
LOREM

I P S U M

STAT. METH. IN
CS – JUNCTION
TREES, PREP. FOR
CH 20, 19

Lecture 7

Royal Institute of
Technology

EXACT ALGORITHMS FOR
GRAPHICAL MODELS
★ Many problems are NP-hard (marginalization etc.)

★ For trees they are many of them can be solved by DP

★ When the graph is “tree-like” find a representation of the “tree-
likness” and use it to guide DP

★ Unfortunately, finding the representation is not always easy

★ Today assuming the representation is given.

★ Independent set as exercise.

ALGORITHM -
MARGINALIZATION TREE DGM
★ Given Bernoulli DGM with G binary directed tree and

evidence xe, for evidence set e
★ Subproblem, subsolution

u
v w s(u, i) = P (XV (Tu)\e, xV (Tu)�e|Xu = i)
i

ALGORITHM -
MARGINALIZATION TREE DGM
★ Given Bernoulli DGM with G binary directed tree and

evidence xe for evidence set e
★ Visit the vertices of G from leaves to root

✴ when at leaf l

✴ when at vertex u with children v and w
u

v w

l
s(l, i) =

�
0 if l � e and xl �= i

1 otherwise

s(u, i) =

�
0 if u � e and xu �= i otherwise case below��

j�{0,1} P (Xv = j|Xu = i)s(v, j)
� ��

j�{0,1} P (Xw = j|Xu = i)s(w, j)
�

ZOOM IN
★ Visit the vertices and edges of G from leaves to root

✴ when at edge uv (u has another child too)

✴ when at vertex u with children v and w
u

v w s(u, i) =

�
0 if u � e and xu �= i otherwise case below��

j�{0,1} P (Xv = j|Xu = i)s(u, i)
� ��

j�{0,1} P (Xw = j|Xu = i)s(u, i)
�

u
v s(uv, i) =

�
0 if u � e and xu �= i otherwise case below
�

j�{0,1} P (Xv = j|Xu = i)s(v, i)

s(u, i) =

�
0 if u � e and xu �= i

s(uv, i)s(uw, i) otherwise

ALGORITHM -
MARGINALIZATION TREE DGM
★ Subproblem, subsolution

u
v

i
s(uv, i) = P (XV (Tv)\e, xV (Tv)\e|Xu = i)

s(uv, i) =P (XV (Tv)\e, xV (Tv)�e|Xu = i)

=
�

j�{0,1}

P (XV (Tv)\e, xV (Tv)�e, Xv = j|Xu = i)

=
�

j�{0,1}

P (Xv = j|Xu = i)P (XV (Tv)\e, xV (Tv)�e, |Xv = j, Xu = i)

=
�

j�{0,1}

P (Xv = j|Xu = i)P (XV (Tv)\e, xV (Tv)�e, |Xv = j)

=
�

j�{0,1}

P (Xv = j|Xu = i)s(v, j)

ZOOM IN
★ Visit the vertices and edges of G from leaves to root

✴ when at edge uv (u has another child too)

✴ when at vertex u with children v and w
u

v w s(u, i) =

�
0 if u � e and xu �= i otherwise case below��

j�{0,1} P (Xv = j|Xu = i)s(u, i)
� ��

j�{0,1} P (Xw = j|Xu = i)s(u, i)
�

u
v s(uv, i) =

�
0 if u � e and xu �= i otherwise case below
�

j�{0,1} P (Xv = j|Xu = i)s(v, i)

s(u, i) =

�
0 if u � e and xu �= i

s(uv, i)s(uw, i) otherwise

SUMMARY - IND. SET
ALGORITHM
★ Given junction-tree (T,B) for G. Make T binary, let r be the root of T

• Visit the vertices and edge of T from leaves to root

✴ when at leaf t

✴ at edge st

✴ if two children s and s’

✴ if single child s

It(S) =

�
�� if S not ind. set and otherwise the case below
Ist(S �B(s)) + Is�t(S �B(s�)) + |S \ (B(s) �B(s�))|� |S �B(s) �B(S�)|

It(S) =

�
�� if S not ind. set
|S| if S is ind. set

It(S) =

�
�� if S not ind. set
I(S �B(S)) + |S \ S�| if S is ind. set

t
s

t
s s’

t

t
s

Ist(S) = max
S��B(s):S�B(s)=S�

I(S�)

K-TREES (HERE K=3) 3-TREE

3-TREE 3-TREE

3-TREE 3-TREE

3-TREE 3-TREE

3-TREE 3-TREE

3-TREE 3-TREE

3-TREE JUNCTION TREE
Graph G T,B Junction tree

JUNCTION TREE G

★ Each vertex of G in some
bag

Definition Junction tree T,B Junction tree

JUNCTION TREE G
Graph G T,B Junction tree

JUNCTION TREE

★ Each vertex of G in some
bag

★ Each edge of G in some
bag

Definition Junction tree T,B Junction tree

 JUNCTION TREE
Graph G T,B Junction tree

 JUNCTION TREE

★ Each vertex of G in some
bag

★ Each edge of G in some bag

★ Each vertex of G induce a
subtree (running intersection
property)

Definition Junction tree T,B Junction tree

 JUNCTION TREE

★ Each vertex of G in some
bag

★ Each edge of G in some bag

★ Each vertex of G induce a
subtree (running intersection
property)

Definition Junction tree T,B Junction tree

 JUNCTION TREE

★ Each vertex of G in some
bag

★ Each edge of G in some bag

★ Each vertex of G induce a
subtree (running intersection
property)

Definition Junction tree T,B Junction tree

 JUNCTION TREE
Graph G T,B Junction tree

(TREE) WIDTH

★ (Size of largest bag)- 1

Width of junction tree T,B Junction tree

CLIQUES IN G
Graph G T,B Junction tree

JUNCTION TREE - 2
IMPORTANT PROPERTIES

★ Every clique can be
found in some bag

★ The intersection of 2
neighboring bags is a
separator

T,B Junction tree

CLIQUES AND
SEPARATORS IN G
Graph G T,B Junction tree

 JUNCTION TREE
Graph G T,B Junction tree

PARTIAL K-TREE

★Removing edges from k-
tree gives partial k-tree

PARTIAL K-TREE

★Removing edges from k-
tree gives partial k-tree

STILL TRUE FOR PARTIAL
K-TREE

★ Every clique can be
found in some bag

★ The intersection of 2
neighboring bags is a
separator

T,B Junction tree

JUNCTION TREE GUIDED
DP - INDEPENDENT SET

JUNCTION TREE GUIDED
DP - SUBPROBLEMS

a

b

c

d

e

f

g

h
the root

Subproblems
 subtree rooted at c

Tc

JUNCTION TREE GUIDED
DP - SUBPROBLEMS

h

Subproblems
 subtree rooted at v
 subtree associated with edge

a

b

c

d

e

f

g

h
the root

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Ic table/function with sizes of maximum independent sets in subtree rooted at c
 based on intersection with c:s bag

Tc

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Ic table/function with sizes of maximum independent sets in subtree rooted at c
 based on intersection with c:s bag

Ic (,) =
Tc

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Iv table/function with sizes of maximum independent sets in subtree rooted at v
 based on intersection with v:s bag

Ic (,) = 4
Tc

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Ic∩b table/function with sizes of maximum independent sets in subtree below c and b
 based on intersection with the sepset c∩b

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Ic∩b table/function with sizes of maximum independent sets in subtree below c and b
 based on intersection with the sepset c∩b

b⋂c =

JUNCTION TREE GUIDED
DP - SUBSOLUTIONS

a

b

c

d

e

f

g

h
the root

Ic∩b table/function with sizes of maximum independent sets in subtree below c and b
 based on intersection with the sepset c∩b

Ib⋂c () = 2
b⋂c =

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Iv table/function with sizes of maximum independent sets in subtree rooted at v
 based on intersection with v:s bag

Ia =

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

Ia∩b =

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

Ia∩b table/function with sizes of maximum independent sets in subtree below a and b
 based on intersection with the sepset a∩b

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

Ia∩b =

Ia∩b table/function with sizes of maximum independent sets in subtree below a and b
 based on intersection with the sepset a∩b

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

Ia∩b =

Ia∩b table/function with sizes of maximum independent sets in subtree below a and b
 based on intersection with the sepset a∩b

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

Ia∩b =

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

Ia∩b table/function with sizes of maximum independent sets in subtree below a and b
 based on intersection with the sepset a∩b

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

Ia∩b =

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

Ia∩b table/function with sizes of maximum independent sets in subtree below a and b
 based on intersection with the sepset a∩b

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

Ia∩b =

s
1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 1 0 1 2
0 0 0 0 0

Ia =

B the bag and s below t, Ist(S) = max

S02B(s):S0\B(t)=S
I(S0

)

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

Ib =

Ia∩b =
s

1 0 0 1
0 1 0 2
0 0 1 1
0 0 0 1

s
1 0 0 0 1
0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 1 1 2

JUNCTION TREE GUIDED
DP - COMPUTING

s
1 0 0 0 1
0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 1 1 2

a

b

c

d

e

f

g

h
the root

Ib =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

JUNCTION TREE GUIDED
DP - COMPUTING

s
1 0 0 0 1
0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 0 1 1 2

a

b

c

d

e

f

g

h
the root

Ib =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

B the bag and s only child of t, It(S) =

(
Ist(S \B(s)) + |S \B(s)| if S independent set ✓ B(t)

�1 otherwise

JUNCTION TREE GUIDED
DP - COMPUTING

s
0 1 1 0 2
0 1 0 1 2
1 0 0 1 2
1 0 0 0 1
0 1 0 0 1

a

b

c

d

e

f

g

h
the root

Ie =

… … …… …

JUNCTION TREE GUIDED
DP - COMPUTING

s
0 1 1 0 2
0 1 0 1 2
1 0 0 1 2
1 0 0 0 1
0 1 0 0 1

a

b

c

d

e

f

g

h
the root

Ie =

… … …… …

s
0 1 1 2
1 0 0 2
0 1 0 2
0 0 1 1
0 0 0 1

Ie∩d =

B the bag and s below t, Ist(S) = max

S02B(s):S0\B(t)=S
I(S0

)

JUNCTION TREE GUIDED
DP - COMPUTING

s
1 0 0 0 2
0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 1 1 0 2
0 0 0 0 1

a

b

c

d

e

f

g

h
the root

Id =

s
0 1 1 2
1 0 0 2
0 1 0 2
0 0 1 1
0 0 0 1

Ie∩d =

B the bag and s only child of t, It(S) =

(
Ist(S \B(s)) + |S \B(s)| if S independent set ✓ B(t)

�1 otherwise

JUNCTION TREE GUIDED
DP - COMPUTING

s
1 0 0 0 2
0 1 0 0 2
0 0 1 0 1
0 0 0 1 2
0 1 1 0 2
0 0 0 0 1

a

b

c

d

e

f

g

h
the root

Id =

s
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

Ic∩d =

B the bag and s below t, Ist(S) = max
S��B(s):S�B(s)=S�

I(S�)

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

Ic∩d =

s
1 0 0 0 2
0 1 0 0 3
0 0 1 0 3
0 1 1 0 4
0 0 0 1 3

Ic =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

Ic∩d =

Ic =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

s
1 0 0 0 2
0 1 0 0 3
0 0 1 0 3
0 1 1 0 4
0 0 0 1 3

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

Ic∩d =

Ic =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

s
1 0 0 0 2
0 1 0 0 3
0 0 1 0 3
0 1 1 0 4
0 0 0 1 3

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

s
1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

Ic∩d =

Ic =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

Ib∩c =

s
1 0 0 0 2
0 1 0 0 3
0 0 1 0 3
0 1 1 0 4
0 0 0 1 3

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the rootIc =

s
1 0 0 1
0 0 1 2
0 0 0 1
0 1 0 2

s
1 0 0 0 2
0 1 0 0 3
0 0 1 0 3
0 1 1 0 4
0 0 0 1 3

Ib∩c =

s, s0 the 2 only children of t

It(S) =

�
�� if S not ind. set and otherwise the case below
Ist(S �B(s)) + Is�t(S �B(s�)) + |S \ (B(s) �B(s�))|� |S �B(s) �B(S�)|

JUNCTION TREE GUIDED
DP - COMPUTING

a

b

c

d

e

f

g

h
the root

Ih =
s

1 0 0 0 3
0 1 0 0 4
0 0 1 0 3
0 0 0 1 4
1 0 0 1 4

SUMMARY - IND. SET
ALGORITHM
★ Given junction-tree (T,B) for G. Make T binary, let r be the root of T

• Visit the vertices and edge of T from leaves to root

✴ when at leaf t

✴ at edge st

✴ if two children s and s’

✴ if single child s

It(S) =

�
�� if S not ind. set and otherwise the case below
Ist(S �B(s)) + Is�t(S �B(s�)) + |S \ (B(s) �B(s�))|� |S �B(s) �B(S�)|

It(S) =

�
�� if S not ind. set
|S| if S is ind. set

It(S) =

�
�� if S not ind. set
I(S �B(S)) + |S \ S�| if S is ind. set

t
s

t
s s’

t

t
s

Ist(S) = max
S��B(s):S�B(s)=S�

I(S�)

UGM
★ UGMs - Undirected graphical

models

★ What is the direction between 2
pixels, 2 proteins?

★ Probabilistic interpretation?

★ p factorizes over G – can be
expressed as normalized product
over factors associated with
cliques

Grade

Letter

Job

Happy

Coherence

SAT

G,J,S,L H,G,JG,S,IG,I,DC,D
G,JG,SG,ID

IntelligenceDifficulty

Grade

Letter

Job

Happy

Coherence

SAT

IntelligenceDifficulty

(a) (b)

(c)

• Probability

• where

PROBABILISTIC
INTERPRETATION

Factors – misconception example

P (A,B, C, D) =
1
Z

�1(A,B)�2(B,C)�3(C,D)�4(D,A)

Z =
�

a,b,c,d

�1(a, b)�2(b, c)�3(c, d)�4(d, a)

Scope A,B B,C C,D D,A

UGMS

• E.g.

A CONCRETE FACTOR
PRODUCT

Misconception

�1(A = 1, B =1)�2(B = 1, C = 0)�3(C = 0, D = 1)�4(D = 1, A = 1)
= 10 · 1 · 100 · 100
= 100000

Z =
�

a,b,c,d

�1(a, b)�2(b, c)�3(c, d)�4(d, a)

A CONCRETE FACTOR
PRODUCT

a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

b1

b1

b2

b2

b1

b1

b2

b2

b1

b1

b2

b2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c2

0.5⋅0.5 = 0.25

0.5⋅0.7 = 0.35

0.8⋅0.1 = 0.08

0.8⋅0.2 = 0.16

0.1⋅0.5 = 0.05

0.1⋅0.7 = 0.07

 0⋅0.1 = 0

 0⋅0.2 = 0

0.3⋅0.5 = 0.15

0.3⋅0.7 = 0.21

0.9⋅0.1 = 0.09

0.9⋅0.2 = 0.18

a1

a1

a2

a2

a3

a3

b1

b2

b1

b2

b1

b2

0.5

0.8

0.1

0

0.3

0.9

b1

b1

b2

b2

c1

c2

c1

c2

0.5

0.7

0.1

0.2

MARGINALIZE

• The denominator contains a marginal likelihood

• Summing out V binary hidden variables – O(2V)

• K values – O(KV)

p(Xm|xe,✓) =
p(Xm,xe|✓)

p(xe|✓)
=

P
xV \(m[e)

p(xV \(m[e),Xm,xe|✓)
P

xV \e
p(xV \(m[e),xe|✓)

EQUIVALENCE I-MAP AND
FACTORIZATION

• For positive distributions p (i.e., ∀y, p(y)>0),

I(G) ⊆ I(p) ⇔ p can be expressed as a normalised product over

factors of G (as below)

SEPARATION
AND CI OF UGM
★ A is separated from B given O in
G if there is no path between A and B
in G\O

★ In a graph G,

A is separated from B given O

A B

G
O

DEF I-MAP
• G is an I-map for p if all

independence relation in G hold
for p, i.e., I(G)⊆I(p)

• Moralize add edge between any
two parents

• We can moralize a DGM and get
a UGM having no more
independence relations

• Each family is a clique in the
moralized UGM

CONVERTING DGM TO
UGM

• Moralize and remove directions

• does not introduce new independencies!

• Use CPDs as factors

Grade

Letter

Job

Happy

Coherence

SAT

IntelligenceDifficulty

Grade

Letter

Job

Happy

Coherence

SAT

G,J,S,L H,G,JG,S,IG,I,DC,D
G,JG,SG,ID

IntelligenceDifficulty

Grade

Letter

Job

Happy

Coherence

SAT

IntelligenceDifficulty

(a) (b)

(c)

THE END

