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Recapitulation

What did we do last
lecture?
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Outline - Motivation

Communication means transmitting bits over noisy channels.
How should a decoder decide on what has been transmitted?
What are the basic principles? What is optimal?

Binary Hypothesis Testing (chap 20)

How do these concepts extend if the message is more than a
bit?

Multiple Hypothesis Testing (chap 21)
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Motivation

Task in digital communication is to communicate information
The receiver has only access to the received waveform, which is
typically distorted!
Need to find strategy to recover information, how to guess
intelligently!

In communication this task is called decoding, in statistics it is
called hypothesis testing, and A. Lapidoth calls it guessing.

In real-world applications the channel output is a
continuous-time waveform and many bits should be transmitted.
To explain the principles we first restrict our attention to

binary hypothesis testing - two alternatives
observations are vectors or scalars
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Problem Formulation: Binary Hypothesis Testing

Two hypotheses H0 and H1: RV H takes 0 or 1.
Bayesian setting, i.e, prior probabilities are known:

π0 = P [H = 0] π1 = P [H = 1]

Assumption: π0 = π1 = 1/2 (maximum information)
Receiver has observation Y, a random vector in Rd

fY |H(·|·) denotes the statistical dependency between Y and H

Problem: Find decision rule for guessing H based on Y!

Φguess : Rd
→ {0, 1}

Goal: Minimize the probability of receiver decoding error!
Probability of error: Pe , P

[
Φguess(Y) , H

]
Optimal decision rule if no other attains smaller Pe (optimal: P∗e).

Q: What is a good guess on H in the absence of observables?
KTH course: Foundations in Digital Communications c©Tobias Oechtering 5 / 22



Guessing after Observing Y

A posteriori distribution: P
[
H = i|Y = yobs

]
For mathematical consistency define

P

[
H = i|Y = yobs

]
=

πi fY |H(yobs |i)
fY (yobs)

if fY(yobs) > 0,

0.5 otherwise.
i = 0, 1.

It denotes the probability of hypothesis i after observing yobs.
⇒ Optimal decision rule (how we resolve ties is arbitrary):

Φ∗guess(yobs) =

0 if P
[
H = 0|Y = yobs

]
≥ P

[
H = 1|Y = yobs

]
1 otherwise

=

0 if π0 fY |H(yobs|0) ≥ π1 fY |H(yobs|1)
1 otherwise

Probability of error of the optimal decision rule

P∗e(yobs) = min
{
P

[
H = 0|Y = yobs

]
,P

[
H = 1|Y = yobs

]}
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Probability of Error

Define decision region

D , {y ∈ Rd : Φguess(y) = 0}

then the probability of error is given by

P [error|H = 0] =

∫
y,D

fY |H(y|0)dy

P [error|H = 1] =

∫
y=D

fY |H(y|1)dy

Unconditional probability of error

Pe =

∫
Rd

(
I
{
y ∈ D

}
fY |H(y|1)π1 + I

{
y < D

}
fY |H(y|0)π0

)
dy

≥

∫
Rd

min
{

fY |H(y|1)π1, fY |H(y|0)π0

}
dy = E

[
P∗e(Yobs)

]
the RHS is achieved which proves optimality.
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Randomized Decision Rule

Randomized decision rule does not help, since

Pe(yobs) = b(yobs)P
[
H = 1|Y = yobs

]
+ (1 − b(yobs))P

[
H = 0|Y = yobs

]
≥ min

{
P

[
H = 0|Y = yobs

]
,P

[
H = 1|Y = yobs

]}
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Maximum A Posteriori (MAP) Decision Rule

MAP Decision Rule

ΦMAP(yobs) ,


0 if π0 fy|H(yobs|0) > π1 fy|H(yobs|1),
1 if π0 fy|H(yobs|0) < π1 fy|H(yobs|1),
U({0, 1}) if π0 fy|H(yobs|0) = π1 fy|H(yobs|1),

Identical to the previous, expect how it resolves ties.

MAP decision is often rewritten as threshold test using
likelihood-ratio function LR(y) , fy|H(yobs |0)

fy|H(yobs |1)

LR : Rd
→ [0,∞] with convention α

0 = ∞, α > 0, 0
0 = 1

threshold π1
π0

,

log likelihood-ratio function LLR(y) , ln fy|H(yobs |0)
fy|H(yobs |1)

LLR : Rd
→ [−∞,∞] with conv. ln α

0 = ∞, ln 0
α = −∞, α > 0, ln 0

0 = 0
threshold ln π1

π0
,
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Maximum-Likelihood (ML) Decision Rule

Different decision rule which ignores the prior:

ML decision rule

ΦML(yobs) ,


0 if fy|H(yobs|0) > fy|H(yobs|1),
1 if fy|H(yobs|0) < fy|H(yobs|1),
U({0, 1}) if fy|H(yobs|0) = fy|H(yobs|1),

ML rule is suboptimal unless H is a priori uniformly distributed.
Can be also rewritten as threshold tests using LR(·) or LLR(·)

ML thresholds are 1 and 0
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Bhattacharyya Bound

Using min{a, b} ≤
√

ab and
√

ab ≤ a+b
2 , a, b ≥ 0 we have

P∗e =

∫
Rd

min
{

fY |H(y|1)π1, fY |H(y|0)π0

}
dy

≤

∫
Rd

√
fY |H(y|1)π1 fY |H(y|0)π0dy

=
√
π0π1

∫
Rd

√
fY |H(y|1) fY |H(y|0)dy

≤
1
2

∫
Rd

√
fY |H(y|1) fY |H(y|0)dy

Bhattacharyya Bound

P∗e ≤
1
2

∫
Rd

√
fY |H(y|1) fY |H(y|0)dy
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Conditional Independence

RVs X and Y are said to be independent if we have

PX,Y(x, y) = PX(x)PY(y)

RVs X and Y are said to be conditional independent given RV
Z if we have

PX,Y,Z(x, y, z) = PX|Z(x|z)PY|Z(y|z)PZ(z), PZ(z) > 0

Notation: X − Z − Y known as Markov chain
Equivalently:

PX|YZ(x|y, z) = PX|Z(x|z), PYZ(y, z) > 0.
PY|XZ(y|x, z) = PY|Z(y|z), PXZ(x, z) > 0.
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Processing

Processing: Z is the result of processing Y with respect to H if
H and Z are conditionally independent given Y.
Processing is Futile: If Z is the result of processing Y with
respect to H, then no decision rule based on Z can outperform
an optimal guessing rule base on Y.

The concept of sufficient statistic denotes the outcome of
processing (mappings) T : Rd

→ R
d′ where the optimal

performance is still achievable for every yobs ∈ R
d.
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Guessing in the Presence of a Random Parameter

The extension is conceptually straightforward - one has to
distinguish between the following two cases:

1 Random parameter Θ not observed:
conditional density fY |H(yobs|0) =

∫
θ

fYΘ|H(yobs, θ|0)dθ

Likelihood ratio: LR(yobs) =

∫
θ

fYΘ|H(yobs,θ|0)dθ∫
θ

fYΘ|H(yobs,θ|1)dθ

2 Random parameter Θ observed:
Treat observed random parameter Θ = θobs as input
Likelihood ratio: LR(yobs, θobs) =

fYΘ|H(yobs,θobs |0)
fYΘ|H(yobs,θobs |1)
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Let’s take a break!
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Multiple Hypothesis Testing

Instead of (two) hypothesis let’s have RV M ∈ M (messages).
Prior πm = P [M = m], m ∈ M.
Non-degenerate prior if πm > 0 for m ∈ M.

Observation: RV Y ∈ Rd with fY |M(·|m)
Decision rule: Φguess : Rd

→M

Error probability: Pe = P
[
φguess(Y) ,M

]
A guessing (decision) rule is optimal if no other rule achieves a
lower Pe. Denote the optimal error probability P∗e.
For mathematical consistency define a posteriori distribution:

P

[
M = m|Y = yobs

]
=


πm fY |M(yobs|m)

fY (yobs)
if fY(yobs) > 0,

1/|M| otherwise.

KTH course: Foundations in Digital Communications c©Tobias Oechtering 16 / 22



Guessing after Observing Y

Guess m̃ which leads to the highest a posteriori probability.

Success prob.: P
[
correct|Y = yobs

]
= max

m′∈M

{
P

[
M = m′|Y = yobs

]}
Error probability: P∗e(yobs) = 1 − max

m′∈M

{
P

[
M = m′|Y = yobs

]}
Define outcomes of maximal a posteriori probability

M(yobs) =
{
m̃ ∈ M : πm̃ fY |M(yobs) = max

m′∈M

{
πm′ fY |M(yobs)

}}
Optimal Multi-hypothesis Testing
Any guessing rule that satisfies the following is optimal

Φ∗guess(yobs) ∈ M(yobs), yobs ∈ R
d.
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Proof

Every deterministic decision rule results in a partition {Dm} of Rd⋃
m∈M

Dm = Rd
Dm ∩Dm′ = ∅

where Dm covers observations yobs leading to guess m (and
vice versa).
Searching for an optimal decision rule is equivalent to searching
for an optimal way to partition Rd

P [correct] =
∑

m∈M

πmP [correct|M = m] =
∑

m∈M

πm

∫
Dm

fY |M(y|m)dy

=

∫
Rd

 ∑
m∈M

πm fY |M(y|m)I
{
y ∈ Dm

} dy

The integral will be maximized if we assign y to the set Dm̃ with
m̃ ∈ M(y). �

KTH course: Foundations in Digital Communications c©Tobias Oechtering 18 / 22



Example: Multi-Hypothesis Testing for 2D Signals

M is uniformly distributed overM
2D-observations Y

fY(1)Y(2)|M(y(1), y(2)
|m) =

1
2πσ2 exp

(
−

(y(1)
− am)2 + (y(2)

− bm)2

2σ2

)
ML rule: “Nearest-Neighbor” decoding rule

fY(1)Y(2) |M(y(1), y(2)
|m̃) = max

m′∈M

{
fY(1)Y(2) |M(y(1), y(2)

|m′)
}

⇔
1

2πσ2 exp
(
−

(y(1)
−am̃)2+(y(2)

−bm̃)2

2σ2

)
= max

m′∈M

{ 1
2πσ2 exp

(
−

(y(1)
−am′ )2+(y(2)

−bm′ )2

2σ2

)}
⇔ (y(1)

− am̃)2 + (y(2)
− bm̃)2 = min

m′∈M
(y(1)
− am′ )2 + (y(2)

− bm′ )2

The last equation denotes the nearest neighbor decoding rule.
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Example: Decision region 8-PSK

Shaded region denotes ML decision region D1
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Union-of-Events Bound

Given two not necessarily disjoint eventsV andW

P [V∪W] = P [V] +P [W] −P [V∩W] ≤ P [V] +P [W]

⇒ Union-of-events bound: P
[⋃

jV j

]
≤

∑
jP

[
V j

]
The Union bound can be used to derive upper bounds on the
error analysis

PMAP(error|M = m) ≤ P
[
Y ∈

⋃
m′,mBm,m′ |M = m

]
Bm,m′ = {y ∈ Rd : πm′ fY |M(y|m′) ≥ πm fY |M(y|m)}

to obtain a Union-Bhattacharyya bound

p∗e ≤
1

2|M|

∑
m∈M

∑
m,m′

∫ √
fY |M(y|m) fY |M(y|m′)dy

etc.
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Outlook - Assignment

Binary Hypothesis Testing
Multiple Hypothesis Testing

Next lecture
Sufficient statistics, multivariate Gaussian distribution

Reading Assignment: Chap 22-23
Homework:

Problems in textbook: Exercise 20.1, 20.2, 20.3, 20.4, 20.13,
21.2, 21.4, and 21.8
Deadline: Dec 2
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