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Recapitulation

What did we do last
lecture?
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Outline - Motivation

In practical systems we want/have to process our received data.
What processing of the observed data does not reduce the
possible detection performance?

Sufficient Statistics (chap 22)

The most important multivariate distribution in Digital
Communication:

Multivariate Gaussian Distribution (chap 23)
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Introduction

“a sufficient statistic for guessing M based on the observation Y is a
random variable or a collection of random variables that contains all
the information in Y that is relevant for guessing M” (recited Layman)

The idea of sufficient statistics ...
is a very deep concept with a strong impact;
provides fundamental intuition;
classifies processing which does not degrade performance;
is defined for { fY |M(·|m)}m∈M and is unrelated to a prior.

Example: In the 2-dimensional Gaussian 8-PSK detection
problem, the decision is only based on the Euclidean distance
between the observation and the symbols.

The scalar RV describing the distance is a sufficient statistic.
⇒ It summarizes the information needed for guessing M optimally.
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Definition and Main Consequences

Roughly, T(·) is a sufficient statistic if there exists a black box
that produces {P

[
M = m|Y = yobs

]
} when fed with T(yobs) and

any {πm}.

Definition
A measurable mapping T : Rd

→ R
d′ forms a sufficient statistic for

{ fY |M(·|m)}m∈M if there exist measurable functions ψm : Rd′
→ [0, 1],

m ∈ M, such that for every prior {πm} and almost all yobs ∈ R
d where∑

m πm fY |M(yobs|m) > 0 we have

ψm({πm},T(yobs)) = P
[
M = m|Y = yobs

]
, ∀m ∈ M.

If T(·) is a sufficient statistic for { fY |M(·|m)}m∈M, then there exists
an optimal decision rule based on T(Y).

Note that T(·) does not have to be reversible.
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Equivalent Conditions: Factorization Theorem

Roughly, T(·) is a sufficient statistic if all densities can be written
as a product of functions where

one does not depend on the message but possibly y
the other one depends on the message and T(·) only

Useful in identifying sufficient statistics

Factorization Theorem
T(·) denotes a sufficient statistic for { fY |M(·|m)}m∈M iff there exist
measurable functions gm : Rd′

→ [0,∞), m ∈ M, and h : Rd
→ [0,∞)

such that for almost all y ∈ Rd we have

fY |M(y|m) = gm(T(y))h(y), ∀m ∈ M.

Proof idea: ψm({πm},T(yobs)) = P
[
M = m|Y = yobs

]
=

πm fY |M(yobs|m)
fY (yobs)

.

“⇒” Identify the functions as gm(T(y)) =
ψm({πm},T(yobs))

πm
and

h(y) = fY(y). “⇐” Use fY |M(·|m) = gm(T(·))h(·), fY(·) =
∑
m
πm fY |M(·|m).
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Markov Condition

Tobias’ favorite:

Markov condition
A measurable function T : Rd

→ R
d′ forms a sufficient condition for

{ fY |M(·|m)}m∈M iff for any prior {πm}m we have

M − T(Y) − Y

M − T(Y) − Y means
M and Y are conditionally independent given T(Y)
equalities PM|T(Y)Y = PM|T(Y) and PY |T(Y)M = PY |T(Y)

Since PM|Y = PM|T(Y)Y (T(Y) fct of Y), the last implies
PM|Y = PM|T(Y).

The conditional distribution of M given Y follows from the
conditional distribution of M given T(Y).
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Pairwise Sufficiency and Simulating Observables

Pairwise Sufficiency
Consider { fY |M(·|m)}m∈M, assume T(·) forms a sufficient statistic for
every pair fY |M(·|m) and fY |M(·|m′) where m , m′. Then T(·) is a
sufficient statistic for { fY |M(·|m)}m∈M.

Simulating Observables (roughly statement)
Since sufficient statistic T(Y) contains all information about M which
are in Y, i.e., pM|T(Y) = pM|Y , it is possible to generate a RV Ỹ using

T(Y) that appears statistically like Y given M, i.e., pỸ |M
L
= pY |M. The

opposite direction is also true, if such a function T(Y) exists, then it
forms a sufficient statistic.

This requires a local random number generator Θ.
Anything learned about M from Y can be learned from Ỹ.
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Identify Sufficient Statistics

A not helpful result in terms of “summarizing” but still relevant:

5-minute exercise
Show that any reversible transformation T(·) forms a sufficient
statistic.

Computable from the Statistic

Let T : Rd
→ R

d′ form a sufficient statistic for { fY |M(·|m)}m∈M. If T(·)
can be written as φ ◦ S with φ : Rd′′

→ R
d′ , then S : Rd

→ R
d′′ also

forms a sufficient statistic.

If T(Y) is computable from S(Y), then S(Y) has to contain all
information about M which are also in T(Y), i.e.,
P

[
M = m|Y = yobs

]
is computable from S(Y) as well.
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Identify Sufficient Statistics

Two-step approach

If T : Rd
→ R

d′ forms a sufficient statistic for { fY |M(·|m)}m∈M and if
S : Rd′

→ R
d′′ forms a sufficient statistic for the corresponding

densities of T(Y), then the composition S ◦ T forms a sufficient
statistic for { fY |M(·|m)}m∈M.

Proof: PM|S(T(Y)) = PM|T(Y) = PM|Y �

Conditionally Independent Observations

Let Ti : Rdi → R
d′i form sufficient statistics for { fY i|M(·|m)}m∈M, i = 1, 2

and Y1 and Y2 are conditionally independent given M, then
(T1(Y1),T2(Y2) forms a sufficient statistic for { fY1Y2|M(·|m)}m∈M.

Proof: Factorization theorem: fY1Y2|M = fY1|M fY2|M = g(1)
m h(1)g(2)

m h(2) �
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Irrelevant Data

Roughly, the “part” of the observation which is not part in a
sufficient statistic is irrelevant for the purpose of detection

Definition
R is said to be irrelevant for guessing M given Y if Y forms a
sufficient statistic based on (Y,R), i.e., M − Y − (Y,R).

A RV can be irrelevant, but still depend on the RV we wish to
guess.

R ⊥M & Y −M − R ⇒ R is irrelevant for guessing M given Y

Proof: Factorization theorem
fYR|M(y, r|m) = fY |M(y|m) fR|M(r|m) = fY |M(y|m) fR(r) = gm(y)h(y, r) �
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Let’s take a break!
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Some Results on Matrices

Matrix U ∈ Rn×n is orthogonal if UUT = In (⇔ UTU = In)
Matrix A ∈ Rn×n is symmetric if A = AT

If A ∈ Rn×n is symmetric, then A has n real eigenvalues with
eigenvectors φν which satisfy φT

νφν′ = I {ν = ν′}, 1 ≤ ν ≤ n.
⇒ Spectral Theorem: A = UΣUT, with orthogonal U whose ν-th

column is an eigenvector and diagonal matrix Σ with the ν-th
eigenvalues on the ν-th position on the diagonal.

A symmetric matrix K ∈ Rn×n is called positive semidefinite or
non-negative definite (K � 0) if αTKα ≥ 0 for all α ∈ Rn and is
called positive definite (K � 0) if αTKα > 0 for all α ∈ Rn

\ {0}.
K � 0 (K � 0)
⇔ ∃ (non-singular) S ∈ Rn×n: K = STS
⇔ K symmetric and all eigenvalues are non-negative (positive)
⇔ ∃ orthogonal U ∈ Rn×n and diagonal matrix Σ ∈ Rn×n with
non-negative (positive) diagonal entries: K = UΣUT.
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Random Vectors

n-dimensional random vector X defined over (Σ,F ,P)
mapping from experiment outcome Σ to Rn

density is the joint density of the components

Expectation: E [X] = (E [X1], . . . ,E [Xn])T

E [AX] = AE [X], A ∈ Rm×n, and E [XB] = E [X]B, B ∈ Rn×m.

Covariance matrix:

KXX = E
[
(X −E [X])(X −E [X])T

]
Let Y = AX, then KYY = AKXXAT.
Covariance matrix is non-negative definite, i.e., KXX � 0.
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Multivariate Gaussian Distribution

Most important multi-variate distribution in Digital
Communications

Straightforward extension from univariate Gaussian

Definition: Gaussian distribution
1 For a standard Gaussian RV W ∈ R

n the components {Wi} are
independent and N(0, 1) distributed.

fW(w) =

n∏
`=1

1
√

2π
exp

−w2
`

2

 =
1√

(2π)n
exp

(
−
‖w‖2

2

)

2 Then a RV X L
= AW with matrix A ∈ Rn×m is said to be

centered Gaussian
3 Additionally with µ ∈ Rn, the RV X L

= AW + µ is Gaussian.
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Properties Gaussian Random Vectors

( X L
= AW + µ and W standard)⇒ (E [X] = µ and KXX = AAT)

If the components of a Gaussian RV X are uncorrelated, the
covariance matrix KXX is diagonal and the components of X are
independent.
If the components of a Gaussian RV are pairwise independent,
then they are independent.
If W is standard Gaussian, and U is orthogonal matrix, then
UW is also standard Gaussian RV.
Canonical Representation of a centered Gaussian RV X with
KXX = UΣUT, then X L

= Uσ1/2W with W standard Gaussian.
From Gaussian to standard Gaussian: Σ1/2UT(X − µ) ∼ N(0, In).
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Canonical Representation of a Centered Gaussian

Contour plot of centered Gaussian distributions
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Jointly Gaussian Vectors

Two RV X and Y are jointly Gaussian if the stacked vector
(XT,YT)T is Gaussian.

We have the following amazing results:
1 Independent Gaussian vectors are jointly Gaussian.
2 If two jointly Gaussian vectors are uncorrelated, then they are

independent.
3 Let X and Y centered and jointly Gaussian with covariance

matrices KXX and KYY � 0. Then the conditional distribution of
X given Y = y is a multivariate Gaussian with

mean E
[
XYT

]
K−1

YY y

covariance KXX −E
[
XYT

]
K−1

YYE
[
YxT

]
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Outlook - Assignment

Sufficient Statistics
Multivariate Gaussian Distributions

Next lecture
Complex Gaussian and Circular Symmetry, Continuous-Time
Stochastic Processes

Reading Assignment: Chap 24-25
Homework: (please check with the official assignment on the
webpage)

Problems in textbook: Exercise 22.2, 22.4, 22.5, 22.7, 22.9, 23.8,
23.11, and 23.14
Deadline: Dec 7
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