

Lecture 7

EXACT ALGORITHMS FOR GRAPHICAL MODELS

- ★ Many problems are NP-hard (marginalization etc.)
- ★ For trees they are many of them can be solved by DP
- ★ When the graph is "tree-like" find a representation of the "treelikness" and use it to guide DP
- ★ Unfortunately, finding the representation is not always easy
- ★ Today assuming the representation is given.
- ★ Independent set as exercise.

ALGORITHM - MARGINALIZATION TREE DGM

- ★ Given Bernoulli DGM with G binary directed tree and evidence xe, for evidence set e
- ★ Subproblem, subsolution

 $s(u, i) = P(X_{V(T_u)}) \in (x_{V(T_u)}) \cap (x_{u} - i)$

ALGORITHM - MARGINALIZATION TREE DGM

- ★ Given Bernoulli DGM with G binary directed tree and evidence x_e for evidence set e
- ★ Visit the vertices of G from leaves to root
- ✴ when at leaf l

$$
\mathcal{L}_{\mathcal{L}}
$$

 $s(l, i) = \begin{cases} 0 \text{ if } l \in e \text{ and } x_l \neq i \end{cases}$ 1 otherwise

✴ when at vertex u with children v and w

l

 $s(u,i)=\begin{cases} 0 \text{ if } u \in e \text{ and } x_u \neq i \text{ otherwise case below} \\ \left(\sum_{j \in \{0,1\}} P(X_v=j|X_u=i)s(v,j)\right) \left(\sum_{j \in \{0,1\}} P(X_w=j|X_u=i)s(w,j)\right) \end{cases}$

JUNCTION TREE

JES AND PARATORS IN G

$$
p(\mathbf{X}_m | \mathbf{x}_e, \boldsymbol{\theta}) = \frac{p(\mathbf{X}_m, \mathbf{x}_e | \boldsymbol{\theta})}{p(\mathbf{x}_e | \boldsymbol{\theta})} = \frac{\sum_{\mathbf{x}_{V \setminus (m \cup e)}} p(\mathbf{x}_{V \setminus (m \cup e)}, \mathbf{X}_m, \mathbf{x}_e | \boldsymbol{\theta})}{\sum_{\mathbf{x}_{V \setminus e}} p(\mathbf{x}_{V \setminus (m \cup e)}, \mathbf{x}_e | \boldsymbol{\theta})}
$$
\nThe denominator contains a marginal likelihood

\nSumming out V binary hidden variables – O(2^V)

\nK values – O(K^V)

EQUIVALENCE I-MAP AND FACTORIZATION

• For positive distributions p (i.e., ∀y, p(y)>0),

 $I(G) \subseteq I(p) \Leftrightarrow p$ can be expressed as a normalised product over factors of G (as below)

$$
p(\mathbf{y}|\boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{c \in C} \psi_c(\mathbf{y}_c|\boldsymbol{\theta}_c)
$$

