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Recapitulation

What did we do last
lecture?
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Outline - Motivation

@ In practical systems we want/have to process our received data.
What processing of the observed data does not reduce the
possible detection performance?

e Sufficient Statistics (chap 22)

@ The most important multivariate distribution in Digital
Communication:

e Multivariate Gaussian Distribution (chap 23)
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Introduction

“a sufficient statistic for guessing M based on the observation Y is a
random variable or a collection of random variables that contains all
the information in Y that is relevant for guessing M” (recited Layman)

@ The idea of sufficient statistics ...
e is a very deep concept with a strong impact;
provides fundamental intuition;
classifies processing which does not degrade performance;
is defined for { fyjm(-lm)}mepm @nd is unrelated to a prior.

@ Example: In the 2-dimensional Gaussian 8-PSK detection
problem, the decision is only based on the Euclidean distance
between the observation and the symbols.

e The scalar RV describing the distance is a sufficient statistic.
= It summarizes the information needed for guessing M optimally.
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Definition and Main Consequences

@ Roughly, T(-) is a sufficient statistic if there exists a black box
that produces {IP [M =m|Y = yobs]} when fed with T(y ) and
any {7t}

A measurable mapping T : R? — R? forms a sufficient statistic for
{AnmClm) e if there exist measurable functions ¢, : RY — [0, 1],
m € M, such that for every prior {r,,} and almost all y,,, € R where

Yo Ton fyima(Y,pslm) > 0 we have

Um(mtm), T(y,,) = P [M =m|Y = yobs], Ym e M.

@ If T(-) is a sufficient statistic for { fyn1(-[1)},em, then there exists
an optimal decision rule based on T(Y).
e Note that T(-) does not have to be reversible.
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Equivalent Conditions: Factorization Theorem

@ Roughly, T(-) is a sufficient statistic if all densities can be written
as a product of functions where
e one does not depend on the message but possibly y
e the other one depends on the message and T(-) only
@ Useful in identifying sufficient statistics

Factorization Theorem

T(-) denotes a sufficient statistic for { fyn1(-[1)} e pm iff there exist
measurable functions g, : RY — [0,00), m € M, and h: RY — [0, o)
such that for almost all y € R? we have

frm(ylm) = gu(T(y)h(y), VYm e M.

Tn i (Y opsI11)

Proof idea: ¢ ({mtm}, T(Y,ps)) = [M mlY = yohs]: FyWops)

“=” |dentify the functions as g,(T(y)) = WHH—T(“)) and
= fr(y). “&" Use frp(lm) = gu(T(DAC), () = Z Ton fyim (-|m).
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Markov Condition

@ Tobias’ favorite:

Markov condition

A measurable function T : R? —» R forms a sufficient condition for
{ Ay (M)} e pq i for any prior {7}, we have

M-T(X)-Y

@ M -T(Y) - Y means
e M and Y are conditionally independent given T(Y)
] equalities PM|T(y)y = PM|T(y) and Py\T(y)M = Py|T(y)
@ Since Py = Purvyy (T(Y) fct of Y), the last implies
Puyy = Pmiry)-
e The conditional distribution of M given Y follows from the
conditional distribution of M given T(Y).
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Pairwise Sufficiency and Simulating Observables

Pairwise Sufficiency

Consider { fypi(-Im)} e pm, @assume T(-) forms a sufficient statistic for
every pair fym(-lm) and fym(-lm’) where m # m’. Then T() is a
sufficient statistic for { fyp(-[7)}mem-

\

Simulating Observables (roughly statement)
Since sulfficient statistic T(Y) contains all information about M which
areinY,i.e., pmryv) = Pmyy, it is possible to generate a RV Y using
T(Y) that appears statistically like Y given M, i.e., py 2 pym- The
opposite direction is also true, if such a function T(Y) exists, then it
forms a sufficient statistic.

@ This requires a local random number generator ©.
@ Anything learned about M from Y can be learned from Y.
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Identify Sufficient Statistics

@ A not helpful result in terms of “summarizing” but still relevant:

5-minute exercise

Show that any reversible transformation T(-) forms a sufficient
statistic.
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Identify Sufficient Statistics

@ A not helpful result in terms of “summarizing” but still relevant:

5-minute exercise

Show that any reversible transformation T(-) forms a sufficient
statistic.

Computable from the Statistic

Let T : RY — R form a sufficient statistic for { fypi(-[1)}bmep- If T(¢)
can be written as ¢ o S with ¢ : RY" — R, then S : R? — R?" also
forms a sufficient statistic.

@ If T(Y) is computable from S(Y), then S(Y) has to contain all
information about M which are also in T(Y), i.e.,
P [M =m|Y = yobS] is computable from S(Y) as well.
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Identify Sufficient Statistics

Two-step approach

If T: R? — R? forms a sufficient statistic for { fy(-[m)}mep and if
S:RY — R forms a sufficient statistic for the corresponding
densities of T(Y), then the composition S o T forms a sufficient
statistic for { fyp(-17)} e m-

Proof: Ppyscrevy) = Pmir(v) = Pmiy o

Conditionally Independent Observations

Let T; : R% — R% form sufficient statistics for { fy.p(1m)}mem, i = 1,2
and Y; and Y, are conditionally independent given M, then
(T1(Y1), T2(Y2) forms a sufficient statistic for { fy,y,m(:[1)}mem-

Proof: Factorization theorem: fy,y,m = frumfram = S hVg2n@ o
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Irrelevant Data

@ Roughly, the “part” of the observation which is not part in a
sufficient statistic is irrelevant for the purpose of detection

Definition

R is said to be irrelevant for guessing M given Y if Y forms a
sufficient statistic based on (Y, R), i.e., M — Y — (Y, R).

@ A RV can be irrelevant, but still depend on the RV we wish to
guess.

R1M&Y-M-R = Risirrelevantfor guessing M given Y )

Proof: Factorization theorem
frrm(y, rim) = i (ylm) frma(rlm) = frm(ylm) fr(r) = gm(yh(y,r) O
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Let's take a break!
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Some Results on Matrices

@ Matrix U € R™" is orthogonal if UUT = I, (& UTU =1,)
@ Matrix A € R™" is symmetric if A = AT

e If A e R™" is symmetric, then A has n real eigenvalues with
eigenvectors ¢, which satisfy ¢pl¢, =1fv =v'}, 1 <v <n.
= Spectral Theorem: A = UZUT, with orthogonal U whose v-th
column is an eigenvector and diagonal matrix £ with the v-th
eigenvalues on the v-th position on the diagonal.

@ A symmetric matrix K € R™" is called positive semidefinite or
non-negative definite (K > 0) if a’Ka > 0 for all « € R" and is
called positive definite (K > 0) if a’Ka > 0 for all « € R" \ {0}.

e K>0(K>0)
& 3 (non-singular) S € R™": K = STS
& K symmetric and all eigenvalues are non-negative (positive)
& Jorthogonal U € R™" and diagonal matrix £ € R™" with
non-negative (positive) diagonal entries: K = UZU".
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Random Vectors

@ n-dimensional random vector X defined over (X, ¥, P)

e mapping from experiment outcome X to R”
e density is the joint density of the components

@ Expectation: E[X] = (E[Xi],..., E[X,])T
o E[AX] =AE[X], A € R™", and [E[XB] = [E[X]B, B € R"™™,
@ Covariance matrix:

Kxx = B[(X - EIX)(X - E[X])']

e Let Y = AX, then Kyy = AKxxAT.
e Covariance matrix is non-negative definite, i.e., Kxx > 0.
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Multivariate Gaussian Distribution

@ Most important multi-variate distribution in Digital
Communications

e Straightforward extension from univariate Gaussian

Definition: Gaussian distribution

@ For a standard Gaussian RV W € R" the components {W;} are
independent and N(0, 1) distributed.

rere [l el 3 erl )
/1 V2m 2) Jeny 2

@ ThenaRVX Z AW with matrix A € R™ is said to be
centered Gaussian

© Additionally with p € R" the RVX = AW + p is Gaussian.
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Properties Gaussian Random Vectors

e (X Z AW + p and W standard) = (E [X] = p and Kxx = AAT)
@ If the components of a Gaussian RV X are uncorrelated, the

covariance matrix Kxx is diagonal and the components of X are
independent.

@ If the components of a Gaussian RV are pairwise independent,
then they are independent.

@ If W is standard Gaussian, and U is orthogonal matrix, then
UW is also standard Gaussian RV.

@ Canonical Representation of a centered Gaussian RV X with

Kxx = UZUT, then X Z Uo'/2W with W standard Gaussian.
e From Gaussian to standard Gaussian: Z/2UT(X — u) ~ N(0,I,,).
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Canonical Representation of a Centered Gaussian

zgl)

@ Contour plot of centered Gaussian distributions

1
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Jointly Gaussian Vectors

@ Two RV X and Y are jointly Gaussian if the stacked vector
XT,YNT is Gaussian.
We have the following amazing results:
@ Independent Gaussian vectors are jointly Gaussian.
@ If two jointly Gaussian vectors are uncorrelated, then they are
independent.

© Let X and Y centered and jointly Gaussian with covariance
matrices Kxx and Kyy > 0. Then the conditional distribution of

X given Y = y is a multivariate Gaussian with
e mean IE[XYT]K;{/y

o covariance Kxx — E [XY'|KJE [vT|
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Outlook - Assignment

@ Sufficient Statistics
@ Multivariate Gaussian Distributions

Complex Gaussian and Circular Symmetry, Continuous-Time
Stochastic Processes

@ Reading Assignment: Chap 24-25
@ Homework: (please check with the official assignment on the
webpage)
e Problems in textbook: Exercise 22.2, 22.4, 22.5, 22.7, 22.9, 23.8,
23.11, and 23.14
e Deadline: Dec 7
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