
Programming of
Mobile Services, HT14

HI1017

Lecturer: Anders Lindström,
anders.lindstrom@sth.kth.se

Lecture 5
Today’s topics
• Concurrent programming
 - Threads
 - Handler
 - ASyncTask
• Services
• File system basics

mailto:anders.lindstrom@sth.kth.se

Concurrent programming

• Android applications normally run entirely on
a single thread (the “main thread” or “UI
thread”)

• The ui thread handles all user input, executing
code in event listeners, rendering and life
cycle call backs

• Code running in the ui thread should do as
little work as possible to keep the application
and it’s UI responsive

Concurrent programming

• Time consuming tasks: Spawn a new thread to
do the work in the background

• Examples: Long calculations; network, file and
database operations; game animations; …

Concurrent programming
• The Android system guards against

non responsiveness
• Application Not Responding (ANR)

dialog
• No response to an input event (e.g.

key press, screen touch) within 5
seconds

• A BroadcastReceiver that hasn't
finished executing within 10
seconds

• - CalledFromWrongTreadException
- NetworkOnMainThreadException

Concurrent programming

• Create a new thread:
- extend java.lang.Thread
- override public void run()
- call thread.start()

• Or:
- implement interface java.lang.Runnable
- override public void run()
- Thread t = new Thread(new MyRunnable);
- t.start();

Concurrent programming

Concurrency issue: Updating UI, or other
application components, when the worker thread
finishes (or during the execution)

• Manipulating UI components from another
thread than the main thread might cause
corrupted state (race conditions)

• Android only allows UI updates on the UI thread
• CalledFromWrongThreadException thrown

otherwise

Concurrent programming

Solutions
• Activity.runOnUiThread(Runnable)
• View.post(Runnable)

View.postDelayed(Runnable, long)
• Handler
• AsyncTask

• http://android-developers.blogspot.se/2009/05/painless-

threading.html
http://developer.android.com/guide/components/processes-
and-threads.html

Example: post(Runnable)
• public void onClick(View v) {

 new Thread(new Runnable() { // worker
 public void run() {
 final Bitmap b =
 loadImageFromNetwork();
 // post ui update
 mImageView.post(new Runnable() {
 public void run() {
 mImageView.setImageBitmap(b);
 }
 });
 }
 }).start();
}

• Kind of messy…

android.os.Handler

• Use a android.os.Handler to post a UI update
task from a worker thread

• NB! The constructor associates the handler
with the queue for the current thread

• The Handler allows you to send and process
Message and Runnable objects to a threads
message queue (from another thread)

• The Runnable object defines the task to
execute on the target thread

Concurrent programming, idiom
public class WorkerActivity extends Activity {
 private Handler handler;

 public void onCreate(Bundle savedInstanceState) {

 . . .

 // NB! Create the handler on the ui thread (posts to ui thread)

 handler = new Handler();

 }

 public void doWorkInBackground() {

 Thread worker = new Worker(); // Extends thread

 worker.start();

 }

 . . .

}

Concurrent programming, idiom cont.
public class WorkerActivity extends Activity {
 . . .
 // The background task

private class Worker extends Thread {
 public void run() {
 // Execute the time consuming task...

 // All work and no play makes Jack a dull boy...

 // The work is done, post back to UI-thread
 handler.post(new UpdateUIOnWorkerFinished());
 }
 }

 // Runnable to post to UI thread
 private class UpdateUIOnWorkerFinished implements Runnable {
 public void run() {
 // The work is done - update the UI

 textView.setText(...);
 . . .
 }
 }
}

Concurrent programming, life cycle
• Make sure (continuously long running) background threads

are paused and restarted in the life cycle methods

• public class MyActivity extends Activity {
 private Animator animator;
 . . .
 public void onPause() {
 super.onPause();
 animator.stopAnimation();
 . . .
 }

 public void onResume() {
 super.onResume();
 animator.startAnimation();
 . . .
 }
 . . .
}

AsyncTask

• Performs background operations and publish
results on the main thread without the
developer having to manipulate threads
and/or handlers

• Extend AsyncTask and override the
appropriate call back methods, e.g.
doInBackground() and onPostExecute()

• Create instance and call task.execute(), to start
the task, on the current (e.g. ui) thread

AsyncTask
When an asynchronous task is executed, the task goes

through 4 steps:
• onPreExecute(), invoked on the main thread immediately

after the task is started

• doInBackground(Params...), invoked on a background
thread immediately after onPreExecute() finishes

• onProgressUpdate(Progress...), invoked on the main thread
after a call to publishProgress(...)

• onPostExecute(Result), invoked on the main thread after
the background computation finishes

Extending ASyncTask
• android.os.AsyncTask<Params, Progress, Result>

• AsyncTask's generic type parameters:

- Params, the type of the parameters sent to the task upon
execution
- Progress, the type of the progress units published during the
background computation
- Result, the type of the result of the background computation

• Sub-classing, example:
private class BackgroundTask
 extends AsyncTask<Long, Void, String>
– To mark a type as unused, use the type Void

ASyncTask, idiom
public class WorkerActivity extends Activity {
 . . .

 private void startWorkInBackground() {
 . . .
 BackgroundTask task = new BackgroundTask();
 task.execute(limit); // Called on main thread
 }

 private class PrimeTask extends AsyncTask <Long,Void,String>{
 . . .

}
 }

ASyncTask, idiom cont.
public class WorkerActivity extends Activity {
 . . .
 private class PrimeTask extends AsyncTask <Long, Void, String> {

 protected String doInBackground(Long... limit) {
 long lim = limit[0]; // The argument is an array
 long n = Prime.calculateNumberOfPrimes(lim);
 String output = "Number of primes <= "+lim+“ is "+n;
 return output;
 }

 protected void onPostExecute(String output) {
 textOutput.setText(output);
 . . .
 }
 }
 }

Concurrent programming

• Examples
- WorkerThreadExample1.zip: Thread + Handler
- WorkerThreadExample2.zip: Anonymous inner classes +
ProgressDialog
- ASyncTaskExample.zip

• http://developer.android.com/training/articles/perf-anr.html

Services

• A Service is a basic application component, without a
user interface

• A Service can be used for/as
– A background process, performing some lengthy operation
– An interface for a remote object, called from your

application

• When the OS need to kill applications or application
components to save resources, applications running
Services has high priority, only second to foreground
Activities

Services

• A service runs in the main thread of its hosting
process (NB!)
– i.e. any CPU intensive work or blocking operations

should be performed by spawning a worker thread
• The IntentService, though, has its own thread

where it schedules the work to be done

• Each service class must have a corresponding
<service> declaration in the application’s
manifest file

Services

Consider using a Service when the application
• performs a lengthy or intensive processing, not

requiring user interaction
• performs certain tasks at regular intervals, e.g.

downloading updates of some content
• performs lengthy operations that shouldn’t be

canceled if the application exits, e.g. downloading
a large file

• needs to provide data or information services to
other applications (without an user interface)

Services, life cycle

A service can essentially
take two forms
• Started (or unbounded)

- when an application
component starts it by
calling startService()

• Bound - when an
application component
binds to it by calling
bindService()

Service Lifecycle

• Started via startService(Intent) :
- if needed, created and onCreate() called
- onStartCommand(Intent, …) called
- runs until Context.stopService() or stopSelf() is called

• Started via
bindService (Intent, ServiceConnection, flags) to obtain
a persistent connection to a service:
- if needed, created and onCreate() called
- the service will run until all connections are
disconnected

Service, life cycle call backs
• onStartCommand() - called when another component, such

as an activity, requests the service to be started, by calling
startService()

• Started this way, the Service can run for ever; stop the
service when its work is done, by calling stopSelf() or
stopService()

• onBind() – called when another component wants to bind
with the service (such as to perform RPC), by calling
bindService()
Returns an Ibinder, an interfce that clients use to
communicate with the service

• Mandatory to implement; if you don't want to allow
binding, return null

Service, life cycle call backs

• onCreate() – called when the service is first created,
to perform one-time setup procedures

• onDestroy()- called when the service is no longer
used and is being destroyed
Clean up any resources such as threads, registered
listeners, receivers, etc

Service example (unbound)
public class ExampleService extends Service {

 @Override
 public void onStartCommand(Intent intent, int flags,int id) {
 doSomeWorkInBackground();
 return START_STICKY;
 }
 @Override
 public void onDestroy() {
 super.onDestroy();

 // Stop threads, release allocated resources
 stopWorkingInBackground();

}
@Override
 public IBinder onBind(Intent intent) {

 return null; // Clients may not bind to this service
 }
 . . .

Service example, cont
public class ExampleService extends Service {
 . . .
 private void doSomeWorkInBackground() {
 if(timer == null) {
 timer = new Timer();
 timer.scheduleAtFixedRate(new Task(), 0, INTERVAL);
 }
 }

 private class Task extends TimerTask {
 public void run() {
 // Do whatever you want to do every “INTERVAL”
 . . .
 }
 }

 private void stopWorkingInBackground() {
 if (timer != null) {
 timer.cancel();
 }
 }
}

Service example, the “manager”
public class ManageServiceActivity extends Activity {
 . . .

 private void startExampleService() {
 Intent intent = new Intent(

 this, ExampleService.class);
 startService(intent);
 }

 private void stopExampleService() {
 Intent intent = new Intent(

 this, ExampleService.class);
 stopService(intent);
 }
 . . .
}

IntentService

• IntentService creates a worker thread to handle all
start requests, delivered to onStartCommand(),
one at a time

• Implement onHandleIntent() to do the work provided
by the client

• The IntentService is stopped after all start requests
have been handled, no need to call stopSelf()

• Default implementations of onStartCommand() and
onBind()

IntentService
public class HelloIntentService extends IntentService {

 /**
 * A constructor is required, and must call the super IntentService(String)
 * constructor with a name for the worker thread.
 */
 public HelloIntentService() {
 super("HelloIntentService");
 }

 /**
 * The IntentService calls this method from the default worker thread with
 * the intent that started the service. When this method returns,
 * IntentService stops the service, as appropriate.
 */
 @Override
 protected void onHandleIntent(Intent intent) {
 // This is were we execute the task...
 // All work and no play makes Jack a dull boy...
 // ...
 }
}

Bound Service
• When an Activity is bound to a Service it maintains a reference

to the Service instance

public class MyBoundService extends Service {

 private final IBinder binder = new MyBinder();

 @Override
 public IBinder onBind(Intent intent) {
 return binder;
 }

 public class MyBinder extends Binder {
 MyBoundService getService() {
 return MyBoundService.this;
 }
 }
}

Bound Service
• The Actvity(ies) need to implement a ServiceConnection

public class MyActivity extends Activity {
 private MyBoundService serviceBinder;

 @Override
 public void onCreate(Bundle icicle) { ...
 // Bind to the service
 Intent bindIntent = new Intent(MyActivity.this, MyBoundService.class);
 bindService(bindIntent, mConnection, Context.BIND_AUTO_CREATE);
 }

 // Handles the connection between the service and activity
 private ServiceConnection mConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className, IBinder service) {
 // Called when the connection is made.
 serviceBinder = ((MyBoundService.MyBinder) service).getService();
 }

 public void onServiceDisconnected(ComponentName className) {
 // Received when the service unexpectedly disconnects.
 serviceBinder = null;
 }
 };
 ...

More on Services

• http://developer.android.com/guide/topics/fundamentals/ser
vices.html

• http://developer.android.com/guide/topics/fundamentals/bo
und-services.html

Background work in Thread, AsyncTask
or Service?

 Thread AsyncTask Service IntentService

When to use ?

- Long task in general.

- For tasks in parallel use
Multiple threads
(traditional
mechanisms)

- Long task having to
communicate with main
thread.

Task with no UI, but
shouldn't be too long.
Use threads within
service for long tasks.

- Long task usually with
no communication to
main thread
- Limitation: tasks
executed sequentially

Trigger Thread start() method Call to method execute() Call to method
onStartService() Intent

Triggered From (thread) Any Thread Main Thread Any thread Main Thread

Runs On Its own thread

Worker thread.
However, Main thread
methods may be
invoked in between to
publish progress.

Main Thread default;
longer tasks – spawn a
worker thread

Separate worker thread
is automatically
spawned

Adapted from: http://techtej.blogspot.com/2011/03/android-thread-constructspart-4.html

File basics, internal storage

• By default, files saved to the internal storage are
private to the application

• When the user uninstalls the application, these files are
removed

• Context.openFileInput/openFileOutput returns a
primitive stream object

• Debugging: Use DDMS, File Explorer to view files
- stored under data/data/appliaktion-package-name

Writing to a text file
 PrintWriter writer = null;
 try {

 OutputStream os = this.openFileOutput(
 fileName, Context.MODE_PRIVATE);

 writer = new PrintWriter(os);

 writer.println("Lots of information to remember");
 . . .
 }
 catch(IOException ioe) {
 showToast("Error while writing to file");
 }
 finally {
 if(writer != null) writer.close();
 }

Reading from a text file
BufferedReader reader = null;
try {
 InputStream is = this.openFileInput(fileName);
 reader = new BufferedReader(new InputStreamReader(is));

 String line = reader.readLine();
 while(line != null) {
 . . . // Process the information
 line = reader.readLine();
 }
}
catch(IOException ioe) {
 showToast("Error while writing to file");
}
finally {
 try {
 if(reader != null) reader.close();
 }
 catch(IOException ioe) {}
}

File basics, internal storage

• getFilesDir()
Gets the absolute path to the filesystem directory
where your internal files are saved

• getDir()
Creates, or opens an existing, directory within
your internal storage space

• deleteFile()
Deletes a file saved on the internal storage

• fileList()
Returns an array of file names

	Programming of Mobile Services, HT14��HI1017��Lecturer: Anders Lindström, anders.lindstrom@sth.kth.se
	Concurrent programming
	Concurrent programming
	Concurrent programming
	Concurrent programming
	Concurrent programming
	Concurrent programming
	Example: post(Runnable)
	android.os.Handler
	Concurrent programming, idiom
	Concurrent programming, idiom cont.
	Concurrent programming, life cycle
	AsyncTask
	AsyncTask
	Extending ASyncTask
	ASyncTask, idiom
	ASyncTask, idiom cont.
	Concurrent programming
	Services
	Services
	Services
	Services, life cycle
	Service Lifecycle
	Service, life cycle call backs
	Service, life cycle call backs
	Service example (unbound)
	Service example, cont
	Service example, the “manager”
	IntentService
	IntentService
	Bound Service
	Bound Service
	More on Services
	Background work in Thread, AsyncTask or Service?
	File basics, internal storage
	Writing to a text file
	Reading from a text file
	File basics, internal storage

