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Figure 8.7 Global localization in an office environment using sonar data. (a) Path
of the robot. (b) Belief as the robot passes position 1. (c) After some meters of robot
motion, the robot knows that it is in the corridor. (d) As the robot reaches position 3 it
has scanned the end of the corridorwith its sonar sensors and hence the distribution is
concentrated on two local maxima. While the maximum labeled I represents the true
location of the robot, the secondmaximum arises due to the symmetry of the corridor
(position II is rotated by 180◦ relative to position I). (e) After moving through Room
A, the probability of being at the correct position I is now higher than the probability
of being at position II. (f) Finally the robot’s belief is centered on the correct pose.

PARTICLES FILTER - ROBOT 
POSITION FROM OBSERVATIONS

COMBINING INFO FROM 
VARIOUS SENSORS

Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

The University of British Columbia
Vancouver, Canada

The sensor fusion problem

• Inertial sensors
• Camera
• Barometer

• Inertial sensors
• Radar
• Barometer
• Map

• Inertial sensors
• Cameras
• Radars
•Wheel speed sensors
• Steering wheel sensor

• Inertial 
sensors
• Ultra-

wideband

How do we  combine the information from the different sensors?

Might all seem to be very different problems at first sight. However, the same 
strategies can be used in dealing with all of these applications (and many more).

Aim: Motion capture, find the motion (position, orientation, velocity and 
acceleration) of a person (or object) over time.



PHYLOGENY
Input: species  
Output: tree where proximity correlates with similarity

STOCHASTIC 
VOLATILITY 
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Figure 1: A simulation of the stochastic volatility model described in example 4.
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. This type of model provides
a generalisation of that described in example 2 with only a slight increase in complexity.
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. Note that this choice of initial distribution ensures that
the marginal distribution of X
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is also µ (x) for all n. This type of model, and its generalisations, have been
very widely used in various areas of economics and mathematical finance: inferring and predicting underlying
volatility from observed price or rate data is an important problem. Figure 1 shows a short section of data
simulated from such a model with parameter values ↵ = 0.91,� = 1.0 and � = 0.5 which will be used below
to illustrate the behaviour of some simple algorithms.
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PARTICLE FILTERING & 
SEQUENTIAL MONTE CARLO
★ Probabilistic (Monte Carlo) 

recursive inference 

★ SSM (or HMM) 

★ Applications  

• tracking  

• time series forecasting 

• on-line parameter learning 

★ Idea: approximate p(z1:t|y1:t) 
with 

where ŵst  is normalized 
weight of sample s at time t 

★  New belief state obtained by 
importance sampling

S�

s=1

ŵs
t I (z1:t = zs

1:t)
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NOTATION
Generic form  

hidden 
state

observation Denoted

Estimate belief state 
(filtering)

x

x

g(zt|zt�1)

Denoted
h(yt|zt)

p(zt|y1:t)
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observed

truth

NOTATION
Generic form  

hidden 
state

observation Denoted

Estimate belief state 
(filtering)

x

x

Denoted

p(zt|y1:t)

g(zt|zt�1) = p(zt|zt�1)

h(yt|zt) = p(yt|zt)

COMPARISON 
SSM VS HMM

• For HMMs DP is possible since ≤ constant #of values (states) for zn  

• Here typically infinite (R) 

• Two options  

• Solve analytically (or possibly numerically) 

• Use a Particle Filter (PF) algorithm or generally, Sequential Monte 
Carlo (SMC)

g(zt|zt�1) = p(zt|zt�1)

h(yt|zt) = p(yt|zt)

SMC
★ We want densities 

★ Typically 

• where γn is a likelihood which we can evaluate pointwise  

• Cn is a normalizing constant  

★ So for a SSM 

{�n}n�[N ]

�n(Z1:n) = �n(Z1:n)/Cn

�n(Z1:n) = p(Z1:n|Y1:n) = p(Z1:n, Y1:n)/p(Y1:n)

pointwise computable

Y will be “data” so  constant
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Figure 1: A simulation of the stochastic volatility model described in example 4.
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TWO 
PROBLEMS
• Problem 1: 

                 is typically complex, 
high dimensional, and hard to 
sample from  

• Problem 2:  

if we can sample, sampling 

typically takes            time   

�n(Z1:n)

Z1:n

�(n)



IMPORTANCE 
SAMPLING
• Assume we have                  such that 

• Let  

qn(Z1:n) �n(Z1:n) > 0� qn(Z1:n) > 0

wn(Z1:n) := �n(Z1:n)/qn(Z1:n)
Our proposal, we can sample from and compute it.

IMPORTANCE 
SAMPLING
• Assume we have                  such that 

• Let  

qn(Z1:n) �n(Z1:n) > 0� qn(Z1:n) > 0

wn(Z1:n) := �n(Z1:n)/qn(Z1:n)

Computable pointwise

IMPORTANCE 
SAMPLING
• Assume we have                  such that 

• Let   

• Sample  

• let  

• we get estimates 

qn(Z1:n) �n(Z1:n) > 0� qn(Z1:n) > 0

wn(Z1:n) := �n(Z1:n)/qn(Z1:n)
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BIASED ESTIMATE
The following estimate is biased:

Why?

IIS
n (�n) =

�

s�[S]

W s
n�(Zs

1:n)

PROPOSAL DESIGN
★ Base proposal on previous approximation 

=3

qn(Z1:n) := q�n(�̂n�1(Z1:n�1), Zn)

A DECOMPOSABLE PROPOSAL 
MITIGATES PROBLEM 2

A decomposable proposal satisfies  

which gives  

So to get 

we can sample  

qn(Z1:n) = qn�1(Z1:n�1)qn(Zn|Z1:n�1)

qn(Z1:n) = q1(Z1)
�

k�[n]

qn(Zk|Z1:k�1)

Zs
1:n � qn(Z1:n)

Zs
1:k � qn(Zk|Z1:k�1), � 2 � k � n

Zs
1 � q1(Z1)

Will be sampled from approximation of πk-1 

OBTAINING 
UNNORMALIZED WEIGHTS 

where

↵n(Z1:n) :=
�n(Z1:n)

�n�1(Z1:n�1)qn(Zn|Z1:n�1)

=3

wn(Z1:n) =
�n(Z1:n)
qn(Z1:n)

=
�n�1(Z1:n�1)
qn�1(Z1:n�1)

�n(Z1:n)
�n�1(Z1:n�1)qn(Zn|Z1:n�1)

= wn�1(Z1:n�1)�n(Z1:n) = w1(Z1)
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SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1 

✴ Sample 

✴ Compute weights                   and  

Zs
1 � q1(Z1)

w1(Zs
1) W1(Zs

1)

SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1 

✴ Sample 

✴ Compute weights                   and  

Zs
1 � q1(Z1)

w1(Zs
1) W1(Zs

1)

Here and later s means for all s in [S]

SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1 

✴ Sample 

✴ Compute weights                   and   

✴ n ≥ 2 

✴ Sample  

✴ Compute weight 
wn(Zs

1:n) = wn�1(Zs
1:n�1)�(Zs

1:n)

Wn(Zs
1:n) � wn(Zs

1:n)

Zs
1:n � qn(zn|Z1:n�1)

Zs
1 � q1(Z1)

w1(Zs
1) W1(Zs

1)

SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1 

✴ Sample 

✴ Compute weights                   and   

✴ n ≥ 2 

✴ Sample  

✴ Compute weight 
wn(Zs

1:n) = wn�1(Zs
1:n�1)�(Zs

1:n)

Wn(Zs
1:n) � wn(Zs

1:n)

Zs
1:n � qn(zn|Z1:n�1)

Zs
1 � q1(Z1)

w1(Zs
1) W1(Zs

1)

What’s the best proposal?



SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1 

✴ Sample 

✴ Compute weights                   and   

✴ n ≥ 2 

✴ Sample  

✴ Compute weight 
wn(Zs

1:n) = wn�1(Zs
1:n�1)�(Zs

1:n)

Wn(Zs
1:n) � wn(Zs

1:n)

Zs
1:n � qn(zn|Z1:n�1)

Zs
1 � q1(Z1)

w1(Zs
1) W1(Zs

1)

What’s the best proposal?
qopt
n (Z1:n|Z1:n�1)
= �n(Z1:n|Z1:n�1)

PF FIGURE

proposal

weighting

resample

P(z(t-1) | y(1:t-1))

P(z(t) | y(1:t-1))

P(y(t) | z(t))

P(z(t) | y(1:t))

PF FIGURE

proposal

weighting

resample

P(z(t-1) | y(1:t-1))

P(z(t) | y(1:t-1))

P(y(t) | z(t))

P(z(t) | y(1:t))Particles with small weights seem likely to never improve

W s
n

RESAMPLING
★ Intuitively appealing, practical, theoretically beneficial (lower variance) 

★ In the n:th step ample S new particles  

★ So          gets         offsprings and  

 follows a multinomial with parameters   

★ New unbiased approximation 

P (s) = W s
n

Zs
1:n Ns

n

N1:S
n = (N1

n, . . . , NS
n )

(N,W 1:S
n )

�(Z1:n) :=
�

s

Ns
n

S
�s
Z1:n

(Z1:n)



SYSTEMATIC 
RESAMPLING 
★ Systematic resampling aims at lower the variance of  

★ Procedure 

• sample 

Ns
n

u1 � U [0, 1/S]

Uniform distribution

SYSTEMATIC 
RESAMPLING 
★ Systematic resampling aims at lower the variance of  

★ Procedure 

• sample  

• for s ≥ 2,  

• for all s,

Ns
n

u1 � U [0, 1/S]

us := u1 + (s� 1)/S

Ns
n := |{ut :

s�1�

k=1

W k
n � ut �

s�

k=1

W k
n }|

W 1
n W 1

n + W 2
n W k

n

0 1u1 u2 u3 u4

…
…

PROPERTIES OF 
SYSTEMATIC RESAMPLING 
★ Systematic resampling  

• is one of of several resampling strategies  

• is unbiased 

• easy to implement  

• outperforms other alternatives in most cases 

★ Consequently, widely used in practice 

ESTIMATE OF RATIO BETWEEN 
NORMALIZING CONSTANTS

•                can be estimated (consistently) by 

• Motivation

Cn/Cn�1

�Cn/Cn�1 :=
�

s�S

W s
n�1�(Zs

1:n)

�
�n(Z1:n)�n�1(Z1:n�1)qn(Zn|Z1:n�1) d Z1:n

=
�

�n(Z1:n)�n�1(Z1:n�1)qn(Zn|Z1:n�1)
�n�1(Z1:n�1)qn(Zn|Z1:n�1)

d Z1:n

=
1

Cn�1

�
�n(Z1:n) d Z1:n

= Cn/Cn�1 ↵n(Z1:n) :=
�n(Z1:n)

�n�1(Z1:n�1)qn(Zn|Z1:n�1)



SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1… 

✴ n ≥ 2 

✴ Sample  

✴ Compute weight  

✴ Resampling gives 

wn(Zs
1:n) = wn�1(Zs

1:n�1)�(Zs
1:n) Wn(Zs

1:n) � wn(Zs
1:n)

Zs
1:n � qn(zn|Z1:n�1)

and

Z
1
1:n, . . . , Z

S
1:n

SEQUENTIAL 
IMPORTANCE SAMPLING
✴ n =1… 

✴ n ≥ 2 

✴ Sample  

✴ Compute weight  

✴ Resampling gives 

wn(Zs
1:n) = wn�1(Zs

1:n�1)�(Zs
1:n) Wn(Zs

1:n) � wn(Zs
1:n)

Zs
1:n � qn(zn|Z1:n�1)

and

Z
1
1:n, . . . , Z

S
1:n

Two estimates 

�̂n(Z1:n) =
S�

s=1

W s
n�Zs

1:n
(Z1:n) and �n(Z1:n) =

1
S

S�

s=1

�Z
s
1:n

(Z1:n)

RESAMPLING IN 
PRACTICE 
★ Resampling introduce variance and weight may be approx. same 

★ Solution  

• resample only effective sample size  

• is below a threshold, typically,

ESS :=
1

�S
s=1(W s

n)2

1/S
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Figure 3: Empirical distributions of the particle weights obtained with the SIS algorithm for the stochastic
volatility model at iterations 2, 10 and 50. Although the algorithm is reasonably initialised, by iteration 10
only a few tens of particles have significant weight and by iteration 50 a single particle is dominant.

value. This standard deviation is an estimate of the standard deviation of the conditional posterior obtained
via the particle filter: it is not a measure of the standard deviation of the estimator. Such an estimate can
be obtained by considering several independent particle filters run on the same data and would illustrate
the high variability of estimates obtained by a poorly-designed algorithm such as this one. In practice,
approximations such as the e↵ective sample size are often used as surrogates to characterise the uncertainty
of the filter estimates but these perform well only if the filter is providing a reasonable approximation of the
conditional distributions of interest. Figure 3 supports the theory that the failure of the algorithm after a
few iterations is due to weight degeneracy, showing that the number of particles with significant weight falls
rapidly.

The SIR algorithm described above was also applied to this problem with the same proposal distribution and
number of particles as were employed in the SIS case. For simplicity, multinomial resampling was applied
at every iteration. Qualitatively, the same features would be observed if a more sophisticated algorithm
were employed, or adaptive resampling were used although these approaches would lessen the severity of
the path-degeneracy problem. Figure 4 shows the distribution of particle weights for this algorithm. Notice
that unlike the SIS algorithm shown previously, there are many particles with significant weight at all three
time points. It is important to note that while this is encouraging it is not evidence that the algorithm
is performing well: it provides no information about the path-space distribution and, in fact, it is easy to
construct poorly-performing algorithms which appear to have a good distribution of particle weights (for
instance, consider a scenario in which the target is relatively flat in its tails but sharply concentrated about
a mode; if the proposal has very little mass in the vicinity of the mode then it is likely that a collection of
very similar importance weights will be obtained — but the sample thus obtained does not characterise the
distribution of interest well). Figure 5 shows that the algorithm does indeed produce a reasonable estimate
and plausible credible interval. And, as we expect, a problem does arise when we consider the smoothing
distributions p(x

n

|y
1:500

) as shown in figure 6: the estimate and credible interval is unreliable for n ⌧ 500.
This is due to the degeneracy caused at the beginning of the path by repeated resampling. In contrast the

22
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Figure 4: Empirical distribution of particle weights for an SIR algorithm applied to the stochastic volatility
model. Notice that there is no evidence of weight degeneracy in contrast to the SIS case. This comes at the
cost of reducing the quality of the path-space representation.

smoothed estimate for n ⇡ 500 (not shown) is reasonable.

4.2 Auxiliary Particle Filtering

As was discussed above, the optimal proposal distribution (in the sense of minimising the variance of im-
portance weights) when performing standard particle filtering is q (x

n

| y
n

, x
n�1

) = p (x
n

| y
n

, x
n�1

). Indeed,
↵
n

(x
n�1:n

) is independent of x
n

in this case so it is possible to interchange the order of the sampling and
resampling steps. Intuitively, this yields a better approximation of the distribution as it provides a greater
number of distinct particles to approximate the target. This is an example of a general principle: resampling,
if it is to be applied in a particular iteration, should be performed before, rather than after, any operation
that doesn’t influence the importance weights in order to minimise the loss of information.

It is clear that if importance weights are independent of the new state and the proposal distribution corre-
sponds to the marginal distribution of the proposed states then weighting, resampling and then sampling
corresponds to a reweighting to correct for the discrepancy between the old and new marginal distribution
of the earlier states, resampling to produce an unweighted sample and then generation of the new state from
its conditional distribution. This intuition can easily be formalised.

However, in general, the incremental importance weights do depend upon the new states and this straightfor-
ward change of order becomes impossible. In a sense, this interchange of sampling and resampling produces
an algorithm in which information from the next observation is used to determine which particles should
survive resampling at a given time (to see this, consider weighting and resampling occurring as the very last
step of the iteration before the current one, rather than as the first step of that iteration). It is desirable to
find methods for making use of this future information in a more general setting, so that we can obtain the
same advantage in situations in which it is not possible to make use of the optimal proposal distribution.
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Figure 5: SIR Filtering estimates for the SV model.
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Figure 6: SIR Smoothing estimates for the SV model.
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PHYLOGENY
Input: species  
Output: tree where proximity correlates with similarity

IS THE CHIMP OUR 
CLOSEST RELATIVE?

OUR ORIGIN MARKOV MODEL OF 
SEQUENCE EVOLUTION

The same position 

M(l)

M1= M(l1) M2= M(l2)

Human Mouse

A

C A



A C A C G T A G T G C C

MARKOV MODEL OF 
SEQUENCE EVOLUTION

Same gene, same positions 

A A A C G T A C T G C A

M(l)

M1= M(l1) M2= M(l2)

A C A C G T A C T G C G

Human Mouse
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MARKOV MODEL OF 
SEQUENCE EVOLUTION
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In general,

Uniform

A A C …………T A

THE END


