
Embedded Systems for Mechatronics 1, MF2042
Lab – CAN#2

1

CAN Lab 2
2014-10-06

Aim
Advanced CAN communication, detailed experience with the MCP2515 external
CAN controller. Introduction to distributed systems programming.

Literature
Document “Tutorial - getting started with CAN”, data sheet for MCP2515, can.h,
can.c

Brief summary
This exercise follows directly upon CAN Lab 1 and extends the tasks to include CAN
message receiving and distributed systems.

We will simulate a distributed temperature monitoring system suitable for a process
industry or a process plant, with a dynamically configured set of distributed
temperature measuring stations.

Reporting
After completion of the lab, demonstrate all programs for the teaching assistants. The
last exercises should also be submitted to the teaching team via upload on KTH
Social.

1. Introduction and overview
This exercise is based on the following setup and philosophy:

1) Each student group measures temperature and light via the temperature and
light sensors mounted on the EVK1100 board.

2) One fixed reference station placed underneath the Scania dashboard does the
same measurement and provides reference values.

3) Each student group broadcasts the measured values on the RED CAN bus with
a specified ID and format.

4) All student groups therefore have access to all measured values in the room.
5) Depending on the variations of the measured values in the room, various

actions are taken on each station.

Embedded Systems for Mechatronics 1, MF2042
Lab – CAN#2

2

2. Read CAN messages
First, you need to verify that the reference station is correctly configured and sends
values of temperature and light.

The reference station is connected to the RED bus, with the standard bus settings:
250kbs, 75%, SJW2.

The reference station also broadcasts the value of its potentiometer, for your
convenience.

The reference station broadcasts temperature and light with the following
configuration:

ID = 0x00001000
Byte 0 = Temperature, 2 most significant bits
Byte 1 = Temperature, 8 least significant bits
Byte 2 = Light, 2 most significant bits
Byte 3 = Light, 8 least significant bits
Byte 4 = Value of potentiometer, varying from 0 to 255.

Connect the MCP2515 to the EVK1100.

Task

a. Verify that the above is correct with the CAN dongle and CANking
b. Estimate the frequency of the received reference messages
c. Write a program that reads the values of the reference temperature, light and

potentiometer value and presents this on the display, both as absolute values
and also as percentage of max (255).

Report
Submit your c-file(s) on KTH Social after completion of the entire lab.

3. Distributed temperature control, part 1
Now, you need to measure temperature and light on your own station. Use the exact
same format as the reference station. You may also broadcast the potentiometer value
for debugging.

In this exercise, you should keep using the YELLOW bus with the same settings as
above.

Your student team should be assigned a team number (from 1 to 15). This number
should be marked on your computer desk.

Now, your station shall broadcast your measurements with an ID that is unique to
your station. Use the following:

Embedded Systems for Mechatronics 1, MF2042
Lab – CAN#2

3

ID = 0x0000120z where z is the number of your station (1-15). Broadcast with the
same format as the reference station.

Your measurements should be broadcasted at least once every second (1 Hz).

In the following tasks, you may include the values from the reference station or not.

Task

a. Write a program that, besides broadcasting your measurements, reads the
measured values from all other teams currently working in the lab. Here you
should do a filter, so that it only reads the IDs stated above. (The filter should
be implemented on the CAN-hardware)

b. On the display, you should present the following details:
a. The current number of online teams in the lab
b. Your measured local temperature
c. The average of all temperature measurements
d. Your measured local light value
e. The average of all light measurements

Report
Submit your c-file(s) on KTH Social after completion of the entire lab.

4. Distributed temperature control, part 2
While continuously broadcasting your measured values, you should now program
your local station to perform a number of tasks depending on the status at the various
stations in the lab.

Definitions and assumptions

1. We now pretend that all stations are spread in different
rooms/buildings/countries

2. A light that is well below average defines that it’s night where the station is
located.

3. A temperature measurement that exceeds 15% above average means that this
station is too warm. Average should be in the area of 20 degrees Celsius, and
too warm can be around 23 degrees and more, which can be achieved by
placing a thumb on the sensor.

4. A temperature measurement that is very much below average means that there
is something wrong with the station/sensor/station. Defined as faulty station.
This can be achieved in the lab by use of a tube of cooling spray, provided by
the assistants.

5. LEDs and push buttons should be used to simulate inputs and outputs.

6. Relevant information to the user should be shown on the display

Embedded Systems for Mechatronics 1, MF2042
Lab – CAN#2

4

Specification of demands

The following sets of specification should be realized on your node.

1. At all times, the display should present the number of nodes that’s currently
online on the bus and broadcasting data.

2. At all times, the display should present the number of nodes that are in
daylight respective not daylight (night).

3. At all times, the average value of all temperature and light measurements
should be presented on the display.

4. If no node is too warm or is faulty, this represents a normal status and should
be indicated with a constant green LED on the node.

5. If one (and exactly one) node is too warm, your node should move into a
warning state. This should be indicated with information on the display and a
flashing red LED.

6. When the one too warm node returns to normal temperature, the system
should return to the normal status mode automatically.

7. If two nodes are too warm, the system (your node) should move into an
emergency mode. This should also be indicated on the display and with two
flashing red LEDs.

8. The node should be kept in the emergency state until two conditions apply;
first no more than one node can be too warm, and, secondly, a user needs to
acknowledge the emergency alarm by pressing a push button on the node.

9. If your station receives a faulty measurement, this should be indicated on the

node with a flashing LED (that clearly distinguishes this state from the above
states) and the value should be disregarded from in the calculations of the
average value.

10. Your node should not pay any difference if it’s your own node that’s too warm
or another node.

Report
Submit your c-file(s) on KTH Social after completion of the entire lab.

5. Interrupt-driven CAN

This is an exercise in the innermost details of the CAN controller. Your task is to do
some small modifications to the CAN drivers that enable you to use more advanced
functionality with the CAN controller.

Embedded Systems for Mechatronics 1, MF2042
Lab – CAN#2

5

In the current version of the CAN drivers, the interrupt functionality is not used. Your
task is to connect (physically) the INT-pin on the PICtail to one of the digital input
pins on the EVK1100. For this purpose, it’s easiest to use either the PA29 or PA30.
Both of these are also used for the TWI interface, and therefore a connector can easily
be connected same way as the PICtail is connected to the EVK1100.

Tasks
1. Make the physical connection between the INT-pin and either the PA29 or

PA30 pins (labeled SDA or SCL in the TWI interface)

2. Check the AVR32 software framework for how to enable interrupt on
individual pins (such as PA29 or PA30). You can and should simulate the
behavior first by detecting interrupt from the push buttons.

3. Browse through the manual of the MCP2515 chip and the CAN drivers. Write
a new function in CAN.C that enables the interrupt functionality for the
MCP2515 chip.

Report
Demonstrate your programs to the teaching assistants and submit your c-file(s) on
KTH Social.

