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Recapitulation

What did we do last
lecture?
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Outline - Motivation

@ Passband processing is done in complex domain and Gaussian
is the most important distribution. Therefore, let’s have a look at
these distributions:

o Complex Gaussian and Circular Symmetry (chap 24)

@ Most physical signals realizations are continuous. Thus an
extension of the notions and a solid understanding of stochastic
processes is required.

e Continuous Time Stochastic Processes (chap 25)

KTH course: Foundations in Digital Communications ©Tobias Oechtering 3/26



Standard Complex Gaussian

Standard Complex Gaussian

Complex RV W whose real and imaginary part are independent
N(0,1/2) RVs.

fuw) ==, wec

E[W] = 0 and Var [W] = E [|W|2] =1

Standard complex Gaussian RV are
@ proper since E[W]=0and E [WZ] =0
@ radially-symmetric since fiy(w) depends on |w| only
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Circular Symmetry

CRV Z is circularly-symmetric if for any ¢ € [-m, ©) we have

VAV

If CRV Z has a density, then we have the following equivalences:
@ Z is circularly-symmetric
@ 7 has a radially-symmetric density function
@ Z can be written as Z = Re®®, RV R and ® with R 1 ©,
R €[0,0), ® ~ U([-7, 7))

@ Example: CRV Z = e/®, ® ~ U([-r, n)) is circularly-symmetric,
but does not have a density.
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Properness and Circular Symmetry

@ Circular symmetry considers whole distribution, properness
considers first two moments only.

@ Every finite-variance circularly-symmetric CRV is proper.
© Not every proper CRV is circularly-symmetric

Proof:

E[Z] = e ™ E[®2)| =e™E[Z"], = E[Zf|=0k=1,2

@ Counterexample: CRV Z with 1+4,1-4,-1+4i,-1-1
equiprobable is proper, but e/# takes values
V2, - V2, \2i,— V2i, thus not same distribution. O

@ Result also holds for the random vectors.
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Complex Gaussian

Complex Gaussian

A CRV is complex Gaussian if real and imaginary part are jointly real
Gaussian. It is centered if the mean is zero.

By some algebraic comparisons we can see

W standard complex Gaussian. For a centered complex Gaussian Z
@ exists a,f € C such that Z Zaw + BW*
@ s proper iff exists a € C such that Z Zaw

@ For Z proper complex Gaussian from (ii) it follows
22

fZ(Z) — fwiz/a) _ 1 Q_W, zeC

a2 7 2af
= radially-symmetric, which implies circularly-symmetric.

@ A complex Gaussian is circular-symmetric iff it is proper!
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Complex Gaussian Vectors

@ Standard complex Gaussian vector: Components are iid
standard complex Gaussian:

1
fw(w) = ﬁe_”ﬁw, we(C".

@ Circularly-Symmetric: e *Z Z Zfor every ¢ € [-m, )
& for every a € C", the CRV a’Z is circularly-symmetric.
@ Z circularly-symmetric = AZ circularly-symmetric, A € ¢
o E [ZZ*] and E [ZZT] specify a centered complex Gaussian
vector Z
= E [ZZ*] specifies a proper complex Gaussian vector

@ Complex Gaussian Vector: A, B € C"™" and py € C" such
that Z £ AW + BW" + u, W € C™" standard complex Gaussian
@ Complex Gaussian vector is proper iff it is circularly-symmetric
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Proper Complex Gaussian Vectors

@ Pdf of proper complex Gaussian vector Z with K > 0

1 _ Tl
f2() = i detK " T zew

@ Relationship between complex random vectors:

random vectors

finite-variance

proper

circularly symmetric

Gaussian W\
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Let's take a break!
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Continuous-Time Stochastic Processes (SP)

@ SP (X(#),t € R) defined on common probability space (Q, 7, P)

X:OxR - R, (w,t) = X(w, t)
e Random variable: w — X(w, t)
e Function of time: t — X(w, t) (trajectory)

@ SP (X(t)) is of zero mean (finite variance) if RV X(t) is centered
(finite variance) for every t € R

Finite dimensional distributions (FDD) of a SP

Family of joint distributions (X(#1), ..., X(t,)) for any positive integer n
and epochs t4,...,t, € R

@ (X(t)) and (Y(t)) are independent SP if (X(t),..., X(t;) and
(Y(ty),...,Y(t,)) are independent Vn and t4, ...t, € R.
@ CDF: Fu(&1, .-, &ty tn) = P[X(t) < &1, X(tn) < Enl
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Kolmogorov’s Existence Theorem

Kolmogorov’s Existence Theorem

Let (Gy),, sequence of functions G,, : R x R" — [0, 1] satisfying
@ Gyu(;t,...,ty) is avalid joint distribution Yn > 1 and
t1,...,th €R
@ symmetry property holds for all n, t;, &, and permutations 7
Gu(&rq)s -+ r Enmys tr(t)s - - 1 ) = Gn(&1,-- -, &b, tn)
@ and consistency property for all ¢, &
lim Gu(&1,.-., &ntr, - tn) = Gua1(&1, - En-15t1, -+ Enm1)

En—00

then 9 SP (X(t)) whose FDDs are given by {G,(-;-)} in the sense

P[X(t1) <&1,..., X(ty) <Eu]l = Gu(&1, .-, & ta, -+ 1)

@ Symmetry and consistency are sufficient for existence of FDDs
of some SP
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Gaussian Stochastic Process (SP)

Gaussian stochastic process

SP (X(t)) is a Gaussian stochastic process if (X(t1),..., X(t,)! is
a Gaussian random vector for every n.

One reason why Gaussian SP are tractable:

FDDs for centered Gaussian SP: All its FDDs are determined by
autocovariance function (t1, ) — Cov [X(t1), X(£2)] J

Proof: Since Gaussian SP is centered, mean is zero and covariance
matrix for any n-vector is given by (Cov [X(tj), X(tk)]) O

1<jk<n’

@ 7 Cov [X(t), X(t + 7)] if wide-sense stationary Gaussian SP
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Stationary Continuous-Time Process

Stationary

A SP is stationary (aka strict sense stationary, strongly stationary) if

(Xt +0),..., Xt + D) Z (X(t), .., X(tn))

| \

Wide-Sense Stationary

A SP is wide-sense stationary (aka second-order stationary,
weakly stationary) if the following are met

@ it is of finite variance,
Q E[X(H)] =E[X(t+1)]foralltTelR,
© covariance between samples

Cov [X(t1)X(t)] = Cov [X(H + T)X(t2 + T)] Vi, t2, T € R.

A

@ Autocovariance fct of WSS SP Kxx(7) = Cov [X(t + 1) X ()]
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Stationary Gaussian Stochastic Process

@ Stationary Gaussian Stochastic Processes
e A Gaussian SP is stationary iff it is WSS.
o FDDs of a centered stationary Gaussian SP are fully specified by
its autocovariance function.

@ Relationship between stochastic processes

stochastic processes

finite-variance

WSS

(strictly) stationary

Gaussian \
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Properties Autocovariance Function

@ If the autocovariance fct of WSS SP is continuous at the origin,
then it is a uniformly continuous function.
@ The autocovariance function Kxx(7) of a WSS SP X(¢) is a
e symmetric function: Kxx(t) = Kxx(-1)
e positive definite function: Y._; Y1 _; ey Kxx(t, — t) > 0

@ Proof: 5-minute exercise.

Every symmetric positive definite function is the autocovariance
function of some stationary Gaussian SP.

Proof: Construct covariance matrix of centered Gaussian vector and
then use Kolmogorov’s Existence Theorem. O
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PSD of a Continuous-Time SP

WSS SP (X(t)) is of PSD Sxx if Sxx is a non-negative, symmetric,
integrable function with

Kxx(7) = f Sxx(f)e?fTdf, teR.

o

Var [X(t)] = Kxx(0) = f Sxx(f)df

@ Every non-negative, symmetric, integrable fct is the PSD of
some stationary Gaussian SP whose autocovariance function is

continuous.
@ A more general concept: Not every WSS SP with a continuous
acf has a PSD, but it has a spectral distribution function.
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Average Function

@ A SP is measurable if the mapping (v, t) — X(w,t) is a
measurable mapping.

Power in Centered WSS SP

(X(t)) a measurable, centered, WSS SP with acf Kxx, then the RV

1 (Mo,
- — X t
@ i (w, t)d

satisfies ﬁ]E [ fa ’ X% (w, t)dt] = Kxx(0), which denotes the power.

Proof:

E lfb Xz(a), t)dtl = fb E [XZ(a), t)]dt = fb Kxx(0)dt = (b — a)Kxx(0)

O
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Integral of a SP — Mean Value

@ For detecting and processing of continuous-time signals we are
interested in stochastic integrals.

W foo X(w, t)s(t)dt

s : R — R integrable function, (X(t)) measurable WSS SP

@ We derive heuristically mean and variance for centered WSS
SP, the extension to non-centered X(w, t) + u is straightforward.
o Mathematically, some issues have to be resolved: t — X(w, t)s(f)
has to be integrable for almost all w. The result of integration has
to be a RV (check book and references).

@ Mean:

E [ f B X, t)s(t)dt] = f B [X(w, H]s(t)dt = E [X(0)] f ) s(t)dt

(o] [o0]
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Integral of a SP — Variance

@ Variance:

0 0 2
Var [f X(w, t)s(t)dt] = E[([ X(w, t)s(t)dt) ]

= E[‘f:w j:oo X(w, H)s(t) X(w, T)S(T)dtd’c]

= foo foo s(HE [X(w, H)X(w, T)]s(t)dtdT

=Kxx(t-71)
:f KXX(a)f S(O’+T)S(T)d’[d(7=f Kxx(0)Rss(0)do
=Rss(0)

o Frequency domain: Var [ [ X(w, Hs(t)dt] = [, Sxx(AIB(HPAS
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Linear Functionals of Stationary Gaussian Processes

@ The extension of the argument that the linear combination of
Gaussian RV is a Gaussian RV extends for the linear
combination of Gaussian WSS SP (very valuable result)!

Additionally to the previous let (X(t)) be Gaussian SP, «, € R, then

W - I _ X(, hs()de + ; ayX(w, 1)

almost always exists and result is a Gaussian RV with mean
[ [X(0)] ( I GE = N av) and variance
Var U_o; X(w, Hs(h)dt + Yoy v X(w, tv)] = f_o; Kxx(0)Rss(0)do
+ 23:1 23/21 ayay Kxx(t, —ty) +2 Z]’;lzl Qay f_o::o s(t)Kxx(t — t,)dt
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Joint Distribution of Linear Functionals

@ Even more: If (X(t)) is a Gaussian SP, then the joint distribution
of a collection of linear functionals is jointly Gaussian!

Lets; : R — R measurable functions, a;, € R. Then the linear
functionals (RVs)

00 i
W f X(w, t)sj(t)dt + Z aj X(w, tpy), j=1,...,m
- v=1

of a measurable, Gaussian WSS SP (X(t)) are jointly Gaussian.

@ Generally, second-order properties of linear functionals of
measurable WSS SP can be characterized by the acf Kxx.

@ In the Gaussian case, the mean and covariance matrix
completely specifies the joint distribution.
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Filtering of WSS Processes f X(o)h(t — o)do

(X(t))

(i) Passing a WSS SP through a stable filter produces a WSS SP
with acf Kyy = Kxx % Ry, and E [X(t)Y(t + "C)] = (KXX * h)("()
e (X(t)) and (Y(¢)) are said jointly wide-sense stationary.
(i) Aninput with PSD Sxx, then output PSD Syy(f) = SXX(f)lfz(f)l2
(iii) If the input is Gaussian, then so is the output.
e Additionally, (X(¢)) and (Y(¢)) are jointly Gaussian.

h(-)

(X(t)) xh

o If h satisfies f_o; H2(t)(1 + t?)dt < oo, then the convolution is
defined for all t and almost all @ (universality).
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Wiener-Khinchin Theorem

Wiener-Khinchin Theorem

Let (X(t)) a measurable, centered, WSS SP with acf Kxx is passed
through a stable filter with impulse response h, then the average
power is

(o¢]

Power of X x h = (Kxx * Ry,)(0) = f Kxx(T)Ryy(7)dt

—00

If additionally (X(¢)) is of PSD Sxx, then

Power of X x h = f‘x’ Sxx(IA(f)IPdf

@ This result can be used to show that PSD and operational PSD
of a WSS SP are almost the same and both exist if one exits.
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White Gaussian Noise

@ Most important continuous-time SP, slightly differently defined:

White Gaussian Noise

(N(t)) is white Gaussian noise of double-sided spectral density
Ny /2 with respect to bandwidth W if (N(¢)) is measurable,
stationary, centered, Gaussian SP with PSD satisfying

Snw(f) =No/2  fe[-WW]

@ Using the previous, many key properties can be derived, e.g.

o s(t) integrable W-bandlimited fct f N(t)s(t)dt ~ N(0,No/2|ls|[>)
e m such functions lead to jointly Gaussian RVs
e If they are orthonormal, then the RVs are iid N (0, Ny/2)

o Ky * s = No/2s and Cov | [ N(0)s(o)do, N(t)| = No/2s(¢)
@ Extension: White noise in passband (f € [fo — W, fo + W])!
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Outlook - Assignment

@ Complex Gaussian and Circular Symmetry
@ Continuous Time Stochastic Processes

Detection in White Noise; Non-coherent Detection and Nuisance
Parameters

@ Reading assignment: Chap 26-27
@ Homework:

@ Problems in textbook: Exercises 24.1, 24.3, 24.4, 24.8, 25.1,
25.5, 25.10, and 25.11
@ Deadline: Dec 11
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