

UGM

- * UGMs Undirected graphical models
- * What is the direction between 2 pixels, 2 proteins?
- * Probabilistic interpretation?
- p factorizes over G can be expressed as normalized product over factors associated with cliques
- * here categorical

Elimination order of G – ordering of V(G)

It defines a sequence of graphs G=G₁,...,G_n

(i.e., we add edges between all neighbours)

width of order = (max clique size in $\cup_i G_i$) -1

 $= \max_i \text{ degree of } v_i \text{ in } G_i$

width of G = min width of order

Elimination order of G – ordering of V(G)

It defines a sequence of graphs G=G₁,...,G_n where $G_i := G_{i-1} \setminus v_i \cup \{(u,w): u,w \in N_{G_{i-1}}(v_i)\}$ (i.e., we add edges between all neighbours) width of order = (max clique size in $\cup_i G_i$) -1 $= \max_i \text{ degree of } v_i \text{ in } G_i$

width of G = min width of order

Elimination order of G – ordering of V(G)

It defines a sequence of graphs G=G1,...,Gn where $G_i := G_{i-1} \setminus v_i \cup \{(u,w): u, w \in N_{G_{i-1}}(v_i)\}$ (i.e., we add edges between all neighbours)

= max_i degree of v_i in G_i

width of G = min width of order

Elimination order of G – ordering of V(G)

It defines a sequence of graphs G=G1,...,Gn

(i.e., we add edges between all neighbours)

width of order = (max clique size in $\cup_i G_i$) -1

 $= \max_i \text{ degree of } v_i \text{ in } G_i$

width of G = min width of order

ALTERNATIVE DEFINITION OF WIDTH

A graph has a junction tree of width k if and only if it has a width k elimination order

(i.e., eliminated vertices have at most k neighbours when eliminated).

MESSAGE PASSING

