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MARKOV MODEL OF
SEQUENGCE EVOLUTION

ACACGTACTZ CCECGC

Mi= M(l1) Ma= M(l2)

Same gene, same positions
A/CACGTACGTC CCC A/AACCTACTC CCA

Human fac Mouse

MARKOV MODEL OF
SEQUENCE EVOLUTION

Human A C A C G T AIG T G Ci!C

Mouse A A A CCT ACTCGCCA

Uniform

In general,

MARKOVY CHAINS
(DISCRETE)

% Directed graph with
transition probabilities

* We observe the

sequence of visited vertices
p2

P

MARKOVY CHAINS
([DISCRETE)

Probabilities on outgoing edges sum to one

P2
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MCOMC

= In order to sample p, set up a MC M
select transition probabilities so that p = stationary distribution

sample from M

gcd - greatest common divisor

The period of a state i MC’ E><|STENCE
OF STATIONARY

ged{t:p(i—iintsteps)>0}

Period 4 Theorem: Every irreducible,
aperiodic, finite state MC has a
stationary distribution

Theorem: Every irreducible,
aperiodic, and recurrent MC has a

M is aperiodic if each states has period 1 stationary distribution

We want to satisfy these
M is irreducible if vstates i,j: p(i—j) > 0 conditions!

M is recurrent if vstates i: p(i—i) = 1

gcd - greatest common divisor

The period of a state i MC‘ EX‘STENGE
gcd{t: p(i—iintsteps)>0} OF STAT’ONARY

Period 1 Theorem: Every irreducible,
aperiodic, finite state MC has a
stationary distribution

Theorem: Every irreducible,
aperiodic, and recurrent MC has a

M is aperiodic if each states has period 1 stationary distribution

We want to satisfy these
M is irreducible if vstates i,j: p(i—j) > 0 conditions!

M is recurrent if vstates i: p(i—i) = 1

METROPOLIS
HASTINGS (MH)

We want to compute p*(x) (typically
p(x|D)

Implicitly construct Markov Chain M

with stationary distribution p*(x)

Traverse it and sample every k:th visit
Use good or random starting point p*(X) = [ Yil(x=x) 1/S
Discard the first l:th samples

The remaining samples Xi,...,Xs is an
approximation of p*(x)




Transition when in state x:

Propose state according to
proposal distribution g(x|x)
(conditions later)

Accept x'with probability
min(1, a)

_ p'(@)/q@|z)
p*(z)/q(z|2’)

_ p*(@')q(z]z)
p*(x)q(2'|x)

_ p(@)a(ale)
P @)a(@'[z)

Transition when in state x:

Propose state according to
p*(z") _ p(@'|D)

p*(z) — p(x|D)

proposal distribution g(x|x)
(conditions later)

p(Dlz")p(z’)
Accept x'with probability = #@m
min(1, a) p(D)
_ p(Dl2")p(z")
We want and don’t have p*, but ~ p(Dlz)p(z)

it is a ratio that is required!

MH typically work when
we cannot compute p*(x),
but p*(x)/p*(x)

o _ Pl

p*(@)q(@'|z)

p*(«) _ p('|D)
p*(x)  p(z[D)

p(Dlz")p(z")
_ p(D)
~ p(Dlz)p(x)
p(D)
: p(Du')p(x/)\
//',pwmp(x)\
likelinood prior

M

Algorithm 24.2: Metropolis Hastings algoritht
1 Initialize z° ;

2 for s=0,1,2,... do

3 Define z = z°;

4 | Sample 2’ ~ g(z'|z);

5 Compute acceptance probability

_ P (@)e(ala)
p*(z)q(2'|z)

Compute 7 = min(1, @);

6 | Sample u~U(0,1);

7 Set new sample to

2o+ — ' fu<r
z¢ ifu>r




DETAILED BALANCE
EQUAW@NS

Atransition matrix, i.e., Aj = p(i—jin 1 step)
* A regular if vk, an s/t (Ax)">0
* Detailed balance equations vk, 1Ak = AK

*  Theorem: If MC M with regular transition matrix A that
satisfies detailed balance wrt 1, then 1 the stationary
distribution of M.

*  Proof: Note that

1=k A = Yk T AK = 11 Dk Ak = i

WHY M
WORKS

p*(x) the distribution we want to We want p*(x)p(x’|x) = p*(x")p(x|x)
estimate
o (<= ()0 (" X ) P(IPX) = P Gl rx'b)

=p ( (X'1x) (p*(x)at X))/ (p*(x)a(x X))
Let r(x|x) = min(1, a (xx)) = p*(x)g(x/x)

= p*X)aXX)r(x|x)
The transition probability for x=x (x = p*(X)p(x|x)

= x easy) p(X|x) = q(x'|x) r(x’|x)

Assume p*(X)a(x]x) = p*(x)ax|x),
SO r(x|x)= x|x ) and r( x|><):1

+ Efficiency of proposal distribution

« Burn-in

« Convergence

PRACTICAL
CONGSIDERATIONS

THE CRAFTSMANSHIP
OF PROPOSAL DESIGN

+ Conservative proposal - hard to move away from local optimum

+ Wild proposal - few accepted proposals

+ 25-40% acceptance rate considered good (use pilot runs)




MR BAYES PROPOSAL
NODE (VERTEX) SLIDER

Node Slider

"%

X

Two adjacent branches a and b are chosen at random

The length of a + b is changed using a multiplier with tuning
paremeter A

The node x is randomly inserted on @ + b according to a
uniform distribution

Bolder proposals: increase A
More modest proposals: decrease A

The boldness of the proposal depends heavily on the uniform
reinsertion of x, so changing A may have limited effect

MR BAYES PROPOSAL
L OCAL TREE OPERATION

LOCAL

\ ;\\r//; < /
/ //J\\\ \

B

Three internal branches - a, b, and ¢ - are chosen at random.

Their total length is changed using a multiplier with tuning
paremeter A.

One of the subtrees A or B is picked at random.

It is randomly reinserted on @ + b + ¢ according to a uni-
form distribution

Bolder proposals: increase A
More modest proposals: decrease A
Changing A has little effect on the boldness of the proposal
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- MULTIPLE CHAINS




GIBBS SAMPLER MO TIVATION

* A way to define transition probabilities Problem 4 (4p): '
The following generative model generates K sequences of length N: s4,...,sx where

si = Si1,...,SiN. All sequences are over the alphabet [M]. Each of these sequences
has a “magic” word of length w hidden in it and the rest of the sequence is called
background.

*  We seek p(xi,...,XK)

*  States are vectors (x1,...,Xk)
First, for each i, a start position r; for the magic word is sampled uniformly from [N-
*  Transitions possible only between states differing in one position w+1]. Then the j:th positions in the magic words are sampled from qj(x), which is
Cat(x|6) where 8; has a Dir(8] ) prior. All other positions in the sequences are

sampled from the background distribution q(x), which is Cat(x|6) where 6 has a
Dir(8| ") prior.

* (XA, X0, XX, XK) [X) = pX| x.D) (from now D implicit)

© where xi=(X1,...,Xi-1,Xis1,...,XK)

» Describe a Gibbs sampler that can be used for estimating the posterior over start
* Called full conditional positions after having observed si,...,sx. Make the sampler as collapsed as
possible. You do know @ and a °.

gnment of conserved regions

- YGL125W LEU3 ipti
[ Transeription 5 eorevisias G ACOACTTTIC IO TE O TR CCOTCOT I TAGTCATTCTATCCCTC [ Transeription

factors 3 PAAHCATAACAGCCAATTTTCC cEcacTacced SCCTTCOTTTAGTCATICTCTCTCTT factors

S nus AAAAAATAACAGCGACTTTT SGTAC GTCGTTTAGTCATTCTCTCT
spt _ANA polymerase Il S. kudriavzevii GAAAAAAAACAACGGCGGCCTCCCECGGTAGCGGECCGTCGTTTAGTCATTCTCTCTCT sp1_ANA polymerase Il
Jun  Fos ~ KRR RRAA RA AR R HEARRRAREERRAAKARKAREARRAA AR AR R Jun  Fos .
— ONA . GCCATCATGGCCGATAACGQTCGTAGTGAATGACTCATATTTTTCCATCTCTTT — DNA
- . 2 GCCATCAAGGT| GTCGTAGTGAATG: C

Regulatory region Gene s. ‘Siymﬁi AccaTT, T T Regulatory region Gene
s kudriavzevii GTCGTTAAGGY CCTCAGOGAATOATTCATAAT T FCATTTTTTIC
YMR108W LEU3

Start of transcription i AACGCCTAGCCG CGGTACCGACTTGGCTICAGTIGOTGATCTCEG Start of transcription

CACAATGACH CATACCTAACAGCCGGTACCG GCTTG? HATCCCGCCGTI"‘GCTTCGG
TCTTCTAGTCACCGCAGTCTGCCGETACC A e GATCCTGG
S. kudriavzevii CACHTCTCTAGTCCGCGCTCT ‘CGCTACCGO TI‘AGACTACCCACGAATCTCGCC

ON CQPEGULATED VS CO-
EXPRESS




GIBBS 1S5 A SPECIAL
CASE OF MH

*  In Gibbs we sample from the full conditional

* View Gibbs as MH and the full conditional as

proposal

*  This means that we always accept. Is that correct?

GIBBS 1S A SPECIAL
CASE OF M

*  Proposal, pick an index i and then
q(@'|z) = plaila—i)I(a’; = x_;)
*  Acceptance (according to MH) x and x” are neighbours so X-i=x"-i

_ pla)qlal’)

GIBBS SAMPLING

* Pick initial state x1=(x1,1,...,X1K)
* Fors=110S
Sample k~u [K]
Sample Xs+1,k ~ P(Xs+1,k| Xs,-k)
Let Xe+1= (Xs,15.+ ., X1 k-1, X1 Ky vy Xs,K)

If k|s record Xs+1 (thinning)

Notation

D=(z1,....,2y), H={(21,...,2x), Npx=Y I(z=k)
= (71, ), = (i i)y A= Ni,..., M), and A\ = 1/03
Hyperparameters 8y = (o, Ao, Ao, Bo, @)

Model
7 ~ Dir(a), pr ~ N(to,Xo), Ax ~ Galag, ), z ~ Cat(w), and
p(xn|Zn = k) = N(pr, Ar)

GIBBS SAMPLER FOR
GMM




A STATE

(H,m, pm,\)

Hyperparameters 8y = (o, Ao, Ao, Bo, @)

Model

m ~ Dir(e), pr ~ N(po,Ao), Ax ~ Galao, Bo), 2 ~ Cat(m), and
P(Tn|Zn = k) = N (g, \x)

Likelihood

p(D,H, 7, u, \) =p(D, H|m, pt, \)p(m)p(p, X)

= H[ﬂ'kN(man, /\k)]I(Z"zk)Dir(ﬂa)
n,k

TT N (k| 0, Xo) Ga(Ae|exo, Bo)
k

L IKELIHOOD FOR GMM

(H7 ™, W, A)

7 ~ Dir(ex), pr ~ N(uo, o), Ax ~ Ga(ag,Bo), zi ~ Cat(m), and
P(Tn|Zn = k) = N (g, Ax)

P(zn|D, Ho 70, o, X)

—ULL CONDITIONAL
ON F

(H,m, p, A

7 ~ Dir(a), pr ~ N(uo, o), Ax ~ Ga(ao,Bo), zi ~ Cat(m), and
p(@n|Zn = k) = N(pk, Ak

p(zn = k|D, H—nvﬂ'>ll'7}‘) X p(zn = k|7T)N(xn§,uk7>\k)

~ULL CONDITIONAL
ON F




—ULL CONDITIONAL
ON T

p(w|D, H, p, \) = p(mw|H) = Dir(a; + N1, ...,k + Nk)

+  Categorial with Dirichlet prior has Dirichlet posterior

-ULL CONDITIONAL ON
THE PRECISION

p(Aﬁ‘D' H7 ™, W, A*A’) X Ga’()\k‘a‘()w /jO) H 7T/\7N(11?‘n‘,u‘lw Ale’,)

n:zn=~k

. = o =2V %
5 )\20—16*/\1\-/‘30 /\l{\k/ze%‘ D onem ek (Tn— k)

_ )\zlo+]\“‘vk/2fléx\k(‘ﬁu-l-% Zm:”:;‘.(fﬂn _,Uk)z,)

+  So posterior

Galoo + Ne/2,fo+ 5 3 (o — me)?)

n:zn=k

* i GAUSSIAN

e g(x)is ap.d.f.
* g(x) oc exp(-ax?/2+bx+c)

% then + Easy “trick” when

® gis Gaussian working with
Gaussians

® A=aandp=Db/a

GAUSSIAN IS SELF
CONJUGATE

N’
U |D', N i, o) =N (i o, o) [T Nlat i, N)

n’=1

20 (1 — )2 N’ /2 A S~ (gt "2
¢ )\OG 2 (1 —po) (/\I)I\ /He 5 D (T —H

* p(xh) = NXG | uLA)
* D':{le ..... XIN'} where
N\ is given

P(H) is N(u" [ po,Ao)




GAUSSIAN IS SELF
CONJUGATE

v .
. ,,/,m)z()\,)]\r//ze,/\% (@, —p')? Let M" = E ‘l“”.’

n’

The log is

Ao, i % N ; :
?U(;L’Z —2u o + ) — 51 Z(Iﬁ — 2z, 4 mu'?)

n’

1, .
=— 5 (Ao + NN + (Nopo + N M)’ + C
= a constant

GAUSSIAN IS SELF
CONJUGATE

The log is

1 2 \
o —5(/\() + NN 4+ (Nopo + N M)/

* |f * then
D={x,...xn} © P | DN HoAo) = N(“ | 1, A)
p(xi) = N(Xi | u",\) where where
N\ is given © A=ho+ AN
N | po.Ao) U = (hopo+ AM)/A

~ULL CONDITIONAL ON
MEAN

p(pk| D, H, 7, po— g, A) o< N (puge| 20, No) H [T N (Z0 | ooy Ake)]

\2

AN ’
= D ik (Tn—k)

RECALL AND ARPPLY

We had where
N
ocy/Age B o) (NN /2= 5 S (=) M =3 a,
n’=1
and got N(u" | u, A) where A= ho + AN” & 1 = \o+ AM)/A
We now have where
X A /)\Oe_%o(uk—uo)z)\ivkme—%k Sz (@n—pr)? My, = Z Tn
n:zn==k

and get N(uk | u,\) where A = ho + A Nk & = (Ao + AM)/A Ny = Z 1
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