Sufficient Statistics, Multivariate Gaussian Distribution Course: Foundations in Digital Communications

Tobias Oechtering presented by: **Ragnar Thobaben**

Royal Institute of Technology (KTH), School of EE and ACCESS Center, Communication Theory Lab Stockholm, Sweden

5th lecture

What did we do last lecture?

- In practical systems we want/have to process our received data. What processing of the observed data does not reduce the possible detection performance?
 - Sufficient Statistics (chap 22)
- The most important multivariate distribution in Digital Communication:
 - Multivariate Gaussian Distribution (chap 23)

Introduction

"a sufficient statistic for guessing M based on the observation Y is a random variable or a collection of random variables that contains all the information in Y that is relevant for guessing M"

• The idea of sufficient statistics ...

- is a very deep concept with a strong impact;
- provides fundamental intuition;
- classifies processing which does not degrade performance;
- is defined for $\{f_{Y|M}(\cdot|m)\}_{m\in\mathcal{M}}$ and is unrelated to a prior.
- **Example:** In the 2-dimensional Gaussian 8-PSK detection problem, the decision is only based on the Euclidean distance between the observation and the symbols.
 - The scalar RV describing the distance is a sufficient statistic.
 - \Rightarrow It summarizes the information needed for guessing *M* optimally.

Definition and Main Consequences

• Roughly, $T(\cdot)$ is a sufficient statistic if there exists a black box that produces $\{\mathbb{P}\left[M = m | \mathbf{Y} = \mathbf{y}_{obs}\right]\}$ when fed with $T(\mathbf{y}_{obs})$ and any $\{\pi_m\}$.

Definition

A measurable mapping $T : \mathbb{R}^d \to \mathbb{R}^{d'}$ forms a **sufficient statistic** for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$ if there exist measurable functions $\psi_m : \mathbb{R}^{d'} \to [0, 1]$, $m \in \mathcal{M}$, such that for every prior $\{\pi_m\}$ and almost all $y_{obs} \in \mathbb{R}^d$ where $\sum_m \pi_m f_{Y|M}(y_{obs}|m) > 0$ we have

$$\psi_m(\{\pi_m\}, T(\boldsymbol{y}_{obs})) = \mathbb{P}\left[M = m | \boldsymbol{Y} = \boldsymbol{y}_{obs}\right], \quad \forall m \in \mathcal{M}.$$

- If *T*(·) is a sufficient statistic for {*f*_{Y|M}(·|*m*)}_{*m*∈M}, then there exists an optimal decision rule based on *T*(*Y*).
 - Note that $T(\cdot)$ does not have to be reversible.

Equivalent Conditions: Factorization Theorem

- Roughly, T(·) is a sufficient statistic if all densities can be written as a product of functions where
 - one does not depend on the message but possibly y
 - the other one depends on the message and $T(\cdot)$ only
- Useful in identifying sufficient statistics

Factorization Theorem

 $T(\cdot)$ denotes a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m\in\mathcal{M}}$ iff there exist measurable functions $g_m : \mathbb{R}^{d'} \to [0,\infty), m \in \mathcal{M}$, and $h : \mathbb{R}^d \to [0,\infty)$ such that for almost all $y \in \mathbb{R}^d$ we have

$$f_{Y|M}(\boldsymbol{y}|\boldsymbol{m}) = g_m(T(\boldsymbol{y}))h(\boldsymbol{y}), \quad \forall \boldsymbol{m} \in \mathcal{M}.$$

Proof idea: $\psi_m(\{\pi_m\}, T(\boldsymbol{y}_{obs})) = \mathbb{P}\left[M = m | \boldsymbol{Y} = \boldsymbol{y}_{obs}\right] = \frac{\pi_m f_{Y|M}(\boldsymbol{y}_{obs}|m)}{f_Y(\boldsymbol{y}_{obs})}.$ " \Rightarrow " Identify the functions as $g_m(T(\boldsymbol{y})) = \frac{\psi_m(\{\pi_m\}, T(\boldsymbol{y}_{obs}))}{\pi_m}$ and $h(\boldsymbol{y}) = f_Y(\boldsymbol{y}).$ " \Leftarrow " Use $f_{Y|M}(\cdot|m) = g_m(T(\cdot))h(\cdot), f_Y(\cdot) = \sum_m \pi_m f_{Y|M}(\cdot|m).$

Markov Condition

• Tobias' favorite:

Markov condition

A measurable function $T : \mathbb{R}^d \to \mathbb{R}^{d'}$ forms a sufficient condition for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$ iff for any prior $\{\pi_m\}_m$ we have

$$M - T(\mathbf{Y}) - \mathbf{Y}$$

• M - T(Y) - Y means

- M and Y are conditionally independent given T(Y)
- equalities $P_{M|T(Y)Y} = P_{M|T(Y)}$ and $P_{Y|T(Y)M} = P_{Y|T(Y)}$
- Since $P_{M|Y} = P_{M|T(Y)Y}$ (T(Y) fct of Y), the last implies $P_{M|Y} = P_{M|T(Y)}$.
 - The conditional distribution of *M* given *Y* follows from the conditional distribution of *M* given *T*(*Y*).

Pairwise Sufficiency and Simulating Observables

Pairwise Sufficiency

Consider $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$, assume $T(\cdot)$ forms a sufficient statistic for every pair $f_{Y|M}(\cdot|m)$ and $f_{Y|M}(\cdot|m')$ where $m \neq m'$. Then $T(\cdot)$ is a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$.

Simulating Observables (roughly statement)

Since sufficient statistic T(Y) contains all information about M which are in Y, i.e., $p_{M|T(Y)} = p_{M|Y}$, it is possible to generate a RV \tilde{Y} using T(Y) that *appears statistically* like Y given M, i.e., $p_{\tilde{Y}|M} \stackrel{\mathscr{L}}{=} p_{Y|M}$. The opposite direction is also true, if such a function T(Y) exists, then it forms a sufficient statistic.

- This requires a local random number generator Θ .
- Anything learned about M from Y can be learned from \tilde{Y} .

Identify Sufficient Statistics

• A not helpful result in terms of "summarizing" but still relevant:

5-minute exercise

Show that any reversible transformation $T(\cdot)$ forms a sufficient statistic.

Identify Sufficient Statistics

• A not helpful result in terms of "summarizing" but still relevant:

5-minute exercise

Show that any reversible transformation $T(\cdot)$ forms a sufficient statistic.

Computable from the Statistic

Let $T : \mathbb{R}^d \to \mathbb{R}^{d'}$ form a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$. If $T(\cdot)$ can be written as $\phi \circ S$ with $\phi : \mathbb{R}^{d''} \to \mathbb{R}^{d'}$, then $S : \mathbb{R}^d \to \mathbb{R}^{d''}$ also forms a sufficient statistic.

• If $T(\mathbf{Y})$ is computable from $S(\mathbf{Y})$, then $S(\mathbf{Y})$ has to contain all information about M which are also in $T(\mathbf{Y})$, i.e., $\mathbb{P}\left[M = m|Y = \mathbf{y}_{obs}\right]$ is computable from $S(\mathbf{Y})$ as well.

Two-step approach

If $T : \mathbb{R}^d \to \mathbb{R}^{d'}$ forms a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$ and if $S : \mathbb{R}^{d'} \to \mathbb{R}^{d''}$ forms a sufficient statistic for the corresponding densities of T(Y), then the composition $S \circ T$ forms a sufficient statistic for $\{f_{Y|M}(\cdot|m)\}_{m \in \mathcal{M}}$.

Proof:
$$P_{M|S(T(\mathbf{Y}))} = P_{M|T(\mathbf{Y})} = P_{M|\mathbf{Y}}$$

Conditionally Independent Observations

Let $T_i : \mathbb{R}^{d_i} \to \mathbb{R}^{d'_i}$ form sufficient statistics for $\{f_{Y_i|M}(\cdot|m)\}_{m \in \mathcal{M}}, i = 1, 2$ and Y_1 and Y_2 are conditionally independent given M, then $(T_1(Y_1), T_2(Y_2))$ forms a sufficient statistic for $\{f_{Y_1Y_2|M}(\cdot|m)\}_{m \in \mathcal{M}}$.

Proof: Factorization theorem: $f_{Y_1Y_2|M} = f_{Y_1|M}f_{Y_2|M} = g_m^{(1)}h^{(1)}g_m^{(2)}h^{(2)}$

п

Irrelevant Data

 Roughly, the "part" of the observation which is not part in a sufficient statistic is *irrelevant* for the purpose of detection

Definition

R is said to be **irrelevant** for guessing *M* given *Y* if *Y* forms a sufficient statistic based on (Y, R), i.e., M - Y - (Y, R).

• A RV can be irrelevant, but still depend on the RV we wish to guess.

 $R \perp M \& Y - M - R \implies R$ is *irrelevant* for guessing M given Y

Proof: Factorization theorem $f_{YR|M}(y,r|m) = f_{Y|M}(y|m)f_{R|M}(r|m) = f_{Y|M}(y|m)f_{R}(r) = g_{m}(y)h(y,r)$ \Box

Let's take a break!

Some Results on Matrices

- Matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if $UU^T = I_n \iff U^T U = I_n$
- Matrix $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$
- If $A \in \mathbb{R}^{n \times n}$ is symmetric, then A has n real eigenvalues with eigenvectors ϕ_{ν} which satisfy $\phi_{\nu}^T \phi_{\nu'} = I \{\nu = \nu'\}, 1 \le \nu \le n$.
 - ⇒ Spectral Theorem: $A = U\Sigma U^T$, with orthogonal U whose v-th column is an eigenvector and diagonal matrix Σ with the v-th eigenvalues on the v-th position on the diagonal.
- A symmetric matrix K ∈ ℝ^{n×n} is called positive semidefinite or non-negative definite (K ≥ 0) if α^TKα ≥ 0 for all α ∈ ℝⁿ and is called positive definite (K > 0) if α^TKα > 0 for all α ∈ ℝⁿ \ {0}.

•
$$K \ge 0 \ (K > 0)$$

 $\Leftrightarrow \exists \text{ (non-singular) } S \in \mathbb{R}^{n \times n} \text{: } K = S^T S$

 \Leftrightarrow *K* symmetric and all eigenvalues are non-negative (positive) \Leftrightarrow \exists orthogonal $U \in \mathbb{R}^{n \times n}$ and diagonal matrix $\Sigma \in \mathbb{R}^{n \times n}$ with non-negative (positive) diagonal entries: $K = U\Sigma U^T$.

Random Vectors

n-dimensional random vector *X* defined over (Σ, F, P)

- mapping from experiment outcome Σ to \mathbb{R}^n
- density is the joint density of the components
- Expectation: $\mathbb{E}[X] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_n])^T$
 - $\mathbb{E}[AX] = A\mathbb{E}[X], A \in \mathbb{R}^{m \times n}$, and $\mathbb{E}[XB] = \mathbb{E}[X]B, B \in \mathbb{R}^{n \times m}$.
- Covariance matrix:

$$K_{XX} = \mathbb{E}\left[(X - \mathbb{E} [X])(X - \mathbb{E} [X])^T \right]$$

- Let Y = AX, then $K_{YY} = AK_{XX}A^T$.
- Covariance matrix is non-negative definite, i.e., $K_{XX} \ge 0$.

Multivariate Gaussian Distribution

- Most important multi-variate distribution in Digital Communications
 - Straightforward extension from univariate Gaussian

Definition: Gaussian distribution

• For a standard Gaussian RV $W \in \mathbb{R}^n$ the components $\{W_i\}$ are independent and $\mathcal{N}(0, 1)$ distributed.

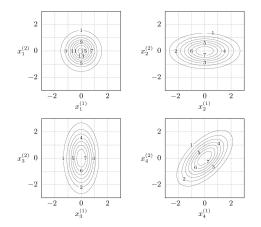
$$f_W(w) = \prod_{\ell=1}^n \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{w_\ell^2}{2}\right) = \frac{1}{\sqrt{(2\pi)^n}} \exp\left(-\frac{\|w\|^2}{2}\right)$$

- Solution Then a RV $X \stackrel{\mathscr{L}}{=} AW$ with matrix $A \in \mathbb{R}^{n \times m}$ is said to be centered Gaussian
- Solutionally with $\mu \in \mathbb{R}^n$, the RV $X \stackrel{\mathscr{L}}{=} AW + \mu$ is Gaussian.

Properties Gaussian Random Vectors

- ($X \stackrel{\mathscr{L}}{=} AW + \mu$ and W standard) $\Rightarrow (\mathbb{E}[X] = \mu$ and $K_{XX} = AA^T$)
- If the components of a Gaussian RV *X* are uncorrelated, the covariance matrix *K*_{*XX*} is diagonal and the components of *X* are independent.
- If the components of a Gaussian RV are pairwise independent, then they are independent.
- If *W* is standard Gaussian, and *U* is orthogonal matrix, then *UW* is also standard Gaussian RV.
- **Canonical Representation** of a centered Gaussian RV *X* with $K_{XX} = U\Sigma U^T$, then $X \stackrel{\mathscr{L}}{=} U\sigma^{1/2}W$ with *W* standard Gaussian.
 - From Gaussian to standard Gaussian: $\Sigma^{1/2} U^T (X \mu) \sim \mathcal{N}(0, I_n)$.

Canonical Representation of a Centered Gaussian



Contour plot of centered Gaussian distributions

$$\mathbf{X}_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{W} \quad \mathbf{X}_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{W} \quad \mathbf{X}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \mathbf{W} \quad \mathbf{X}_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} & \sqrt{2} \\ -\frac{1}{\sqrt{2}} & \sqrt{2} \end{bmatrix} \mathbf{W}$$

KTH course: Foundations in Digital Communications ©Tobias Oechtering

18/20

Jointly Gaussian Vectors

Two RV X and Y are jointly Gaussian if the stacked vector (X^T, Y^T)^T is Gaussian.

We have the following amazing results:

- Independent Gaussian vectors are jointly Gaussian.
- If two jointly Gaussian vectors are uncorrelated, then they are independent.
- Solution Let X and Y centered and jointly Gaussian with covariance matrices K_{XX} and $K_{YY} > 0$. Then the conditional distribution of X given Y = y is a multivariate Gaussian with
 - mean $\mathbb{E}\left[XY^T\right]K_{YY}^{-1}y$
 - covariance $K_{XX} \mathbb{E} \left[X Y^T \right] K_{YY}^{-1} \mathbb{E} \left[Y x^T \right]$

Outlook - Assignment

- Sufficient Statistics
- Multivariate Gaussian Distributions

Next lecture

Complex Gaussian and Circular Symmetry, Continuous-Time Stochastic Processes

- Reading Assignment: Chap 24-25
- Homework: (please check with the official assignment on the webpage)
 - Problems in textbook: Exercise 22.2, 22.4, 22.5, 22.7, 22.9, 23.8, 23.11, and 23.14
 - Deadline: Dec 7