

DD2434 Machine Learning, Advanced Course Lecture 10: Sampled and Ensemble Models

Hedvig Kjellström hedvig@kth.se https://www.kth.se/social/course/DD2434/

Complex functions

Global analytical model or collection of local models

Example: subspace of faces in the entire image state-space

High-dim Non-linear **Singularities**

Representation Learning = model subspace as efficiently as possible

to model globally at all!

Ensemble and Sampled Learning = do not try (Wang, CVIU 2007)

2

Today

Put the 3 methods in a probabilistic context

Boosting (Murphy 16.1-16.4) AdaBoost classification Relations to Random Forests, Neural Networks

Sampling (Murphy 23.1-23.4, 24.1, 24.3.7) Monte Carlo / CDF sampling Importance sampling MCMC sampling

k Nearest Neighbor (Murphy 1.4.2, Everson and Fieldsend 1) Probabilistic classification framework

Particle filtering (Murphy 23.5)

Boosting

Adaptive Basis Function Model

Kernel based methods (Lecture 7):

$$
f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}), \phi(\mathbf{x}) = [\kappa(\mathbf{x}, \mu_1), ..., \kappa(\mathbf{x}, \mu_N)]
$$

Feature based methods (Adaptive Basis Function Models):

$$
f(\mathbf{x}) = w_0 + \sum_{m=1}^{M} w_m \phi_m(\mathbf{x})
$$

Special cases: Random Forests (Bagging) Boosting Feedforward Neural Networks

where $\phi_m(\mathbf{x})$ are learned from data

Adaptive Basis Function Model

HARD!

Boosting

A **greedy** approach:

Define a **weak learner**, e.g., a linear classifier or regressor For each round *m*

> Train the weak learner on the dataset ${\cal D}$, call the trained learner ϕ trained learner ϕ_m

Give the data points that fit with ϕ_m low weight, the data points in conflict with ϕ_m high weight

The final learner is a weighted sum of all weak learners ϕ_m

Convergence guaranteed – with enough iterations, the error will be 0

$$
\left(\begin{matrix} \mathbf{Q} \\ \mathbf{X}^{\mathrm{T}} \mathbf{H} \\ \vdots \\ \mathbf{Q}^{\mathrm{T}} \end{matrix}\right)
$$

Boosting

Boosting approach – use greedy approach, solve for $f(\mathbf{x})$ term by term:

Define $\phi_m(\mathbf{x}) \equiv \phi(\mathbf{x}, \nu_m)$

 $f_0(\mathbf{x})$ is some "good enough" baseline function

Iterate:

\n
$$
(\beta_m, \nu_m) = \arg\min_{\beta, \nu} \sum_{i=1}^{N} L(y_i, f_{m-1}(\mathbf{x}_i) + \beta \phi(\mathbf{x}_i, \nu))
$$
\n
$$
f_m(\mathbf{x}) = f_{m-1}(\mathbf{x}) + \beta_m \phi(\mathbf{x}, \nu_m)
$$

AdaBoost

Popular algorithm for binary classification ($y \in \{-1,+1\}$). Popular algorithm for binary classification ($y \in \{-1, +1\}$ with exponential loss ($L(y, y') = \exp(-yy')$)

Left for report, Task 3.3:

Explain the derivation of Algorithm 16.2 (AdaBoost.M1) from the general boosting algorithm, given the particular labels and loss function.

Implement Algorithm 16.2

AdaBoost Example

AdaBoost Example

AdaBoost

Discuss with your neighbor (5 min): What happens if the weak learners ϕ_m give **close to** random results? What happens if the weak learners ϕ_m give **exactly**

random results?

Sampling

The Monte Carlo Principle

Start off with **discrete** state space *z*

Might want to estimate for example:

 $E[z] = \sum z p(z)$

L

 $\hat{q}(z) = \frac{1}{\tau}$

Imagine that we can **sample** z^{\vee} from the pdf $p(z)$ but that we do not know its functional form $z^{(l)}$ from the pdf $p(z)$

 $p(z)$ can be approximated by a histogram over $z^{(l)}\!\!$:

 $\delta_{z^{(l)}=z}$

 \sum *L*

l=1

15

Monte Carlo Sampling – Inverse Probability Transform

Cumulative distribution function F of distribution f (that we want to sample from)

A uniformly distributed random variable $U \sim U(0, 1)$ will regarded $E^{-1}(U)$ render $F^{-1}(U) \sim F$ **17** [−]¹ [−]0.8 [−]0.6 [−]0.4 [−]0.2 ⁰ 0.2 0.4 0.6 0.8 ¹ ⁰ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 X $f(z)$ does not have to be an analytic function, can also be a histogram like $\hat{q}(z)$!

Importance Sampling

We very often (in particle filters for example) want to approximate integrals of the form

$$
E[f] = \int f(x)p(x)dx
$$

Monte Carlo sampling approach is to draw samples x^s from $p(x)$ and approximating the integral with a sum

$$
E[f] = \int f(x)p(x)dx = \frac{1}{S} \sum_{s=1}^{S} f(x^{s})
$$

Importance Sampling

Importance Sampling

In these cases, a good idea is to introduce $\boldsymbol{proposal}\ q(x)$ to sample from: \mathcal{C}

$$
E[f] = \int f(x) \frac{p(x)}{q(x)} q(x) dx \approx \frac{1}{S} \sum_{s=1}^{S} w_s f(x^s)
$$

where $w_s \equiv \frac{p(x^s)}{q(x^s)}$

Reasons:

 $q(x)$ is smoother / less spiky than $p(x)$ $q(x)$ is of a nicer analytical form than $p(x)$ In general, good to keep $q(x) \propto p(x)$ approximately

Markov Chain Monte Carlo

Standard MC and Importance sampling do not work well in high dimensions

High dimensional space but actual model has lower (VC) dimension => exploit correlation!

Instead of drawing independent samples x^s draw chains of correlated samples – perform random walk in the data where the number of visits to x is proportional to target density $p(x)$

MCMC algorithms: Gibbs Sampling (special case of) Metropolis Hastings Reversible Jump MCMC

l

*k***NN – a Non-Parametric Method**

Well known, not repeated here In Task 3.1 you will implement a binary *k*NN classifier

k **Nearest Neighbor**

PNN – a Probabilistic Interpretation of *k***NN (Everson and Fieldsend Section 1)**

Need to give an ad hoc k value here as well

Probabilistic formulation of *k*NN: $p(y|\mathbf{x}, \mathcal{D})$

Problem in standard *k*NN: *k* unknown, depends on how correlated data points are "how smooth distribution"

Discuss with your neighbor (5 min): What is the ideal *k*? What is the ideal *k*?

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

PNN – a Probabilistic Interpretation of *k***NN (Everson and Fieldsend Section 1)**

Learn *k* from data: Introduce another unknown correlation parameter β , let $\theta = \{k, \beta\}$, integrate out: where $p(y|\mathbf{x}, \mathcal{D}) = \int p(y|\mathbf{x}, \theta, \mathcal{D}) p(\theta|\mathcal{D}) d\theta$ $\lim_{x \to \infty} [g \nabla^k \cdot g/d(x, x))$

$$
p(y|\mathbf{x}, \theta, \mathcal{D}) = \frac{\exp[\beta \sum_{\mathbf{x}_j \sim \mathbf{x}_i}^k u(d(\mathbf{x}_i, \mathbf{x}_j)) \delta_{y_i y_j}]}{\sum_{q=1}^Q \exp[\beta \sum_{\mathbf{x}_j \sim \mathbf{x}_i}^k u(d(\mathbf{x}_i, \mathbf{x}_j)) \delta_{q y_j}]}
$$

Discuss with your neighbor (1 min): How do you (avoid to) solve this integral?

PNN – a Probabilistic Interpretation of *k***NN (Everson and Fieldsend Section 1)**

Reversible Jump MCMC is used to draw samples $\theta^{(t)}$ that approximate $p(\theta|\mathcal{D})$: $p(y|\mathbf{x}, \mathcal{D}) \approx \frac{1}{T}$ *T* X *T t*=1 $p(y|\mathbf{x}, \theta^{(t)}, \mathcal{D})$

from the likelihood of data given parameters

$$
p(\mathcal{D}|\theta) = \prod_{i=1}^{N} \frac{\exp[\beta \sum_{\mathbf{x}_j \sim \mathbf{x}_i}^{k} u(d(\mathbf{x}_i, \mathbf{x}_j)) \delta_{y_i y_j}]}{\sum_{q=1}^{Q} \exp[\beta \sum_{\mathbf{x}_j \sim \mathbf{x}_i}^{k} u(d(\mathbf{x}_i, \mathbf{x}_j)) \delta_{q y_j}]}
$$

26

Particle Filtering

25

Particle Filtering

Task: Estimate density $p(\mathbf{z}_t|\mathbf{y}_{1:t})$ over state \mathbf{z}_t given a convenience of observations \mathbf{x}_t . sequence of observations $\mathbf{y}_{1:t}$

Discuss with your neighbor (1 min): How do you (avoid to) solve this integral?

Particle Filtering

Correct! Represent the posterior distribution at time t with samples z_t^s

Basic sequential estimation algorithm: Given set of **particles** $\{z_{t-1}^s\}_{s=1}^S$ Propagate all particles through motion model $p(z_t|z_{t-1})$ to get propagated particles $\{\tilde{z}_t^s\}_{s=1}^S$ which represent the prior at t Evaluate all particles with likelihood to get weighted particle set $\{w_t^s \tilde{z}_t^s\}_{s=1}^S$ which represent the posterior at t

Degeneracy problem – most particle weights will go to 0!

Particle filtering

 $\sqrt{\text{KTH}}$

Particle Filtering

Particle Filtering

Task 3.5-3.6 of Assignment 3: Study the effect of different motion models

What is next?

Assignment 3 – start with reading the recommended literature (slide 3) to this lecture!

Project – papers will be assigned to groups tonight!

Mon 15 Dec 10:15-12:00 Q31 Exercise 5: Lecture 10 **but in practice, topics of interest to you – post on the webpage what you would like to work on** Hedvig Kjellström

Tue 16 Dec 08:15-10:00 Q31 Lecture 11: Topic Models Hedvig Kjellström Readings: Murphy Chapter 2.3.2, 2.5.4, 10.4.1, 27.1-27.3 *If necessary, repeat Murphy Chapter 10!*

AdaBoost, tips for Task 3.3

"Linear classifier" is the wrong name for the weak learners. Let us call them linear functions $\phi_m(\mathbf{x}) \equiv \phi(\mathbf{x}, \nu_m)$. The linear functions $\,\phi_m\,$ are just lines on the surface $\,$ x=(X,Y), X in [-1,1] Y in [-1,1]. They give functions y= $\phi_m(\mathbf{x})$, $y \in \{-1, +1\}$. On one side of the line, y=+1 and on the other, y=-1. This is the classifier, no svm:s etc are needed. Do not do anything else than what is in Algorithm 16.2! Using spherical coordinates (which is nice), the parameters for ϕ_m are $\nu_m = (r, \alpha), r \in [-\sqrt{2}, \sqrt{2}], \alpha \in [0, \pi]$. They are the ones that you should optimize over, when you fit ϕ_m to the weighted data points.

34

 $\begin{pmatrix} 1 & 1 \\ 1 &$

AdaBoost, tips for Task 3.3

Here is a visualization of $\nu_m = (r, \alpha), r \in [-\sqrt{2}, \sqrt{2}], \alpha \in [0, \pi]$

The line itself is perpendicular to the blue vector of length r going out to the line from the origin.

The blue vector has angle α from the positive X axis as in the figure.

