
Applied Programming and Computer Science,
DD2325/appcs14

PODF, Programmering och datalogi för fysiker,
DA7011

Lecture 3, Simple C programming

A. Maki, C. Edlund
November 2014

A (simple) generic C program

preprocessor directives /* start with ’#’ end without ’;’ */

return-type function_1(parameters) {

declarations

statements

}

/* ...

...

*/

return-type function_n(parameters) {

declarations

statements

}

int main(int argc, char **argv) {

declarations

statements

}

Recursive functions (ex. the factorial)

f (n) =

{
1 n = 1

n × f (n − 1) n > 1
#include <stdio.h>

int factorial(int x) {

if (x>1) {

return x*factorial(x-1);

}

else

return (1);

}

main(){

int n;

printf("Enter n: ");

scanf("%d", &n);

printf("The factorial of n is: %2d \n", factorial(n));

}

Statements

The major part of a C program consists of statements. A statement
is a command which is executed when the program runs.

All statements should be terminated by a semi-colon, e.g.

area = pi * radius * radius;

A statement can span several lines,

area = pi *

radius * radius;

Several statements can be collected in a compound statement
which is treated as one statement by the compiler.
This is accomplished by braces,

{

area = pi * radius * radius;

circumference = 2 * pi * radius;

}

Basic types

All variables in C must have a type, which specifies what kind of
data it will hold. A variable must be declared before use.

Basic types:

Type Description
int Integer values

float Floating point numbers

double Floating point numbers
(higher accuracy, larger numbers)

char Character

(There are different variants of the basic types, e.g. unsigned

int which can only hold positive integers, and long int which
can hold larger integers.)

In addition to the basic types C allows the user to specify his/her
own data types.

Declaration of variables

Each program/function should begin with a declaration of
variables. For example

main() {

int i, j;

float f;

/* statements */

}

This declaration defines two integers, i and j, and a floating point
number f which can be used in the program.
Note: C is case-sensitive.
A variable which is not supposed to change value can be declared
as a constant, e.g.

const float pi = 3.14;

This improves efficiency and simplifies debugging.

Arithmetic expressions

A variable is assigned a value using the operator =.
C supports all basic arithmetic operators.

a = -b;

a = b + c;

a = b - c; (equivalent to a=b+-c;)

a = b * c;

a = b / c;

Operator precedence as in mathematics. The statement
a = (1 + 2) * 3 - 4;

will result in a being assigned the value 5.

Additional mathematical functions in math.h (trigonometric,
exponential, power, . . .).

Compound assignment

When one is only interested in updating the value of a variable it is
possible to use compound assignment.

a += b; (-= , *= , /=)
is equivalent to

a = a + b; (- , * , /).
i=i+1 can be conveniently written using the increment operator
++. i=i+1 is equivalent to i++ (postfix) and ++i (prefix).

Prefix: i = 1; j = 1; k = j + ++i;
i ← 2 , k ← 3 (=1+2)

i updated before evaluation

Postfix: i = 1; j = 1; k = j + i++;
i ← 2 , k ← 2 (=1+1)

i updated after evaluation

Decrement operator: --

Type conversion

All values in C have a specific type.
→ Some mathematical operations can introduce ambiguities.

E.g. what type should the sum of an int and a float have?

These questions are resolved by type conversion.
Implicit type conversion is done by the compiler when

A. Type of expressions on left and right hand sides differ
(assignment)

B. Operands in expression of different type

A type cannot be changed during execution.

Case A is handled by converting the value of the right hand side to
the type on the left hand side before assignment.

Type conversion (cont.)

Case B is handled by “safe conversion”; if one type can be
expressed in the other (e.g. int special case of float) that type is
converted to obtain a more accurate result.

char < int < long < float < double

There are some pathological cases. Example:

int i , j;

float f;

i = 3 ; j = 2;

f = i / j; /* f will hold 1.0 */

f = (float) (i / j); /* f will hold 1.0 */

f = (float) i / j; /* f will hold 1.5 */

f = i / (float) j; /* f will hold 1.5 */

Sometimes it is advisable to do an explicit casting,

(type) expression

which converts the value of the expression to the given type.

Formatted output (stdio.h)

Output in C is written to output streams.
The two most common are stdout (for standard output, usually
screen) and stderr (for error messages).
Output written to stderr is shown as soon as the statement is
executed.

A programmer can define new streams.

int printf(const char *format, ...);
int fprintf(FILE *stream,

const char *format, ...);

fprintf allows the programmer to specify the output stream.
printf writes to stdout.

The appearance of the output is specified by the format string.
The ellipsis (. . .) should be replaced by the values to print.

Formatted output (cont.)

A simple example:

printf("Area = %f\n", pi*r*r);

"Area = %f\n" is a format string instructing the computer to
write the string "Area = " followed by a floating point number
(pi*r*r evaluated) and a linebreak to stdout.
The format string must contain a conversion specification for each
value to print.
Some common conversion specifiers:

Specifier Displays
%d Integers

%f Floating point numbers

%e – ” – , exponential form

%g Combination of two above

%c Characters

%s Strings

Formatted output (cont.)

The basic specifiers can be modified. The format string %p.qX
prints a value of type X with precision q and a minimum field
width p (for tables).
The meaning of the word precision depends on X . Typically the
number of decimals (X = f or X = e) or significant digits
(X = g or X = d).

Escape sequences instructs the computer to print special
characters. Some useful examples:

Sequence Displays
\n New line

\t Tab

\" Double quote (”)

\\ Backslash (\)
\? Question mark (?)

Formatted input

Input in C is read from input streams.
The most common is stdin (standard input, usually keyboard).

int scanf(const char *format, ...);
int fscanf(FILE *stream,

const char *format, ...);

The format string is basically the same as for fprintf.
The ellipsis should be replaced by addresses to memory locations
where the values are to be stored.

Addresses to variables can be obtained by the address operator &.
&x returns the address of the variable x in memory.

Note: To read a double the format string %lf must be used, %f
will not work.

Input/output – an example

#include <stdio.h>

main() {

const float pi = 3.14;

float radius;

printf("Enter radius of circle: ");

scanf("%f", &radius);

printf("Area = %e, Circumference = %.5f\n\n",

pi*radius*radius, 2*pi*radius);

}

Compilation of the example program in the file circle.c

c2m2-20>gcc -o circle circle.c

Execution of example program:

c2m2-20>./circle

Enter radius of circle: 1

Area = 3.140000e+00, Circumference = 6.28000

c2m2-20>./circle

Enter radius of circle: 4.5

Area = 6.358500e+01, Circumference = 28.26000

c2m2-20>./circle

Enter radius of circle: 2.3e1

Area = 1.661060e+03, Circumference = 144.44000

If you do not have the module gcc you need to add it with the command

module add gcc

Write the above line in your file .modules found in your homedirectory.

Selection statements

Selection statements allows the program to select different
execution paths depending on data.
There are two selection statements in C: if and switch.

The if statement chooses execution path by testing a logical
expression,

if (expression) statement else statement

Any valid statement is allowed, including a new if statement.
Example, computing abs(x) = |x |:

if (x > 0)

absx = x;

else

absx = -x;

Logical expressions

Logical expressions are formulated using (a combination of)
relational, equality and/or logical operators.

Each logical expression evaluates to either false (0) or true (1,
nonzero).

Relational operators

Symbol Meaning
< less than

> greater than

<= less than or equal to

>= greater than or equal to

Equality operators

Symbol Meaning
== equal to

!= not equal to

Logical expressions (cont.)

Logical operators

Symbol Meaning
! logical negation

&& logical and

|| logical or

Example: (0 < n ≤ 100 or n = 150)
can be written (for integers n)
(((n > 0) && (n <= 100))||(n == 150)).

Do not confuse == (equality) with = (assignment) since this may
lead to the wrong execution path being chosen and relevant data
being overwritten.
(i == j) tests whether i is equal to j.
(i = j) assigns i the value of j and is evaluated as true if j is
nonzero.

The switch statement

switch (expression)

{

case {const expr} : {statements}

....

case {const expr} : {statements}

default : {statements}

}

All expressions must return integer (or character) values.
The constant expressions (or case labels) may not contain variables
or function calls.

For simple use of switch the last statement in each case group
should be break;.

The switch statement (cont.)

Can use the switch statement to avoid cascaded if statements.

Example: Solve polynomial equation of degree 1 or 2.

Cascaded if statements (top) and switch statement (bottom):

if (degree == 1)

{/* Solve eqn of degree 1*/}

else if (degree == 2)

{/* Solve eqn of degree 2 */}

else

{/* Print error message */}

switch (degree) {

case 1: /* Solve degree 1*/; break;

case 2: /* Solve degree 2*/; break;

default: /* Print error message */;

}

Iteration statements (loops)

Iteration statements are used to repeatedly execute a statement.
There are three iteration statements in C: while, do and for.

while (expression) statement

while executes the statement as long as the expression is true.

Example, computing powers of 2 smaller than 100:

int n = 0;

int pow = 1;

while (pow < 100) {

printf("%3d %3d\n", n, pow);

n = n + 1;

pow *= 2;

}

do loops

do statement while (expression)

do loops are essentially while loops, but the controlling expression
is tested after the statement is executed.

Example, do loop written as while loop:

i=1;
while (i) {

statement
i = expression;

}

for loops

for (expr1 ; expr2 ; expr3) statement

The syntax of for loops is more complicated than that of while
and do loops, but allows the compiler to produce faster
executables.

The expressions should be interpreted as follows:
expr1 Executed before starting iteration.
expr2 Iterate while expression is true.
expr3 Executed at end of each iteration

Example, for loop written as while loop:
expr1;
while (expr2) {

statement
expr3;

}

for loops (cont.)

Example, computing n!

fac = 1;

for (i=1 ; i<=n ; i++)

fac = fac*i;

expr1 and expr3 may contain several statements separated by
commas.

Example, computing powers of 2 smaller than 100:

for (n=0,pow=1 ; pow<100 ; n++,pow*=2)

printf("%3d %3d\n", n, pow);

Functions in C

Functions in C can be viewed as small programs on their own.

Functions have several advantages:

Less code duplication – easier to read / update programs

Simplifies debugging – each function can be verified separately

Reusable code – the same functions can be used in different
programs (e.g. printf)

Related functions are often collected in libraries:
e.g. the C standard library, BLAS (Basic Linear Algebra
Subroutines) and LAPACK (Linear Algebra PACKage).

Function definition

return-type function-name(parameters) {

declarations

statements

return value;

}

return-type type of value returned by function
or void if none

function-name unique name identifying function

parameters comma-separated list of types
and names of parameters

value value returned upon termination
(return value; is not needed if return-type is void)

Function definition (cont.)

The list of parameters is a declaration on the form

type 1 par 1, . . . , type n par n

and represents external values needed by the function.

The list of parameters can be empty.

All declarations and statements that are valid in the main program
can be used in the function definition, where they make up the
function body.

Example, computing averages

double average(double x, double y) {

return (x+y)/2;

}

Function declaration

Like variables a function must be declared before it can be used
(called). The declaration of a function resembles the definition,

return-type function-name(parameter types);

The function body is replaced by a semi-colon, and parameters
need not be named, it is sufficient to specify their types.

Note: If the function definition precedes the first call the
declaration is not needed.

Function calls

variable=function-name(arguments);

variable is assigned the return-value of the function.

The arguments are values with types corresponding to the
parameters of the function.
For example,

main() {

double a=1;

double avg;

avg = average(a, 3.0);

}

If the types of an argument and parameter do not agree, implicit
type conversion is used as for assignment.

Function calls (cont.)

When a function is called the value of the argument is copied to
the corresponding parameter. Changes made to the parameter
inside the function will *not* affect the argument (call by value).
Example, what is the output of the program?

#include <stdio.h>

void decrease(int i) {

i--;

printf("%d ", i);

}

main() {

int i=1;

printf("%d ", i);

decrease(i);

printf("%d\n", i);

}

Passing arguments by value or reference?

Consider the transformation from polar to Cartesian coordinates,
(r , ϕ)→ (x , y). Given two values we wish to compute two new,
but functions in C can only return one value.

We can either write separate functions for computing x and y or
pass arguments by reference.
If an argument is passed by reference, any changes made to the
parameter inside the function will affect the value of the argument
outside.

Thus we could pass the function r , ϕ by value and x , y by
reference. Any changes made to x and y inside the function would
also apply to the arguments.

We will leave this subject for now and return when we discuss
pointers.

Variable scope (example)

#include <stdio.h>

int i = 0; /* Declaration A */

int main() {

printf("%d ", i); /* A */

{

int i = 1; /* Declaration B */

printf("%d ", i); /* B */

{

int i = 2; /* Declaration C */

printf("%d ", i); /* C */

i++; /* C */

printf("%d ", i); /* C */

}

printf("%d ", i); /* B */

}

printf("%d\n", i); /* A */

}

gives the output 0 1 2 3 1 0

Variable scope

Each identifier is visible only within a certain context, or scope.
This is the reason for passing arguments.

There are two kinds of scope in C: local and file scope.

Variables declared inside a block (compound statement) are visible
to the end of the block and have local scope. Local scopes can be
nested.

Variables declared outside any function definition are visible to the
end of the file and have file scope. These global variables should
be avoided if possible (simplifies debugging).

Scope rule: When a declaration names a visible identifier, the new
declaration “hides” the old and the identifier takes on a different
meaning.

An example - Newton’s method

Newton’s method for solving nonlinear equations f (x) = 0,

Until convergence: xi+1 = xi −
f (xi)

f ′(xi)
#include <stdio.h>

#include <math.h>

double f(double x) {return (x-cos(x));}

double fprime(double x) {return (1+sin(x));}

main() {

double dx=1, x=0.5;

int i=0;

while (fabs(dx)>1e-12) {

dx = -f(x) / fprime(x);

x = x + dx;

printf("%3d %17.12f %15e\n", ++i, x, dx);

}

}

An example - Newton’s method

Execution of example program:

> gcc newton.c -o newton -lm

> newton

1 0.755222417106 2.552224e-01

2 0.739141666150 -1.608075e-02

3 0.739085133921 -5.653223e-05

4 0.739085133215 -7.056461e-10

5 0.739085133215 -3.064197e-17

Note: This program would not have converged if float had been
used instead of double. (Tolerance must be >≈ 5 · 10−8 for
convergence.)

