Wireless Sensor Networks

EP2980

Jonas.Wahslen@sth.kth.se

Sensors

- What to sense?
- How to sense/measure?
- Available sensors
 - Technology
- Medical
 - ECG
 - Pulsoximeter

Applications

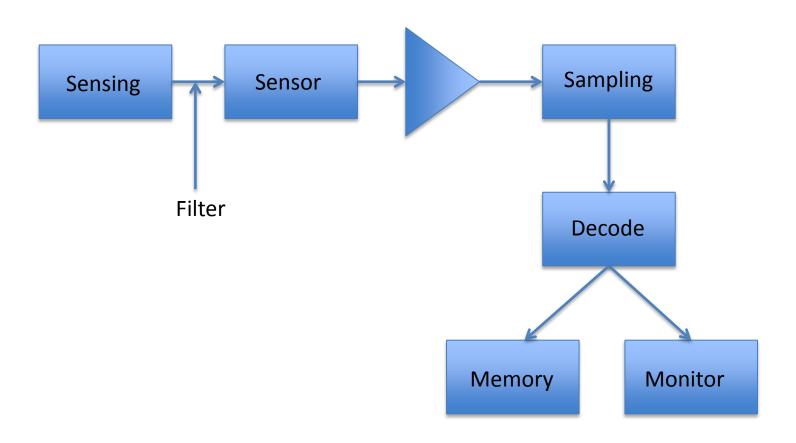
- Smart Grid
- Industrial Automation
- Smart Cities and Urban Networks
- Home Automation
- Building Automation
- Structural Health Monitoring
- Body Sensor Networking
 - Health: monitor & assist disabled
 - Military: command, control, communications and computing.

Sensing

- As this course is named mobile services, we need to convert any *physical* value to an *electrical* value
- From: temperature, humidity, light, ... (none electrical)
- To: current, voltage, resistance, time interval or frequency

Property

- Input range: the operating range to which the sensor is sensing
 - E.g. Temperature sensor operating reliably from -5°C to 40°C.
 - Outside this range the sensor's fault tolerance is exceeded.
- Output range: range of the output value
 - E.g. Temperature sensor returns voltage between
 0 and 5V


Property

- Sensitivity: How is a change in input signal mapped to the output signal?
 - E.g. an inclination sensor produces in output voltage of 1mv for every 2.30°.
- Latency: Speed with which sensor reacts to change
 - E.g. A temperature sensor having a latency of 14s per 10°C

Property

- Stability: insensitivity to factors other then measured physical quantity.
 - Noise: undesired change from ideal output value.
 E.g. thermal noise in the
 - Distortions. E.g. radioactive radiation influencing the sensor.
 - Environmental influences. E.g. temperature, air pressure, ...

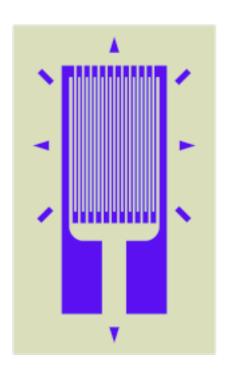
Sensor

Sampling rate

- Nyquist theorem
 - The sampling rate has to be at least twice as fast as the fastest **change**. If not, you are going to miss relevant information.
 - E.g. If sound signal changes at 3 kHz, you have to sample at at least 6 kHz to not miss anything of the signal.

Bit depth

- An 8-bit sampling (quantization) gives an resolution of 256 levels.
- If a signal varies from 0 to 10V, using a 8 bit resolution. Given the sampling value of 3.1415.... V after coding 3.1372 V


- -10/255 = 0.0392 V/level
- -80*0.0392 = 3.1372 V

A normal electrocardiogram

Sensor technologies

- Contact sensor
- Force sensors
- Light sensing
- Gyroscope
- Accelerometers

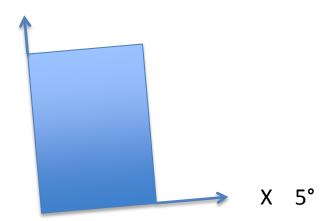
Light sensors


- Photo diode
 - Diode embedded in translucent plastic package
 - Conductivity influenced by photons hitting the n-p junction
- Photo transistors
 - Transistors embedded in translucent plastic package
 - Transistors amplifies (100 to 1000 times), can be hooked to a AD converter
- Light dependent resistors (LDR)
 - Resistance decrease when light falls on it
 - Not sensitive to infrared light
- Light to frequency converter
 - Diode combined with a IC to convert current to pulse
 - Accurate, light intensity on one wire

Other sensors

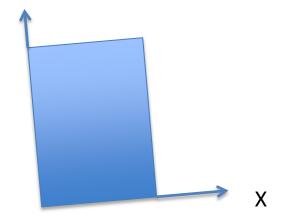
- Proximity sensors
 - Mechanical: contact sensor
 - Optical: consists of a light source (LED) and light detector (phototransistor)
- Potentiometer displacement
- Linear variable differential transformer (LVDT) movement
- Capacitance sensor, dependent on distance between the electrodes
- Piezoelectric sensors generates electrical potential when stressed

Accelerometers and gyro


- Spring-mounted mass
- Newton's law and spring-mass relation

- Simplest micro electro-mechanical system (MEMS) device possible
- The widespread use of accelerometers have pushed the cost down dramatically

Exam question


Estimate the speed in the direction of the accelerometer's x-axis 5 seconds after the measurement started, which is the error due to incorrect mounting.

Exam question

Estimate the speed in the direction of the accelerometer's x-axis 5 seconds after the measurement started, which is the error due to incorrect mounting.

Speed = time * acceleration 5 * 9.81 * sin(5) = 4.27 m/s

Analyze of acceleration

- Low-pass filer
 - Isolate constant acceleration
 - Used to find the device orientation
- High-pass filter
 - Show instantaneous moves only
 - Used to identify user-initial moves

Filter

- Engineering function for Low-pass filter
 - FilterFactor Ff= 0,1
 - FilteredValue Fv(n) = (SampledData * Ff) + (Fv(n-1) * (1,0 Ff))
- High-pass filter
 - FilterFactor Ff = 0,9

Medical analyze

- Diagnose
 - Ocular
 - Audible
- Tele metric
 - Electrical
 - Chemical

- Information about
 - Skin
 - Heart
 - Lungs

Coff

Blood

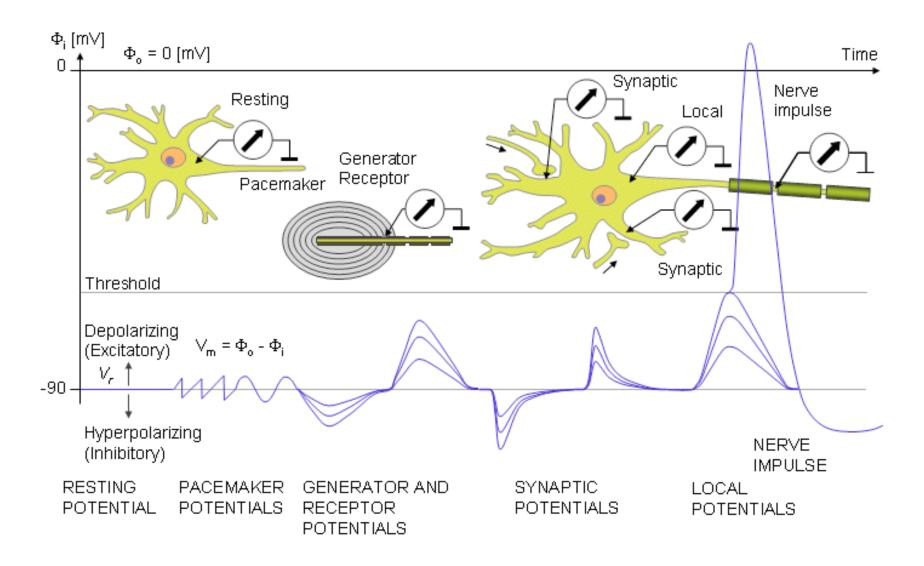
Skin

What to sense

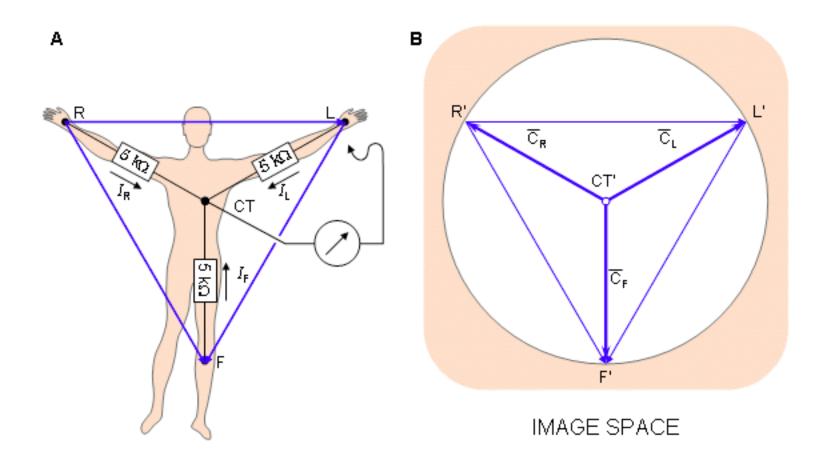
- Mechanical quantity (force, displacement)
- Pressure, flow, volume
- Thermic sensors
- Ultrasound
- Electrodes for bio potential

- Chemical sensors
- Optical sensors

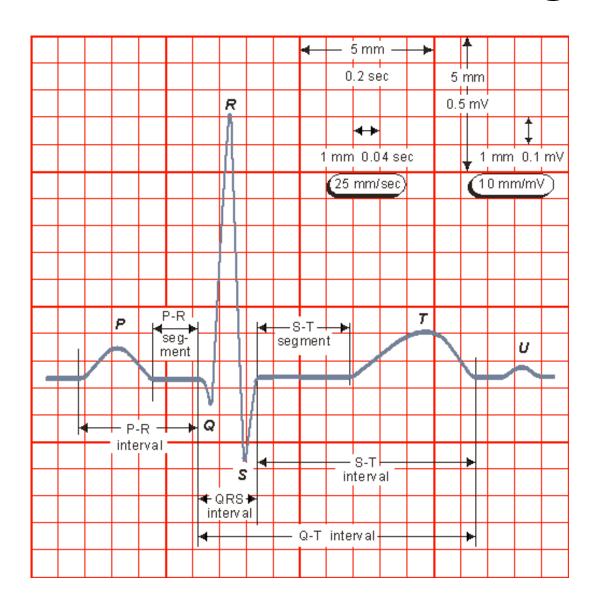
Medical values


- Example on things to measure on humans
 - Mechanical muscle, bone mass
 - Thermic infection, metabolism
 - Electrical muscle, nerves
 - Chemical blood gases, blood glucose, enzymes

Medical sensors

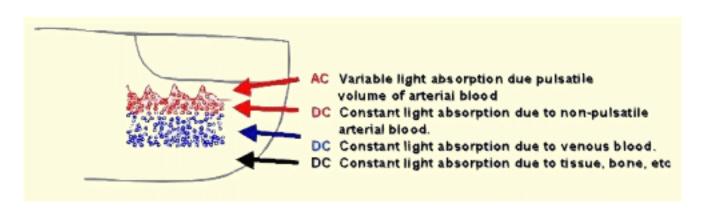

- ECG
 - (Electrocardiogram)
 - Monitor the heart
- Pulse oximeter
 - Pulse and oxygen level
 - surveillance

- Pressure measurement
 - Blood pressure
 - Lung capacity
- Accelerometer
 - Stroke, alzheimers

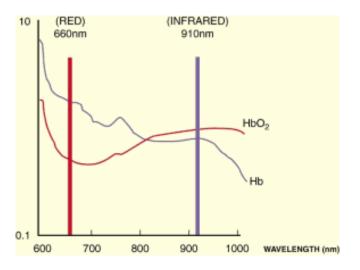

Bioelectric function of the nerve cell

The Wilson central terminal (CT)

A normal electrocardiogram


Pulse oximetry

- A non-invasive method to monitor oxygenation of a patient's hemoglobin
- That is fast
 - under 90% = new red blood cells are created
 - under 70% = increase risk of heartarytmier
 - under 30% = risk for life


Pulse oximetry

- Clinical use
 - Lung diseases
 - Operation (anestesi, surveillance)
 - Neonatal care
 - Surveillance in ambulance

Pulse oximetry

- Pulse oximetry Two LED with wavelength 660nm and 910nm
- Two different absorption for Hb and Hb0₂
- Built on reference values

