Project work
Speech and speaker recognition

Clémence Bisot David Jangdal Taylor Mordan

June 9, 2014

Abstract

Thanks to advances in speech recognition technology, integrating speech recognition supports into a
lot of our everyday life devices has been made possible. One of the numerous possible applications is
to use speech engines inside games. To make speaking part of the game is a promising way of involving
the player into a game.

The goal in this project was to build a speech recognizer to play the game "Say the color not the
word" ([1]). The purpose of this game is to speak out the color in which a word is written. To confuse
the player, the written word is in fact an other color.

The Speech engine

Which Speech Engine did we use ?

There exist a lot of speech recognition engines available on the market [2]. Among all the possible one,
we especially studied the qualities and defaults of three different speech engines to choose the one to
use on our application.

First we looked at ATK the real-time API for HTK [3]. This API was build to facilitate building
experimental application for HTK. It consists of a C++ layer lying on the top of the standard HTK
library. ATK was, like HTK, developed at the departement of engineering in the university of Cam-
bridge. A good point of using ATK is that it enables us to easily build and train a recognizer from
scratch. However, ATK had some defaults which prevented us to use HTK as a speech engine for the
game. First of all the last update of ATK date back to 2007 and not much available documentation
on the web which let us fear some troubles. Moreover, ATK does not support Mac.

It was also conceivable to use Google’s Web Speech API [4]. One of the main strength of Google’s
Web Speech API is that it is very accurate and quick. However, Google Web Speech API is not open
source and only access to a demonstration version of it is possible for free. Moreover, using the Web
Speech API would have forced the user to have access to internet while playing the game which is not
very practical.

The solution we finally chose was to use CMUSohinx. Sphinx is a group of open-source speech
recognition systems developed at Carnegie Mellon University [5]. In particular, among Sphinx package,
used Sphinx4. Sphinx4 is an adjustable, modifiable recognizer written in Java. Since Sphinx4 is entirely
developed in Java it makes it easy to link the recognizer to the rest of the game. The main quality
of Sphinx4 is that it is is quite easy to use, with anough available tutorial and explanation and very
flexible. Sphinx4 enables us to define our own dictionary and our own grammar for example.

How does Sphinx4 work ?

Sphinx speech recognition system has three elements : the Front End , the Knowledge base and the
decoder . Front End receives and processes speech signals. Knowledge base provides data for decoder
and the decoder performs the recognition itself. Figure 1 presents in a visual way the structure of
Sphinx recognizer.

In the following, we now look more closely each component of Sphinx.

The Front End : Spectral analysis and feature extraction

The Front End is responsible for processing the input signal so as to give the decoder understandable
information. The waveform of the signal is split into utterances. Utterances are separated by silences.
Then, sphinx uses basically frame-base processing, i.e one utterance is regularly divided into frame of
length 10ms before features are extracted from each frame. The feature vector is typically of length
39. The vector features used in Sphinx are extracted from spectral analysis of the frame. There are
: the Mel Frequency Cepstrum Coefficients, there derivative and second derivative in time (Delta
coefficient and Delta-delta) and the power coefficient (or energy) with its derivative. Figure 2 resumes
this processing.

The knowledge base : Different models

The knowledge base contains three different models which will then be used by the decoder to match
the given list of feature vector to the most probable sentence. Different models are used depending on

Application

oy

S Ut

Recogmizer

Search Control
D3P

Features Feedback

Kk nowledge

Base

Front End Decoder

Input

; K nowledge
Control

Figure 1: Sphinx Structure. [6]

* 16KHz, 16—bit linear samples

Pre—emphasis Filter
H(z) = 1-0.97"!

25.6msec —?-Ilﬂmst&\(__-\(_ﬂ\
Hamming Window /‘/\g‘\/ P
10msec intervals - SN
I; i-:— 25.6ms _;v.}

12 mel freq. coefT.
+
power coeff.

&IOU cepstral frames/sec

sentence—based
power and
cepstral normalization

power —= max(power) over sentence
cepstrum —= mean(cepstrum) over sentence

wer, Apower, | |
cepstrum—vector Acepstrum Adcepstrum powet, :
| cep P P Adpower |

Figure 2: Signal processing in the Front End of Sphinx. [7]

the application (language, possible vocabulary...).

The acoustic model

The goal of the acoustic model is to represent the probability of a sound given a segment. In Sphinx,
each phoneme is formed with five segments or state. Depending on the wideness of the vocabulary, the
memory and the accuracy requirement in our application we may use either context-independent or
context-dependent models. Context-dependent models aims to represent co-articulation by duplicating
each phoneme model depending on its left and right context : triphone. Acoustic models are heavily
dependent on the language and on the the way of recording. With Sphinx, full acoustic models have

already been trained for several languages and different recording context. It is however possible to
train its own acoustic model using SphinxTrain.

Context-independent phones and triphones in the acoustic model are represented via continuous
density hidden Markov models (Figure 3) where the transitions probabilities in the model are approx-
imated by Gaussian mixtures. In fact, Sphinx uses semi-continuous modelling with clustering. For
fully continuous HMMs, each state in the HMM (i.e each phone or tri-phone) need its own separate
weighted Gaussian mixture which is computationally and memory expensive. In Sphinx, the states
are are grouped into cluster called senones. Each senone is represented by a single Gaussian misture
codebook but inside the senone each state is represented by its own mixture weights.

All the parameters of the HMMs are evaluated through a modified version of the Baum-Welch
algorithm.

X; : hidden state variables

Yy © it observed variable @ t

Xl > XZ o — Xn

AN AN /N

DL LG 06

Figure 3: Hidden Markov Model

The lexical model

The lexical model in sphinx consist in a phonetic dictionary. It contains a mapping from word to
phones. This mapping is not very efficient because only two to three pronunciation variants are noted
in it, but it’s practical enough most of the time. The dictionary is not the only variant of mapper
from words to phones. It could be done with some complex function learned with a machine learning
algorithm.

The language model

The language model or grammar enables the recognizer to choose the most likely word sequence
given the sounds and the previously recognized words. The language model is key in the recognition
process because it make it possible to significantly restrict the search space. By default, Sphinx uses
tri-grams, i.e one compute the probability of one word occurrence given the two previous ones and
forget about earlier words.

The decoder : Recognition itself

The decoder performs the main part of the speech recognition. It reads features from the front end,
couples this with data from the knowledge base, and performs a search to determine the most likely
sequences of words that could be represented by the series of features output by the Front End.

Sphinx recognition system has a three-pass decoder structure. The first pass consist in a forward
Viterbi beam search perform on the full vocabulary. The result of this search is a single recognition
hypothesis and word lattice that contains all the words recognized during the search. The second pass
is a time synchronous Viterbi beam search in the backward direction. This search is restricted to the
word identified in the first pass and is thus very fast. The last pass is an A* or stack search using
the word segmentations and scores produced by the forward and backward Viterbi passes above. This
pass output a list of the most likely hypothesis.

Game implementation

We decided to play the game with 7 different colors and to display the words one by one.

The recognizer to be built is then quite easy. It has a short dictionary of only five words and a
grammar of only one word by a sentence. Moreover, the probability to appear for each word is the
same. Thus, there is no need of building any complicated language model in our case. For the acoustic
model, we used one already trained available for Sphinx and fitted for 8khz microphone recording.

Performance analysis

Theoretical Background

When it comes to accuracy analysis of a recognizer two classical characteristics are used : The Word
error rate, W ER, and the Accuracy, Acc. If we call N the number of words in a sentence, D the number
of deletions, I the number of insertions and S the number of substitution, those two characteristic are
computed as follow:

(I+D+5)

R N

(N-D-25)

Acc = ~— 21
« N

Accuracy doesn’t take into account the number of insertions. Therefore, it a worse measure than the
WER for most tasks, since insertions are also important in final results. However, for some tasks,
accuracy is a reasonable measure of the decoder performance.

To compute I, D and S, one may use dynamic programming. The dynamic time warping algorithm
that we can use to compute the performance of a recognizer goes as follows:

Data: Two sentences the true one (size N) and the recognize one (size N')
Result: Distance between the sentences
for i=1 to N’ do
for j=1 to N do
| AccD|ij] = LocDli,j] + min(AccD[i-1,j], AceDJi-1,j-1], AcceDIi,j-1])
end
end
Algorithm 1: Dynamic Time Warping Algorithm

In the algorithm, LocD]i, j] represents the distance between word number ¢ in the first sentence
and word number j in the second one. Here, we take LocDJi,j] = 0 if the two words are the same
and LocDl]i, j] = 1 if they are different. AccD]i, j] represent the shortest possible accumulate distance
between the first sentence up to the ith word and the second sentence up the jth word.

To access the path so as compute I, D and S, one use backtracking, i.e one remember the paths
followed to get the minimum. Figure 4 illustrates how the overall algorithm works for comparing two
words (and not two sentences). The matrix in the background is the matrix AccD.

One word grammar

In the game, our grammar is very basic. It consist of sentences of only one word. The possible words
are the eight colors : Black, Blue, Pink, Green, White, Orange, Yellow, Red. Our first task was to
analyze the accuracy of the model for the framework of our game.

Figure 4: Dynamic Programming. [8]

The results of our tests were very clear. In a quiet environment, we reached 100% of accuracy.
Even the word Black and Blue which have two common phonemes were not confused. Therefore, we
decided to do a more advanced performance analysis.

Loop grammar

A second accuracy analysis was performed using loop grammar. That is a less restricted grammar
where a sentence can contain any number of colors. However, the dictionary was not changed. It
was still composed of the eight colors: Black, Blue, Pink, Green, White, Orange, Yellow, Red. The
analysis was done with 15 sentences of random length between three and six. The test was done on
two different speakers. S; was a male speaker with native language Swedish and Sy a female speaker
whose native language was french.

Tables 1 and 2 gather our results. On the tables, lines represent the words really spoken (TR) and
columns the recognize words (RW).

One can now compute the WER and Accuracy of the results on our experiment for each speaker
and then for both together.

2411+ 16 67— 11— 16
WER(S,) = s S 0.433, Ace(S)) = ———— = 0.597
67 67
440+12 64 —0—12
WER(Ss) = — 2122 _ 0950, Ace(Ss) = =20~ 12 _ 0813
64 64
2411+ 16+4 40+ 12 67+64—11—16—0—12
W ER(tot) = = 0.344, Acc(tot) = = 0.702
Rtot) 67 + 64 , Aceftot) 67 + 64

On the confusion matrices, it is interesting to notice that the Word "Blue" is often recognized
as "Pink" for both speaker. For both speakers, it is even more often confused than well-recognized.
Moreover, the confusion appears only in one direction: from Blue to Pink and never from Pink to
Blue. This is quite surprising since those two words has no common phoneme but this error seems
consistent. However, since this confusion did not appear while using a one word grammar one may
think that some co-articulation phenomenon appears here making those two words easy to confuse
while spoken between two other words.

TW/RW | Black | Blue | Pink | Green | White | Orange | Yellow | Red
Black 5 2

Blue 4 5

Pink 11

Green 5

White 6

Orange 1 4
Yellow 2 1 4 1
Red 1 1

Table 1: Confusion matrix for S;, I =2, D =11, S =16

TW/RW | Black | Blue | Pink | Green | White | Orange | Yellow | Red
Black 11 1
Blue 3 4 1
Pink 8
Green 5
White 8
Orange 11
Yellow)
Red 3 3 1

Table 2: Confusion matrix for Sy, I =4, D =0, S =12

Training the model

Use Sphinx 3 coded in C.

Bibliography

[1] Game "say the color not what is written".
http://www.brainbashers.com/colour.asp

[2] List of Speech recognition software.
http://en.wikipedia.org/wiki/List _of speech recognition software

[3] ATK.
http:/ /htk.eng.cam.ac.uk/develop/atk.shtml

[4] Google Web Speech API demonstration
https://www.google.com /intl/en/chrome/demos/speech.html

[5] CMU Sphinx.
http://cmusphinx.sourceforge.net /

[6] Understanding the CMU sphinx Speech Recognition System (Chung Feng Liao)
http://soa.csie.org/static-resources/homework /pr/pr_final report.pdf

[7] Efficient algorithm for speech recognition (Mosur K. Ravishankar)
http://www.cs.cmu.edu/ rkm/th/th.pdf

[8] Dynamic Programming
http://berghel.net /publications/asm/asm.php

