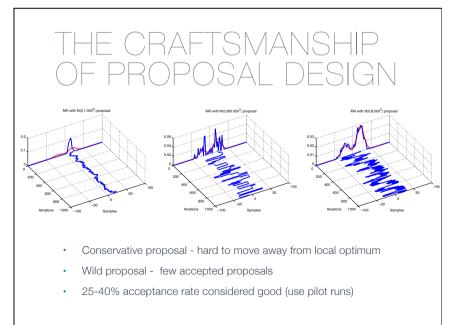
 α (x'|x)=(p*(x)q(x|x))/(p*(x)q(x'|x))

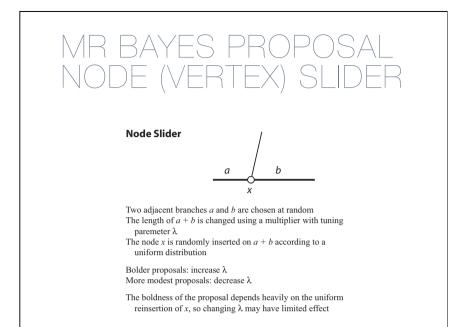
- Let $r(x'|x) = min(1, \alpha(x'|x))$
- The transition probability for $x' \neq x$ (x x' = x easy) p(x'|x) = q(x'|x) r(x'|x)
- Assume $p^{*}(x)q(x'|x) \ge p^{*}(x)q(x|x)$, so $r(x'|x) = \alpha (x'|x)$ and r(x|x)=1

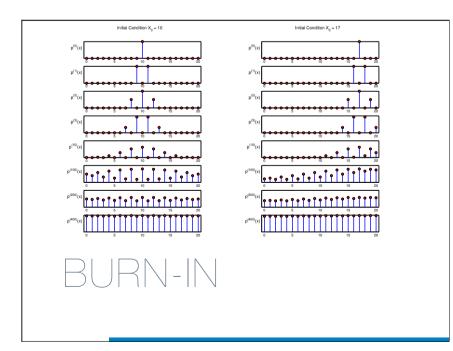
- We want $p^*(x)p(x'|x) = p^*(x')p(x|x')$
- $$\begin{split} p^{*}(x)p(x'|x) &= p^{*}(x) \; q(x'|x)r(x'|x) \\ &= p^{*}(x)q(x'|x) \; (p^{*}(x)q(x|x))/(p^{*}(x)q(x'|x)) \\ &= p^{*}(x)q(x|x) \end{split}$$
- $= p^{*}(x)q(x|x)r(x|x)$
- $= p^{*}(x)p(x|x)$

- Efficiency of proposal distribution
- Burn-in
- Convergence

PRACTICAL CONSIDERATIONS

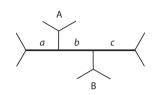






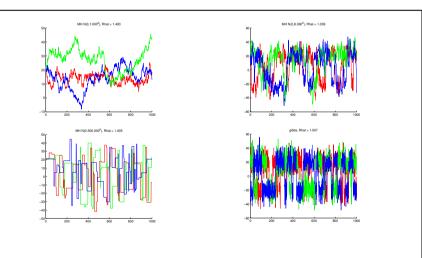
MR BAYES PROPOSAL LOCAL TREE OPERATION

LOCAL



Three internal branches - *a*, *b*, and *c* - are chosen at random. Their total length is changed using a multiplier with tuning paremeter λ . One of the subtrees A or B is picked at random. It is randomly reinserted on *a* + *b* + *c* according to a uniform distribution

Bolder proposals: increase λ More modest proposals: decrease λ Changing λ has little effect on the boldness of the proposal



CONVERGENCE DIAGNOSTICS - MULTIPLE CHAINS

GIBBS SAMPLER

- * A way to define transition probabilities
- * We seek $p(x_1,...,x_K)$
- ★ States are vectors (x₁,...,x_K)
- * Transitions possible only between states differing in one position
- * t(((x₁,...,x_{i-1},x'_i,x_{i+1},...,x_K) |x) = p(x'_i| x_{-i},D) (from now D implicit)
- where $x_{-i}=(x_1,...,x_{i-1},x_{i+1},...,x_K)$
- Called full conditional

MOTIVATION

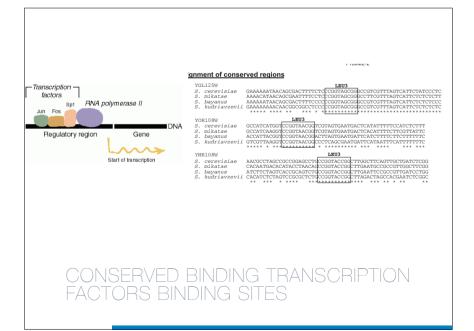
Problem 4 (4p):

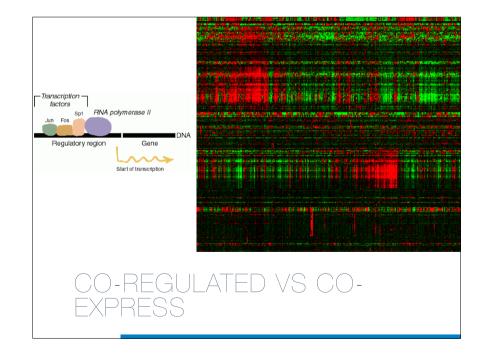
The following generative model generates K sequences of length N: $s_1,...,s_K$ where $s_i = s_{i,1},...,s_{i,N}$. All sequences are over the alphabet [M]. Each of these sequences has a "magic" word of length w hidden in it and the rest of the sequence is called background.

First, for each i, a start position r_i for the magic word is sampled uniformly from [N-w+1]. Then the j:th positions in the magic words are sampled from $q_i(x)$, which is $Cat(x|\theta_i)$ where θ_i has a $Dir(\theta_i|\alpha)$ prior. All other positions in the sequences are

sampled from the background distribution q(x), which is Cat(x|0) where 0 has a $\text{Dir}(0|\,\alpha\,)$ prior.

Describe a Gibbs sampler that can be used for estimating the posterior over start positions after having observed $s_1,...,s_K$. Make the sampler as collapsed as possible. You do know α and α '.





GIBBS IS A SPECIAL CASE OF MH

- * In Gibbs we sample from the full conditional
- View Gibbs as MH and the full conditional as proposal
- * This means that we always accept. Is that correct?

GIBBS IS A SPECIAL CASE OF MH

- * Proposal, pick an index i and then
 - $q(x'|x) = p(x'_i|x_{-i})I(x'_{-i} = x_{-i})$
- * Acceptance (according to MH) x and x' are neighbours so $x_{-i}=x'_{-i}$

$$\begin{aligned} \alpha &= \frac{p(x')q(x|x')}{p(x)q(x'|x)} \\ &= \frac{p(x'_i|x'_{-i})p(x'_{-i})p(x_i|x'_{-i})}{p(x_i|x_{-i})p(x_{-i})p(x'_i|x_{-i})} \\ &= \frac{p(x'_i|x_{-i})p(x_{-i})p(x_i|x_{-i})}{p(x_i|x_{-i})p(x_{-i})p(x'_i|x_{-i})} = 1 \end{aligned}$$

GIBBS SAMPLING

- * Pick initial state $x_1 = (x_{1,1}, \dots, x_{1,K})$
- ★ For s=1 to S
- Sample k~u [K]
- * Sample $x_{s+1,k} \sim p(x_{s+1,k}|x_{s,-k})$
- Let $x_{s+1} = (x_{s,1}, \dots, x_{1,k-1}, x_{s+1,k}, \dots, x_{s,K})$
- If k|s record x_{s+1} (thinning)

Notation $\mathcal{D} = (x_1, \dots, x_N), \quad H = (z_1, \dots, z_N), \quad N_k = \sum_n I(z_i = k)$ $\boldsymbol{\pi} = (\pi_1, \dots, \pi_k), \quad \boldsymbol{\mu} = (\mu_i, \dots, \mu_k), \quad \boldsymbol{\lambda} = (\lambda_i, \dots, \lambda_k), \text{ and } \quad \lambda_k = 1/\sigma_k^2$

Hyperparameters $\boldsymbol{ heta}_0=(\mu_0,\lambda_0,\lambda_0,\beta_0,lpha)$

Model $\boldsymbol{\pi} \sim \text{Dir}(\boldsymbol{\alpha}), \ \mu_k \sim N(\mu_0, \lambda_0), \ \lambda_k \sim \text{Ga}(\alpha_0, \beta_0), \ z_i \sim \text{Cat}(\boldsymbol{\pi}), \text{ and}$ $p(x_n | Z_n = k) = N(\mu_k, \lambda_k)$

GIBBS SAMPLER FOR GMM

A STATE (H, π, μ, λ)

Hyperparameters
$$\boldsymbol{\theta}_{0} = (\mu_{0}, \lambda_{0}, \lambda_{0}, \beta_{0}, \alpha)$$

Model
 $\boldsymbol{\pi} \sim \text{Dir}(\boldsymbol{\alpha}), \ \mu_{k} \sim N(\mu_{0}, \lambda_{0}), \ \lambda_{k} \sim \text{Ga}(\alpha_{0}, \beta_{0}), \ z_{i} \sim \text{Cat}(\boldsymbol{\pi}), \text{ and}$
 $p(x_{n}|Z_{n} = k) = N(\mu_{k}, \lambda_{k})$
Likelihood
 $p(D, H, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda}) = p(D, H|\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda})p(\boldsymbol{\pi})p(\boldsymbol{\mu}, \boldsymbol{\lambda})$
 $= \prod_{n,k} [\pi_{k}N(x_{n}|\mu_{k}, \lambda_{k})]^{I(x_{n}=k)}\text{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha})$
 $\prod_{k} N(\mu_{k}|\mu_{0}, \lambda_{0})\text{Ga}(\lambda_{k}|\alpha_{0}, \beta_{0})$
 $\square K \in \square O \in O \in O M$

 $(H, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda})$

 $\boldsymbol{\pi} \sim \operatorname{Dir}(\boldsymbol{\alpha}), \ \mu_k \sim N(\mu_0, \lambda_0), \ \lambda_k \sim \operatorname{Ga}(\alpha_0, \beta_0), \ z_i \sim \operatorname{Cat}(\boldsymbol{\pi}), \text{ and} p(x_n | Z_n = k) = N(\mu_k, \lambda_k)$

 $p(z_n | \mathcal{D}, H_{-n}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda})$

FULL CONDITIONAL ON H

 $(H, oldsymbol{\pi}, oldsymbol{\mu}, oldsymbol{\lambda})$

 $\boldsymbol{\pi} \sim \operatorname{Dir}(\boldsymbol{\alpha}), \ \mu_k \sim N(\mu_0, \lambda_0), \ \lambda_k \sim \operatorname{Ga}(\alpha_0, \beta_0), \ z_i \sim \operatorname{Cat}(\boldsymbol{\pi}), \text{ and} p(x_n | Z_n = k) = N(\mu_k, \lambda_k)$

 $p(z_n = k | \mathcal{D}, H_{-n}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda}) \propto p(z_n = k | \boldsymbol{\pi}) N(x_n; \mu_k, \lambda_k)$

FULL CONDITIONAL ON H

FULL CONDITIONAL ON Π

 $p(\boldsymbol{\pi}|D, H, \boldsymbol{\mu}, \boldsymbol{\lambda}) = p(\boldsymbol{\pi}|H) = \text{Dir}(\alpha_1 + N_1, \dots, \alpha_K + N_K)$

Categorial with Dirichlet prior has Dirichlet posterior

FULL CONDITIONAL ON THE PRECISION

 $p(\lambda_k|D, H, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\lambda}_{-k}) \propto \operatorname{Ga}(\lambda_k | \alpha_0, \beta_0) \prod_{\substack{n:z_n = k}} \pi_k N(x_n | \mu_k, \lambda_k)$ $\propto \lambda_k^{\alpha_0 - 1} e^{-\lambda_k \beta_0} \lambda_k^{N_k / 2} e^{\frac{-\lambda_k}{2}} \sum_{\substack{n:z_n = k}} (x_n - \mu_k)^2$ $= \lambda_k^{\alpha_0 + N_k / 2 - 1} e^{\lambda_k (\beta_0 + \frac{1}{2} \sum_{n:z_n = k} (x_n - \mu_k)^2)}$

So posterior

$$Ga(\alpha_0 + N_k/2, \beta_0 + \frac{1}{2} \sum_{n:z_n=k} (x_n - \mu_k)^2$$

\star lf

- g(x) is a p.d.f.
- $g(x) \propto \exp(-ax^2/2+bx+c)$

\star then

- g is Gaussian
- $\lambda = a$ and $\mu = b/a$

GAUSSIAN

 Easy "trick" when working with Gaussians

GAUSSIAN IS SELF CONJUGATE

 $p(\mu'|D',\lambda',\mu_0,\lambda_0) = N(\mu'|\mu_0,\lambda_0) \prod_{n'=1}^{N'} N(x'_{n'}|\mu',\lambda')$ $\propto \sqrt{\lambda_0} e^{-\frac{\lambda_0}{2}(\mu'-\mu_0)^2} (\lambda')^{N'/2} e^{-\frac{\lambda'}{2}\sum_{n'}(x'_{n'}-\mu')^2}$

- * $D' = \{x'_1, ..., x'_N'\}$
- $\star \quad p(x_{i}^{'}) = N(x_{i}^{'} \mid \mu^{'},\lambda^{'})$
 - where
 - λ' is given
 - p(μ´) is N(μ´ | μ₀,λ₀)

$\begin{array}{l} \begin{array}{l} \mbox{GAUSSIAN IS SELF} \\ \mbox{CONJUGATE} \end{array} \\ \mbox{The log is} \\ \mbox{$\alpha - \frac{1}{2}(\lambda_0 + \lambda' N')\mu'^2 + (\lambda_0\mu_0 + \lambda' M')\mu'$} \\ \mbox{where} \\ \mbox{$M' = \sum_{n'} x_{n'}$} \\ \mbox{$*$ If$} \\ \mbox{$*$ D'=\{x'_1,\ldots,x'_N\}$} \\ \mbox{$$$ p(x') = N(x'_1 \mid \mu',\lambda)$ where} \\ \mbox{$$$$ \lambda'$ is given$} \\ \mbox{$$$$ \lambda'$ is given$} \\ \mbox{$$$$$ N(\mu' \mid \mu_0,\lambda_0)$} \end{array} \\ \begin{array}{l} \mbox{$$$$$ x = \lambda_0 + \lambda'N'$} \\ \mbox{$$$$$$$$$$ \mu = (\lambda_0\mu_0 + \lambda'M)/\lambda$} \end{array} \end{array}$

