Mobile Applications HI1033 Jonas.Wahslen@sth.kth.se

Multi-Sensor Data Synchronization using Mobile Phones

Jonas Wåhslén The Royal Institute of Technology School of Technology and Health

Digital Doping is Legal

Jonas Wåhslén The Royal Institute of Technology School of Technology and Health

Outline

- Introduction and scientific purpose
 Mobile sensor platform
 Bluetooth performance
 Single clock algorithm
 Synchronizing the clocks
 Summary and future works

Wireless Wearable

Tmote Sky (TelosB)

Sensors • What to sense? • How to sense/measure? • Available sensors - Technology Medical - ECG Analys **Applications** • Smart Grid • Industrial Automation • Smart Cities and Urban Networks • Home Automation · Building Automation • Structural Health Monitoring • Body Sensor Networking - Health: monitor & assist disabled Military: command, control, communications and computing. Sensors according to wiki • A sensor is a device which measures a physical quantity and converts it into a signal which can be read and observer or by an instrument

• For example a mercury thermometer converts the temperature into expansion and

contraction of a liquid which can be read on a

calibrated glass tube

Classification of sensors

- Thermal temperature, heat
- Electromagnetic electrical, magnetism
- Mechanical pressure, flow, viscosity, density, mechanical, humidity
- Chemical oxygen, ion, pH, redox, carbon monoxide
- Optical radiation light sensors, infra-red, proximity sensors, interferometry

Classification of sensors

- Ionizing radiation radiation (geiger), subatomic particles
- Acoustic acoustic (ultrasound), sound

Sensing

- As this course is named wireless sensor network, we need to convert any *physical* value to an *electrical* value
- From: temperature, humidity, light, ... (none electrical)
- **To:** current, voltage, resistance, time interval or frequency

,		
,		

Property

- **Input range**: the operating range to which the sensor is sensing
 - E.g. Temperature sensor operating reliably from -5°C to $40^{\circ}\text{C}.$
 - Outside this range the sensor's fault tolerance is exceeded.
- Output range: range of the output value
 - E.g. Temperature sensor returns voltage between 0 and 5V $\,$

Property

- **Sensitivity**: How is a change in input signal mapped to the output signal?
 - E.g. an inclination sensor produces in output voltage of 1mv for every 2.30°.
- Latency: Speed with which sensor reacts to change
 - E.g. A temperature sensor having a latency of 14s $\,$ per 10°C $\,$

Property

- **Stability**: insensitivity to factors other then measured physical quantity.
 - Noise: undesired change from ideal output value.
 E.g. thermal noise in the
 - Distortions. E.g. radioactive radiation influencing the sensor.
 - Environmental influences. E.g. temperature, air pressure, ...

_		

Noise

- Anything that obscures the desired signal
- External noise
 - Part of the environment
 - E.g. temperature, electromagnetic interference (power lines, combustion engines, electrical motors, radio & TV), sun light, gravitational flux, ...
- Internal noise
 - White noise (uniform), Pink noise (1/f)

Sampling

- · What is sampling?
 - Discrete reading of sensors values.
- Why sample?
 - Converting to digital value, Very obvious: needed for digital processing by computer.

	_
	_
	_
	_

Sampling rate

- Nyquist theorem
 - The sampling rate has to be at least twice as fast as the fastest change. If not, you are going to miss relevant information.
 - E.g. If sound signal changes at 3 kHz, you have to sample at at least 6 kHz to not miss anything of the signal.

Bit depth

- An 8-bit sampling (quantization) gives an resolution of 256 levels.
- If a signal varies from 0 to 10V, using a 8 bit resolution. Given the sampling value of 3.1415.... V after coding 3.1372 V
 - 10/255 = 0.0392 V/level
 - 80*0.0392 = 3.1372 V

Sensor technologies

- · Contact sensor
- Force sensors
- Light sensing
- Gyroscope
- Accelerometers

·	

Contact sensor

- Binary or analog
 - Binary sensors are just switches. Either pressed or not
 - Analog sensors are often spring-loaded. A force F is needed for pressing the switch, the force translates into a value
- Size: from micro switch to power switch
- Can be mechanically extended to get whiskers

Force sensors

- Strain sensor and pressure sensors. Operates on principle expressed in Kelvin's law. Resistance of a conductor depends on lengh / and area A, and conductivity r.
- 120 Ohm is industry standard
- · Changes are in micro ohm

Wheatstone bridge

- Measuring instrument to measure the unknown resistance Rx
- Measure the voltage between B and D using a galvanometer Vg
- Rx = (R2/R1)*R3

Light sensors

- · Photo diode
 - Diode embedded in translucent plastic package
 - Conductivity influenced by photons hitting the n-p junction
- Photo transistors

 - Transistors embedded in translucent plastic package
 Transistors amplifies (100 to 1000 times), can be hooked to a AD converter
- Light dependent resistors (LDR)
 Resistance decrease when light falls on it
 - Not sensitive to infrared light
- Light to frequency converter
 - Diode combined with a IC to convert current to pulse
 Accurate, light intensity on one wire

	_	
	_	
	_	
	_	

Other sensors

- Proximity sensors
 - Mechanical: contact sensor
 - Optical: consists of a light source (LED) and light detector (phototransistor)
- Potentiometer displacement
- Linear variable differential transformer (LVDT) movement
- Capacitance sensor, dependent on distance between the electrodes
- Piezoelectric sensors generates electrical potential when stressed

Accelerometers

- Spring-mounted mass
- Newton's law and spring-mass relation

- Simplest micro electro-mechanical system (MEMS) device possible
- The widespread use of accelerometers have pushed the cost down dramatically

Exam question

Estimate the speed in the direction of the accelerometer's x-axis 5 seconds after the measurement started, which is the error due to incorrect mounting.

Exam question

Estimate the speed in the direction of the accelerometer's x-axis 5 seconds after the measurement started, which is the error due to incorrect mounting.

Speed = time * acceleration 5 * 9.81 * sin(5) = 4.27m/s

Gyroscopes

- Several types exist (mechanical and optical)
- Mechanical examples: flywheel gyroscope
 - Conservation of angular momentum Gy
 - Torques on axes depends on T=I, w, O
- Gyroscopes are no longer rotating wheels.
 Solid state gyroscopes are sturdier and smaller. (piezoelectric)
- 9DoF (acc, gyro and magnetometer)

Analyze of acceleration

- · Low-pass filer
 - Isolate constant acceleration
 - Used to find the device orientation
- High-pass filter
 - Show instantaneous moves only
 - Used to identify user-initial moves

Fourier Transform

Filter

- Engineering function for Low-pass filter
 - FilterFactor = 0,1
 - Ivalue = (newAcce * FilterFactor) + (preAcc * (1,0 FilterFactor))
 - preAcce = Ivalue
- High-pass filter
 - hvalue = newAcce lvalue

Medical analyze

- Diagnose
 - Ocular
 - Audible
- Tele metric
 - Electrical
 - Chemical
- Information about
 - Skin
 - Heart
 - Lungs

Coff Blood Skin

What to sense

- Mechanical quantity (force, displacement)
- · Chemical sensors
- Pressure, flow, volume
- Thermic sensors
- Ultrasound
- Electrodes for bio potential
- Optical sensors

Medical values

- Example on things to measure on humans
 - Mechanical muscle, bone mass
 - Thermic infection, metabolism
 - Electrical muscle, nerves
 - Chemical blood gases, blood glucose, enzymes

Medical sensors

- ECG
 - (Electrocardiogram)
 - Monitor the heart
- Pulse oximeter
 - Pulse and oxygen level
 - $\ surveillance \\$
- Pressure measurement
 - Blood pressure
 - Lung capacity
- Accelerometer
 - Stroke, alzheimers

Pressure measurement • Pressure sensors for – Blood pressure – Pressure in eye globe

– Measurement of respiration

- Inter cranial pressure

Invasive blood pressure measurement

- Strain sensor physical connected with a membrane
 - Blood lumps, air bubbles
 - Changes in the cannulas cross section area
 - The position of the cannula
 - High different between the measure point and the pressure sensor
- Cannula needle point sensor

Non-invasive pressure measurement

- Systolic and diastolic blood pressure, hence the arterial pressure
- Korotokow-sound using a stethoscope
 - Subjective
 - Artifacts
 - High different

-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
-			
_			
-			
_	 	 	
_			
-			

Connect electrodes to tissue

- Silver chloride (AgCL) Silver metal
- Easy to get distortions
- AgO(s) + Cl- <-> AgCl(s) + e-

Pulse oximetry

- A non-invasive method to monitor oxygenation of a patient's hemoglobin
- That is fast
 - under 90% = new red blood cells are created
 - under 70% = increase risk of heartarytmier
 - under 30% = risk for life

Pulse oximetry

- Clinical use
 - Lung diseases
 - Operation (anestesi, surveillance)
 - Neonatal care
 - Surveillance in ambulance

Pulse oximetry

- Pulse oximetry Two LED with wavelength 660nm and 910nm
- Two different absorption for Hb and HbO₂
- Built on reference values

Learning goals

- After this lecture and studies you should be able to read data sheet about a sensor an be able to translate it to physical values.
- Given a physical signal figure out an appropriate sensor to use, and be able to choice an appropriate conversion to an digital signal