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Recapitulation

What did we do last
lecture?
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Outline - Motivation

Passband processing is done in complex domain and Gaussian
is the most important distribution. Therefore, let’s have a look at
these distributions:

Complex Gaussian and Circular Symmetry (chap 24)

Most physical signals realizations are continuous. Thus an
extension of the notions and a solid understanding of stochastic
processes is required.

Continuous Time Stochastic Processes (chap 25)
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Standard Complex Gaussian

Standard Complex Gaussian
Complex RV W whose real and imaginary part are independent
N(0, 1/2) RVs.

fW(w) =
1
π

e−|w|
2
, w ∈ C

E [W] = 0 and Var [W] = E
[
|W|2

]
= 1

Standard complex Gaussian RV are

proper since E [W] = 0 and E
[
W2

]
= 0

radially-symmetric since fW(w) depends on |w| only
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Circular Symmetry

Circular Symmetry
CRV Z is circularly-symmetric if for any φ ∈ [−π, π) we have

e−iφZ L
= Z

If CRV Z has a density, then we have the following equivalences:
Z is circularly-symmetric
Z has a radially-symmetric density function
Z can be written as Z = ReiΘ, RV R and Θ with R ⊥ Θ,
R ∈ [0,∞), Θ ∼ U([−π, π))

Example: CRV Z = eiΦ, Φ ∼ U([−π, π)) is circularly-symmetric,
but does not have a density.
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Properness and Circular Symmetry

Circular symmetry considers whole distribution, properness
considers first two moments only.

1 Every finite-variance circularly-symmetric CRV is proper.
2 Not every proper CRV is circularly-symmetric

Proof:

E

[
Zk

]
= e−ikΦ

E

[
(eiΦZ)k

]
= e−ikΦ

E

[
Zk

]
, ⇒ E

[
Zk

]
= 0, k = 1, 2

Counterexample: CRV Z with 1 + i, 1 − i,−1 + i,−1 − i
equiprobable is proper, but eiπ/4 takes values
√

2,−
√

2,
√

2i,−
√

2i, thus not same distribution. �

Result also holds for the random vectors.
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Complex Gaussian

Complex Gaussian
A CRV is complex Gaussian if real and imaginary part are jointly real
Gaussian. It is centered if the mean is zero.

By some algebraic comparisons we can see

W standard complex Gaussian. For a centered complex Gaussian Z

1 exists α, β ∈ C such that Z L
= αW + βW∗

2 is proper iff exists α ∈ C such that Z L
= αW

For Z proper complex Gaussian from (ii) it follows

fZ(z) =
fW(z/α)
|α|2

= 1
2|α|2 e−

|z|2

|α|2 , z ∈ C
⇒ radially-symmetric, which implies circularly-symmetric.

A complex Gaussian is circular-symmetric iff it is proper!
KTH course: Foundations in Digital Communications c©Tobias Oechtering 7 / 26



Complex Gaussian Vectors

Standard complex Gaussian vector: Components are iid
standard complex Gaussian:

fW(w) =
1
πn e−w†w, w ∈ Cn.

Circularly-Symmetric: e−iφZ L
= Z for every φ ∈ [−π, π)

⇔ for every α ∈ Cn, the CRV αTZ is circularly-symmetric.

Z circularly-symmetric⇒ AZ circularly-symmetric, A ∈ Cn×m

E

[
ZZ†

]
and E

[
ZZT

]
specify a centered complex Gaussian

vector Z
⇒ E

[
ZZ†

]
specifies a proper complex Gaussian vector

Complex Gaussian Vector: ∃A,B ∈ Cn×m and µ ∈ Cn such

that Z L
= AW + BW∗ + µ, W ∈ Cm standard complex Gaussian

Complex Gaussian vector is proper iff it is circularly-symmetric
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Proper Complex Gaussian Vectors

Pdf of proper complex Gaussian vector Z with K � 0

fZ(z) =
1

πn det K
e−z†K−1z, z ∈ Cn

Relationship between complex random vectors:
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Let’s take a break!
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Continuous-Time Stochastic Processes (SP)

SP (X(t), t ∈ R) defined on common probability space (Ω,F ,P)

X : Ω ×R→ R, (ω, t) 7→ X(ω, t)

Random variable: ω 7→ X(ω, t)
Function of time: t 7→ X(ω, t) (trajectory)

SP (X(t)) is of zero mean (finite variance) if RV X(t) is centered
(finite variance) for every t ∈ R

Finite dimensional distributions (FDD) of a SP
Family of joint distributions (X(t1), . . . ,X(tn)) for any positive integer n
and epochs t1, . . . , tn ∈ R

(X(t)) and (Y(t)) are independent SP if (X(t1), . . . ,X(tn) and
(Y(t1), . . . ,Y(tn)) are independent ∀n and t1, . . . tn ∈ R.
CDF: Fn(ξ1, . . . , ξn; t1, . . . , tn) , P [X(t1) ≤ ξ1, . . . ,X(tn) ≤ ξn]

KTH course: Foundations in Digital Communications c©Tobias Oechtering 11 / 26



Kolmogorov’s Existence Theorem

Kolmogorov’s Existence Theorem
Let (Gn)n sequence of functions Gn : Rn

×Rn
→ [0, 1] satisfying

Gn(·; t1, . . . , tn) is a valid joint distribution ∀n ≥ 1 and
t1, . . . , tn ∈ R

symmetry property holds for all n, tk, ξk and permutations π
Gn(ξπ(1), . . . , ξπ(n); tπ(1), . . . , tπ(n)) = Gn(ξ1, . . . , ξn; t1, . . . , tn)
and consistency property for all tk, ξk
lim
ξn→∞

Gn(ξ1, . . . , ξn; t1, . . . , tn) = Gn−1(ξ1, . . . , ξn−1; t1, . . . , tn−1)

then ∃ SP (X(t)) whose FDDs are given by {Gn(·; ·)} in the sense

P [X(t1) ≤ ξ1, . . . ,X(tn) ≤ ξn] = Gn(ξ1, . . . , ξn; t1, . . . , tn)

Symmetry and consistency are sufficient for existence of FDDs
of some SP
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Gaussian Stochastic Process (SP)

Gaussian stochastic process
SP (X(t)) is a Gaussian stochastic process if (X(t1), . . . ,X(tn))T is
a Gaussian random vector for every n.

One reason why Gaussian SP are tractable:

FDDs for centered Gaussian SP: All its FDDs are determined by
autocovariance function (t1, t2) 7→ Cov [X(t1),X(t2)]

Proof: Since Gaussian SP is centered, mean is zero and covariance
matrix for any n-vector is given by

(
Cov

[
X(t j),X(tk)

])
1≤ j,k≤n

. �

τ 7→ Cov [X(t),X(t + τ)] if wide-sense stationary Gaussian SP
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Stationary Continuous-Time Process

Stationary
A SP is stationary (aka strict sense stationary, strongly stationary) if(

X(t1 + τ), . . . ,X(tn + τ)
) L

=
(
X(t1), . . . ,X(tn)

)
Wide-Sense Stationary
A SP is wide-sense stationary (aka second-order stationary,
weakly stationary) if the following are met

1 it is of finite variance,
2 E [X(t)] = E [X(t + τ)] for all t, τ ∈ R,
3 covariance between samples

Cov [X(t1)X(t2)] = Cov [X(t1 + τ)X(t2 + τ)] ∀t1, t2, τ ∈ R.

Autocovariance fct of WSS SP KXX(τ) , Cov [X(t + τ)X(t)]
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Stationary Gaussian Stochastic Process

Stationary Gaussian Stochastic Processes
A Gaussian SP is stationary iff it is WSS.
FDDs of a centered stationary Gaussian SP are fully specified by
its autocovariance function.

Relationship between stochastic processes
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Properties Autocovariance Function

If the autocovariance fct of WSS SP is continuous at the origin,
then it is a uniformly continuous function.
The autocovariance function KXX(τ) of a WSS SP X(t) is a

symmetric function: KXX(τ) = KXX(−τ)
positive definite function:

∑n
ν=1

∑n
ν′=1 αναν′KXX(tν − tν′ ) ≥ 0

Proof: 5-minute exercise.

Every symmetric positive definite function is the autocovariance
function of some stationary Gaussian SP.

Proof: Construct covariance matrix of centered Gaussian vector and
then use Kolmogorov’s Existence Theorem. �
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PSD of a Continuous-Time SP

PSD
WSS SP (X(t)) is of PSD SXX if SXX is a non-negative, symmetric,
integrable function with

KXX(τ) =

∫
∞

−∞

SXX( f )ei2π fτd f , τ ∈ R.

Var [X(t)] = KXX(0) =

∫
∞

−∞

SXX( f ) d f

Every non-negative, symmetric, integrable fct is the PSD of
some stationary Gaussian SP whose autocovariance function is
continuous.
A more general concept: Not every WSS SP with a continuous
acf has a PSD, but it has a spectral distribution function.
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Average Function

A SP is measurable if the mapping (ω, t) 7→ X(ω, t) is a
measurable mapping.

Power in Centered WSS SP
(X(t)) a measurable, centered, WSS SP with acf KXX, then the RV

ω 7→
1

b − a

∫ b

a
X2(ω, t)dt

satisfies 1
b−aE

[∫ b
a X2(ω, t)dt

]
= KXX(0), which denotes the power.

Proof:

E

∫ b

a
X2(ω, t)dt

 =

∫ b

a
E

[
X2(ω, t)

]
dt =

∫ b

a
KXX(0)dt = (b − a)KXX(0)

�
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Integral of a SP – Mean Value

For detecting and processing of continuous-time signals we are
interested in stochastic integrals.

ω 7→

∫
∞

−∞

X(ω, t)s(t)dt

s : R→ R integrable function, (X(t)) measurable WSS SP

We derive heuristically mean and variance for centered WSS
SP, the extension to non-centered X(ω, t) + µ is straightforward.

Mathematically, some issues have to be resolved: t 7→ X(ω, t)s(t)
has to be integrable for almost all ω. The result of integration has
to be a RV (check book and references).

Mean:

E

[∫
∞

−∞

X(ω, t)s(t)dt
]

=

∫
∞

−∞

E [X(ω, t)]s(t)dt = E [X(0)]
∫
∞

−∞

s(t)dt
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Integral of a SP – Variance

Variance:

Var
[∫

∞

−∞

X(ω, t)s(t)dt
]

= E

(∫ ∞

−∞

X(ω, t)s(t)dt
)2

= E

[∫
∞

−∞

∫
∞

−∞

X(ω, t)s(t)X(ω, τ)s(τ)dtdτ
]

=

∫
∞

−∞

∫
∞

−∞

s(t)E [X(ω, t)X(ω, τ)]︸                ︷︷                ︸
=KXX(t−τ)

s(τ)dtdτ

=

∫
∞

−∞

KXX(σ)
∫
∞

−∞

s(σ + τ)s(τ)dτ︸                 ︷︷                 ︸
=Rss(σ)

dσ =

∫
∞

−∞

KXX(σ)Rss(σ)dσ

Frequency domain: Var
[∫
∞

−∞
X(ω, t)s(t)dt

]
=

∫
∞

−∞
SXX( f )|ŝ( f )|2d f
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Linear Functionals of Stationary Gaussian Processes

The extension of the argument that the linear combination of
Gaussian RV is a Gaussian RV extends for the linear
combination of Gaussian WSS SP (very valuable result)!

Additionally to the previous let (X(t)) be Gaussian SP, αν ∈ R, then

ω 7→

∫
∞

−∞

X(ω, t)s(t)dt +

n∑
ν=1

ανX(ω, tν)

almost always exists and result is a Gaussian RV with mean
E [X(0)]

(∫
∞

−∞
s(t)dt +

∑n
ν=1 αν

)
and variance

Var
[∫
∞

−∞
X(ω, t)s(t)dt +

∑n
ν=1 ανX(ω, tν)

]
=

∫
∞

−∞
KXX(σ)Rss(σ)dσ

+
∑n
ν=1

∑n
ν′=1 αναν′KXX(tν − tν′) + 2

∑n
ν=1 αν

∫
∞

−∞
s(t)KXX(t − tν)dt
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Joint Distribution of Linear Functionals

Even more: If (X(t)) is a Gaussian SP, then the joint distribution
of a collection of linear functionals is jointly Gaussian!

Let s j : R→ R measurable functions, α j,ν ∈ R. Then the linear
functionals (RVs)

ω 7→

∫
∞

−∞

X(ω, t)s j(t)dt +

n j∑
ν=1

α j,νX(ω, t j,ν), j = 1, . . . ,m

of a measurable, Gaussian WSS SP (X(t)) are jointly Gaussian.

Generally, second-order properties of linear functionals of
measurable WSS SP can be characterized by the acf KXX.

In the Gaussian case, the mean and covariance matrix
completely specifies the joint distribution.
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Filtering of WSS Processes
∞∫
−∞

X(σ)h(t − σ)dσ

(i) Passing a WSS SP through a stable filter produces a WSS SP
with acf KYY = KXX ? Rhh, and E [X(t)Y(t + τ)] = (KXX ? h)(τ)

(X(t)) and (Y(t)) are said jointly wide-sense stationary.

(ii) An input with PSD SXX, then output PSD SYY( f ) = SXX( f )|ĥ( f )|2

(iii) If the input is Gaussian, then so is the output.
Additionally, (X(t)) and (Y(t)) are jointly Gaussian.

If h satisfies
∫
∞

−∞
h2(t)(1 + t2)dt < ∞, then the convolution is

defined for all t and almost all ω (universality).
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Wiener-Khinchin Theorem

Wiener-Khinchin Theorem
Let (X(t)) a measurable, centered, WSS SP with acf KXX is passed
through a stable filter with impulse response h, then the average
power is

Power of X ? h = (KXX ? Rhh)(0) =

∫
∞

−∞

KXX(τ)Rhh(τ)dτ

If additionally (X(t)) is of PSD SXX, then

Power of X ? h =

∫
∞

−∞

SXX( f )|ĥ( f )|2d f

This result can be used to show that PSD and operational PSD
of a WSS SP are almost the same and both exist if one exits.
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White Gaussian Noise

Most important continuous-time SP, slightly differently defined:

White Gaussian Noise
(N(t)) is white Gaussian noise of double-sided spectral density
N0/2 with respect to bandwidth W if (N(t)) is measurable,
stationary, centered, Gaussian SP with PSD satisfying

SNN( f ) = N0/2 f ∈ [−W,W]

Using the previous, many key properties can be derived, e.g.
s(t) integrable W-bandlimited fct

∫
∞

−∞
N(t)s(t)dt ∼ N(0,N0/2‖s‖2)

m such functions lead to jointly Gaussian RVs
If they are orthonormal, then the RVs are iid N(0,N0/2)
KNN ? s = N0/2s and Cov

[∫
∞

−∞
N(σ)s(σ)dσ,N(t)

]
= N0/2s(t)

Extension: White noise in passband ( f ∈ [ f0 −W, f0 + W])!
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Outlook - Assignment

Complex Gaussian and Circular Symmetry
Continuous Time Stochastic Processes

Next lecture
Detection in White Noise; Non-coherent Detection and Nuisance
Parameters

Reading assignment: Chap 26-27
Homework:

Problems in textbook: Exercises 24.1, 24.3, 24.4, 24.8, 25.1,
25.5, 25.10, and 25.11
Deadline: Dec 11
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