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UGM
★ UGMs - Undirected graphical 

models 

★ What is the direction between 2 
pixels, 2 proteins? 

★ Probabilistic interpretation? 

★ p factorizes over G – can be 
expressed as normalized product 
over factors associated with 
cliques  

★ here categorical
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SEPARATION 
AND CI OF UGM
★ A is separated from B given O in 
G if there is no path between A and B 
in G\O 

★ In a graph G,  

A is separated from B given O

A B

G
O

DEF I-MAP
• G is an I-map for p if all 

independence relation in G hold 
for p, i.e., I(G)⊆I(p) 

• Moralize add edge between any 
two parents 

• We can moralize a DGM and get 
a UGM having no more 
independence relations 

• Each family has a cliques in the 
moralized UGM



CONVERTING DGM TO UGM 
& SUING JUNCTION TREE

• Moralize and remove directions 

• does not introduce new independencies! 

• Use CPDs as factors 

• Families are cliques 

• Cliques in bags of any Junction tree 

• We will work with marginals of bags
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A FACTOR PRODUCT
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0.5⋅0.5 = 0.25

0.5⋅0.7 = 0.35

0.8⋅0.1 = 0.08

0.8⋅0.2 = 0.16

0.1⋅0.5 = 0.05

0.1⋅0.7 = 0.07

 0⋅0.1 = 0

 0⋅0.2 = 0

0.3⋅0.5 = 0.15

0.3⋅0.7 = 0.21

0.9⋅0.1 = 0.09

0.9⋅0.2 = 0.18
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• Joint  

• As factor product

JOINT AS FACTOR 
PRODUCT

)
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• We want to compute 

SUMMING OUT
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• Written using factors
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• That is,
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Temporary factors



THE ENTIRE 
SEQUENCE

A FILL-IN 
EDGE
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Fill in edge between two vertices in a “temporary factor”

ALTERNATIVE 
DEFINITION OF 

WIDTH
Elimination order of G – ordering of V(G) 

v1,…,vn  

It defines a sequence of graphs G=G0,…,Gn 

where Gi := Gi-1\vi ⋃ {(u,w): u,w∈ NGi-1(vi)} 

(i.e., we add edges between all neighbours) 

width of order  = (max clique size in ⋃i Gi ) -1  

                       = maxi degree of vi in Gi 

 width of G = min width of order 

ALTERNATIVE 
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Elimination order of G – ordering of V(G) 
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It defines a sequence of graphs G=G1,…,Gn 
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(i.e., we add edges between all neighbours) 
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 width of G = min width of order 
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It defines a sequence of graphs G=G1,…,Gn 

where Gi := Gi-1\vi ⋃ {(u,w): u,w∈ NGi-1(vi)} 

(i.e., we add edges between all neighbours) 

width of order  = (max clique size in ⋃i Gi ) -1  

                       = maxi degree of vi in Gi 

 width of G = min width of order 

 JUNCTION TREE
★ Each vertex of G in some 

bag 

★ Each edge of G in some bag 

★ Each vertex of G induce a 
subtree (running intersection 
property) 

★ Width is (Size of largest bag)- 
1

Definition junction tree T,B  junction tree

ALTERNATIVE 
DEFINITION OF 

WIDTH

A graph has a junction tree of width k if and 
only if it has a width k elimination order  

(i.e., eliminated vertices have at most k 
neighbours when eliminated). 



JUNCTION TREE AND 
ELIMINATION ORDER 

COMPLEXITY 
OF VERTEX 
ELIMINATION

• If the width is w 

• Time O(|V(G)| 2w) for binary 

• For categorical with C classes,      
O(|V(G)| Cw) 
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ELIMINATION ACCORDING TO 
THE ORDER C,D,I,H,G,S,L

ELIMINATION ACCORDING TO 
THE ORDER C,D,I,H,G,S,L

5: G,J,S,L

4: H,G,J

3: G,S,I

7: J,L
J,L

6: J,S,L
J,S,L

2: G,I,D1: C,D

G,J

G,S

G,ID
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INDUCED GRAPH AND  
JUNCTION TREE
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THE END

USING THE SIMPLER 
ELIMINATION & JUNCTION TREE

1: C,D

P(D |C )
P(C )

P(G | I,D ) P(I )
P(S | I )

P(L |G )
P(J |L,S )

P(H |G,J )

4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L
D G,I G,S G,J
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MESSAGE PASSING 

d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d3→5(G,S):

∑Iy3(C3) × d2→3

d5→3(G,S):

∑Iy5(C5) × d4→5

d4→5(G,J ):

∑Hy4(C4)

d4→5(G,J ):

∑Hy4(C4)

(a)

(b)

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L



d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d3→5(G,S):

∑Iy3(C3) × d2→3

d5→3(G,S):

∑Iy5(C5) × d4→5

d4→5(G,J ):

∑Hy4(C4)

d4→5(G,J ):

∑Hy4(C4)

(a)

(b)

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d1→2(D):

∑Cy1(C1)

d2→3(G,I ):

∑Dy2(C2) × d1→2

d3→5(G,S):

∑Iy3(C3) × d2→3

d3→5(G,S):

∑Iy3(C3) × d2→3

d5→3(G,S):

∑Iy5(C5) × d4→5

d3→2(G,I ):

∑Sy3(C3) × d5→3

d5→3(G,S):

∑Iy5(C5) × d4→5

d4→5(G,J ):

∑Hy4(C4)

d4 →5(G,J ):

∑Hy4(C4)

1: C,D 4: H,G,J2: G,I,D 3: G,S,I 5: G,J,S,L

(a)

(b)


