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Recapitulation

What did we do last
lecture?
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Outline - Motivation

@ Communication means transmitting bits over noisy channels.
How should a decoder decide on what has been transmitted?
What are the basic principles? What is optimal?

e Binary Hypothesis Testing (chap 20)
@ How do these concepts extend if the message is more than a

bit"?
e Multiple Hypothesis Testing (chap 21)
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Motivation

@ Task in digital communication is to communicate information
e The receiver has only access to the received waveform, which is
typically distorted!
o Need to find strategy to recover information, how to guess
intelligently!
@ In communication this task is called decoding, in statistics it is
called hypothesis testing, and A. Lapidoth calls it guessing.

@ In real-world applications the channel output is a
continuous-time waveform and many bits should be transmitted.
@ To explain the principles we first restrict our attention to

e binary hypothesis testing - two alternatives
@ observations are vectors or scalars
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Problem Formulation: Binary Hypothesis Testing
@ Two hypotheses H, and H;: RV H takes 0 or 1.
e Bayesian setting, i.e, prior probabilities are known:
no=P[H=0] m=P[H=1]

@ Assumption: 1y = 1 = 1/2 (maximum information)
@ Receiver has observation Y, a random vector in R?
e fyu(-l") denotes the statistical dependency between Y and H

Problem: Find decision rule for guessing H based on Y!

Dejess R? - {0,1}

@ Goal: Minimize the probability of receiver decoding error!
o Probability of error: P, £ IP [CDguESS(Y) * H]
e Optimal decision rule if no other attains smaller P, (optimal: P;).
Q: What is a good guess on H in the absence of observables?
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Guessing after Observing Y

o A posteriori distribution: P [H = i|Y = y,,|
o For mathematical consistency define
s filyaw) > 0,
i =

PlH=iY= = Fy(Yors) =0,1.
[ yObS] 0.5 otherwise.

e It denotes the probability of hypothesis i after observing y,..
= Optimal decision rule (how we resolve ties is arbitrary):

0 ifP[H=0Y=y,]2P[H=1Y=y,,]

O =
suess(Yobs) {1 otherwise

_ )0 i o fria(Yonl0) = 71 fria (Yopsl1)
1 otherwise
@ Probability of error of the optimal decision rule
Pi(Yy,) = min{P [H = 0)Y = y,, |, P [H=1]Y = y,, ||
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Probability of Error

@ Define decision region
D={ye RY : Doyiess(y) = 0}
then the probability of error is given by

PP [error|H = 0] = f z)f1/|1L1(y|0)dy
Y+

P [error|H = 1] = fya(yll)dy
y=D

@ Unconditional probability of error

P, = fRd (I{y € D} fyu(yl)m +1{y ¢ D}leH(y|0)7To) dy

> fR min{fyyDm, fra(yl0)mo) dy = B[P(Yo)]

the RHS is achieved which proves optimality.
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Randomized Decision Rule

Yob Bias | 0om) | © < b(yon) = “H =0 Guess
—
Calculator 0 > b(yops) = “H = 17
© ~u([0,1])

Random Number
Generator

@ Randomized decision rule does not help, since

Pe(yobs) = b(yobs)lp [H = 1|Y = yobs] + (1 - b(yobs))IP [H = O|Y = yobs]
> min {P [H = 0Y =y, |, P[H = 1]Y =y, }
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Maximum A Posteriori (MAP) Decision Rule

MAP Decision Rule

0 it 720 fyl (Y ops0) > 71 fyirr (Yopsl 1),
Dniap(Yops) = 41 if 720 fy1H (Yops10) < 701 fyi1 (YopsI1),
7/1({01 1}) if nOfyIH(yobslo) = 7Tlfyur‘l(yohsll)’

Identical to the previous, expect how it resolves ties.

@ MAP decision is often rewritten as threshold test using
A fyr(Yo510)
Ty (Yops1)
@ LR:R‘ — [0, 0] with convention & =co, a >0, 3 =1
@ threshold %’

o likelihood-ratio function LR(y)

o . . 4 1. Sy(Yol0)
e log likelihood-ratio function LLR(y) = In f;TZID

@ LLR:RY — [~oo,c0] With conv. In & = co, In & = —co, >0, In 3 =0

@ threshold In Z—;
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Maximum-Likelihood (ML) Decision Rule

@ Different decision rule which ignores the prior:

ML decision rule

0 it fyir(Yopsl0) > fyr(Yopsl1),
DL (Y,ps) = 4 1 iy (Yopsl0) < fyir(Yopsl 1),
UAO, 1Y) i fyr(Yopsl0) = fyir(Yopsl1),

@ ML rule is suboptimal unless H is a priori uniformly distributed.
@ Can be also rewritten as threshold tests using LR(-) or LLR(:)
e ML thresholds are 1 and 0
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Bhattacharyya Bound
Using min{a, b} < Vab and Vab < %2, 4,b > 0 we have
- fR min{ (D, fr(yi0)mo) dy
< 1 0)rod
< Ld \/fY|H(y| )71 fyia(yl0)ody
= wa \/fy|H(y|1)fY|H(y|0)dy
1

<3 | Pt sty

Bhattacharyya Bound

P [ Pt puiody
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Conditional Independence

@ RVs X and Y are said to be independent if we have

Pxy(x,y) = Px(x)Py(y)

@ RVs X and Y are said to be conditional independent given RV
Z if we have

Pxyz(x,y,2) = Pxz(x1z)Py)z(ylz)Pz(z), Pz(z) >0
@ Notation: X — Z — Y known as Markov chain

e Equivalently:

@ Pxyyz(xly,z) = Pxz(xlz), Pyz(y,z) > 0.
@ Pyixz(ylx,z) = Pyiz(ylz), Pxz(x,z) > 0.
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Processing

Yobs 9(Yobs) Guess H based Guess
L
on g (yobS)

@ Processing: Z is the result of processing Y with respect to H if
H and Z are conditionally independent given Y.

@ Processing is Futile: If Z is the result of processing Y with
respect to H, then no decision rule based on Z can outperform
an optimal guessing rule base on Y.

@ The concept of sufficient statistic denotes the outcome of
processing (mappings) T : RY — R? where the optimal
performance is still achievable for every v, € R%.
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Guessing in the Presence of a Random Parameter

@ The extension is conceptually straightforward - one has to
distinguish between the following two cases:

©@ Random parameter © not observed:
o conditional density fyn(¥,,:10) = [, frein (Yo 610)dO

0 . [, frein(y,,,010)d6
o Likelihood ratio: LR(y,,,) = T hron(., 010
© Random parameter © observed:
e Treat observed random parameter © = 6, as input

o Likelihood ratio: LR(y,y,, Oois) = Sttt
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Let's take a break!
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Multiple Hypothesis Testing

Instead of (two) hypothesis let’s have RV M € M (messages).
e Prior m,, = P[M =m], me M.
e Non-degenerate prior if 1, > 0 for m € M.

Observation: RV Y € R? with fyj(-|m)
Decision rule: g, : RY - M
Error probability: P, = P [gbguess(Y) * M]

A guessing (decision) rule is optimal if no other rule achieves a
lower P,. Denote the optimal error probability P;.

For mathematical consistency define a posteriori distribution:

Tonfym o) ¢ 0
P [M =m|Y = yobs] = { FrYops) ! fY(yObS) -

1/IM otherwise.
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Guessing after Observing Y

@ Guess 1 which leads to the highest a posteriori probability.
@ Success prob.: P [correctlY = yobs] = max {IP [M =m'lY = yobs]}

@ Error probability: Pi(y,,,) = 1 — max {]P [M =m'|Y = yobs]}
meM

@ Define outcomes of maximal a posteriori probability

M(yohs) = {ﬁ’l eM: 7—[’1~1fY|]VI(yobs) = 71:,12/@ {nm'fY|M(yobs)}}

Optimal Multi-hypothesis Testing
Any guessing rule that satisfies the following is optimal

(Dg uess(yobs) = M(yobs)’ Yobs € ]Rd'
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Proof

@ Every deterministic decision rule results in a partition {D,,} of R¢

| Du=R"  D,nDy=0
meM
where D,, covers observations y . leading to guess m (and
vice versa).
@ Searching for an optimal decision rule is equivalent to searching
for an optimal way to partition R?

P [correct] = Z 70, P [correct|M = m] nm f fym(ylm)d
memM memM
= f [Z o frm(ylm)H{y € @m}] dy
R¢ meM
@ The integral will be maximized if we assign y to the set Dy, with
m e M(y). O
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Example: Multi-Hypothesis Testing for 2D Signals

@ M is uniformly distributed over M
@ 2D-observations Y

1 (Y = an)* + (y® = by)?
@ _
Froyou@®, yPlim) = 7rg? &P (— 252
@ ML rule: “Nearest-Neighbor” decoding rule
fy(l)y(z>|M(y(1), y(2)|ﬁ1) = ;Irlea/\)/(( {fY(l)Y(2)|M(y(1)/ y(z)lm,)}

1 W g2 4+(yD—p,.)? 1 g VPr(y@—b. )2
o exp (_(y am>2+§y ) ): max { _exp (_(y @y );gy ) )}
27102 d mweM | 2o o

& V=)’ + (P - ba)? = min(y —a) + () = by)®
@ The last equation denotes the nearest neighbor decoding rule.
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Example: Decision region 8-PSK

(az,b2)
(as, bs) (a1,b1)
(as,bs) A (as, bs)
(G«Sabﬁk‘% b7)

(as, bs)

@ Shaded region denotes ML decision region D,
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Union-of-Events Bound

@ Given two not necessarily disjoint events V and ‘W
PVUW]=P[V][+P[W]-P[VNW]<P[V]+P[W]
= Union-of-events bound: P [Uj(Vj] < Zj]P [q/].]

@ The Union bound can be used to derive upper bounds on the
error analysis
@ Pyap(errorlM = m) <P [Y € Uy B |M = m]
o Bm,m' = {y eR*: nm’fYIM(ylm,) 2 nmelM(y|m)}
e to obtain a Union-Bhattacharyya bound

ph < ﬁ Z Zf VAm(ylm) frp(ylm’)dy

meM m#m

@ etc.
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Outlook - Assignment

@ Binary Hypothesis Testing
@ Multiple Hypothesis Testing

Sufficient statistics, multivariate Gaussian distribution \

@ Reading Assignment: Chap 22-23
@ Homework:
@ Problems in textbook: Exercise 20.1, 20.2, 20.3, 20.4, 20.13,

21.2,21.4,and 21.8
@ Deadline: Dec 2
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