
Applied Programming and Computer Science,
DD2325/appcs14

PODF, Programmering och datalogi för fysiker,
DA7011

Lecture 6, Huffman coding and hashing

A. Maki, C. Edlund
December 2014

Tree

When are trees used?

Binary heap / Heap sort

Data compression

Databases

File system

Compiler uses syntax trees

Chess program

Decision trees

...

Binary heap

A binary heap is a binary tree with two additional constraints

Heap property: All nodes are greater(less) than or equal to
each of its children

Shape properry: All levels of the tree except the deepest are
filly filled (complete binary tree)

Siblings in a heap can be interchanged unless doing so violates the
constraints.

How can we build a heap from a set of data?
Given a binary heap, Heap sort algorithm is straightforward.

Compression, Huffman code

Every character is coded binary.
The common characters have short code. Less common, longer
code. Statistically decided.

Example TREESTRUCTURE

The characters T , R and E are most common and therefore have
short code. The tree structure for the example:

T R

ES U C

0

0

0

0

0

1

1

1

1

1



Compression, Huffman code (cont.)

How can TREESTRUCTURE be represented in binary code?
How many bits are required in total?

Compare the length with ASCII (using a byte) which ends up with:
13*8 = 104 bits

Compression is used when zipping files, to compress
pictures/movies (files) ...

Hashing

Hashing is a way to obtain both efficient memory use and effective
retrieval.
The keyvalue of a record is used to calculate the address where the
record is to be stored.

more data

Data

Data

Keyvalue 5

Keyvalue 4

Keyvalue 3

Keyvalue 2

Keyvalue more data

Records:

Calculate:

hashfunction(keyvalue) address

Storage:

address 1 2 4 5 ..3 .. ..

Hash function

The requirements one can have on the hash function:

must calculate an address within the legal address space.

addresses should be evenly distributed in the legal address
space.

easy to calculate an address.

The hash function can result in the same address for different keys.
The collisions can be dealt with open or closed address hashing.

Open and closed address hashing

Open address hashing:

Linear probing.
If the keyvalue has given the address to an already occupied space
the next adress space is considered.

Closed address hashing:

Chained hashing.
Every entry in the storage is a list.
All records with the same address ends up in the same list.



From problem to executable file

Thinking A problem is formulated, algorithms devised and data structures chosen.

Programming The C program is written using an editor (emacs, xemacs).

Preprocessing Preprocessor directives are interpreted and a preprocessed C file generated
(gcc -E, cc -E, cpp).

Compiling The preprocessed source code is translated to object code (machine
instructions) (gcc -c, cc -c).

Linking The object code is linked with external libraries to produce an executable
(gcc, cc, ld).

Debugging Make sure the program works as expected. Correct possible mistakes
(gdb).

The first step is the most important! By considering the problem carefully the
debugging time can be significantly reduced.

Stack

file1.c file2.c file3.c

file2.o file3.ofile1.o

External libraries

a.out

emacsEditor

Source files

Compiler

Preprocessor

Object files

Linker

Executable file

Compiling & linking (cont.)

At NADA there are two different C compilers, cc (Sun) and gcc

(GNU). Both can be used for preprocessing, compiling and linking
small programs in a single command.

gcc file.c -o runme

generates an executable runme from the source code in file.c.

The object files are linked with the most common libraries (stdio,
stdlib and possibly a few more).

If compiling a program is complicated (several different files, many
options, different programming languages, . . . ) it is convenient to
use Makefiles.

Compiler & linker options

In some cases additional information must be supplied for the compiler to
generate an executable. These are given as command line options.
There are also some options useful for debugging and optimizing.

Option
gcc cc Effect
-c -c Compile source files but do not link

-llib -llib Link with library lib

-Ldir -Ldir Add dir to library search path

-Idir -Idir Add dir to include file search path

-otgt -otgt Name executable tgt (default:a.out)

-O2 -fast Compile with optimization

-Wall -v Print “extra” warning messages

For a more complete list of options, give the command:
man gcc (or man cc) at the prompt.



Compiling – examples

Compile program.c and generate executable target with
optimization,
> gcc program.c -O2 -o target

Same example, but linked with math library
> gcc program.c -O2 -o target -lm

Compile files main.c and function.c and link to obtain
executable runme

> cc -c main.c

> cc -c function.c

> cc function.o main.o -o runme -lm

User-defined include files and libraries,

> cc program.c -L~/mylibraries -I~/myincludefiles -lmylib

(”>” is used to indicate that the command is given at the prompt.)

stack.c

#include <stdio.h>

#include <stdlib.h>

#include "stack.h"

int isEmpty(ListNodePtr sPtr){return sPtr == NULL;}

int isFull(ListNodePtr sPtr){return 0;}

void push(ListNodePtr *sPtr, char value){

ListNodePtr newPtr;

... See lecture notes 5}

char pop(ListNodePtr *sPtr){

ListNodePtr currPtr;

char value;

... See lecture notes 5}

void printList (ListNodePtr currPtr){

... See lecture notes 4}

stack.h

struct listNode

{

char data;

struct listNode *nextPtr;

};

typedef struct listNode ListNode;

typedef ListNode *ListNodePtr;

int isEmpty(ListNodePtr sPtr);

int isFull(ListNodePtr sPtr);

void push(ListNodePtr *sPtr, char value);

char pop(ListNodePtr *sPtr);

void printList (ListNodePtr currPtr);

main.c
#include <stdio.h>

#include <stdlib.h>

#include "stack.h"

main(){

ListNodePtr startPtr = NULL;

char item;

int noOfNodes = 0;

printf("Write data: ");

scanf("\n%c",&item);

while (item != ’q’) {

push(&startPtr, item);

printf("Write data: ");

scanf("\n%c",&item);

noOfNodes ++; }

printf("%d\n", noOfNodes);

printf("The contents of the stack: \n");

printList(startPtr);}

% gcc main.c stack.c -o runme



Appendix: Encouraging good coding

Techniques for achieving good coding practices (in a project)

Assign two people to every part of the project

Review every line of code

Require code sign-offs

Emphasize that code listings are public assets

Reward good code

(Code Complete: A practical handbook of software construction,
Steve McConnell)


