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REPRESENTING AND WORKING
WITH DISTRIBUTIONS

»  For all but the smallest n, the explicit representation of the joint distribution is
unmanageable from every perspective.

*  Computationally, it is very expensive to manipulate and generally too large to store

in memory.

= Cognitively, it is impossible to acquire so many numbers from a human expert;
moreover, the numbers are very small and do not correspond to events that
people can reasonably contemplate.

= Statistically, if we want to learn the distribution from data, we would need
ridiculously large amounts of data to estimate this many parameters robustly.

*  These problems were the main barrier to the adoption of probabilistic methods for
expert systems until the development of the methodologies we now will consider.

SOMATIC EVOLUTION

Oncogenetic network

The Clonal Evolution of

Tumor Cell Populations

Acquired genetic lability permits stepwise selection
of variant sublines and underlies tumor progression.
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Directed graphical model Undirected graphical model

e DAG e graph

® vertices r.v.s e vertices r.v.s

e equipped with local CPDs e equipped with local “factors”

GRAPHICAL MODELS




DGM - GRAPH AND
CPDS Vs JOINT
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THREE LEVELS OF
COMPUTATIONAL PROBLEMS

Intelligence
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Inference: given G and 6, compute probabilities or marginalize
Parameter learning: given G and D, learn 6

Structure learning: given D, learn G and 6
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—XTENDED STUDENT
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—XTENDED STUDENT
—XAMPLE

P(D=0,I=1,G=2,L=1,3=0) P(D=0,I=1,G=1,L=1,8=0)
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INFERENCE — THE
CHAIN RULE

p(zv|ey 1)

*  Assuming binary r.v., p(Xv | Xy-1j) has 2V parameters

*  Total # parameters Y1<<v 2 = 2V-1




=X, WHERE IND.
OBVIOUSLY FACILITATES

p( zpy) ) = p(x1)p(z2|z1)p(Ts3|T1, 22) - - - P(TV |[T[V 1))
—

T1,..., TV

*Assume first order Markov property &: L p_g)|2:—1

i.e., if time ordered, future independent of past given present
V-1
*
TN plagyy) = (@) T pl@|z)
t=1

FACTORIZATION OVER

N

H p<317“n, ’mpa(:zr,, ) )

n=1

p can be factorized over G if it can be expressed as above

CAT — NOTATION

% ForavelV],

values k € [K,] / Cartesian product
combined values  ce C, = H (K]

s€pa(v)
% Cat CPDs

where  P(xy|@pa(y) = ¢) = Cat(0y.)

and  Oyer, = P(xy = k|2pa(v) = ©)

THE LIKELIHOOD
FACTORIZES

% Complete data D={z,..., zn}
Tn ={Tn1,...,Tnv}
% Likelihood N N v
p(D|9) = H p(wn|0) = H Hp(wnv|wn,pa(u)»9)
n=1 n=1v=1
VvV N 14
= H H p(wn |$n,pa(u)70) = Hp(Dku)
=1n=1 =1

% Called: decomposable likelihood (factorizes into family-factors)




THE LIKELIHOOD
FACTORIZES

* Complete data D= {z1,...,zn}
Tn = {Tn1,...,Tnv}
*  Likelihood N v
Dle Hp wn|0 H Hp(xnv|wn,pa(v)70)
n=1v=1
v N %
H H wnv|$n,pa(v)7 ) = Hp(Dv|0v)
where Dy is vaI f v together with its parents and 6vis v’'s CPD

% Called: decomposabile likelihood (factorizes into family-factors)

* So, MLE s

* where

MLE ~OR CATI CPDS

Each P(D,|6,) ,ie., here each Oy = (Oyet,y- - -5 Ouek,)

can be maximized independently

Ovck = chk/ch

N
Nyck = Z I(xnv =k, L pa(v) = C)

n=1

= Z I(xn,pa(v) = C)

=z

SBAYESIAN PARAME TER
LEARNING

% Decomposable prior
1%
p(0) = [Ip0,)  where 0= (60, 00k,..))

* Gives decomposable posterior

14
p(6|D) o p(D|0)p(0) = [ [ p(D,[6.)p(6.)
v=1

POS ERIOR

evc = (evcla R echU)

* auw is a vector of hyperparameters, prior

0,c ~ Dir(aye)

% The posterior is
0.,c|D ~ Dir(Nye + @ye)




X, X" two hidden variables M A R G ‘ N A
Xy the other hidden variables L ‘Z E

Xy the visible variables

MARGINALIZE

. (X, x. |0 Y o oy (X, c|0)
p(Xm|ze,0) = P(Xm, @e|0) _ 2oy gnuey PL2ms Tel)

p(xl0) X, . p(x6)

The denominator contains a marginal likelihood
Summing out V binary hidden variables — O(2Y)

K values — O(KY)

we want
"=Kl|z,,0)
> 7 . ! 1.
= p(}s =k X0 = K, 20|6) sum out
P(x,|0)
Yo, DX =k, X =k, xp, x,]0)
a ,(li)—,,.’l?u|9)
given
X, X" two hidden variables EXP ECTED
X the other hidden variables SUFFICIENT

STAT

STICS - ESS

X, the visible variables

> p(X =k X =kKx,,0)

xzeD

. DGN

% What is the meaning of the

9 e underlying DAG? what is the
semantics?

*What does a DGM mean? what is

the semantics?

@ @ *Which DGMs represent a given

distribution?




—XTENDED STUDENT

—XAMPLE

INDEPENDENCE [-MAF

* |(G) independences implied by G (not yet defined)
* |(P) independences in the distribution P

* G l-map for Pin I(G) ¢ I(P)

P

P

INDEPENDENGCE |-MAR

* |(G) independences implied by G (not yet defined)
* |(P) independences in the distribution P
* G l-map for Pin I(G) c I(P)

g X Y |PX,Y)

p
oy 0.08 oy 0.4
20 y! 0.32 20yl 0.3
xt gy 0.12 xt g0 0.2
2 oyt 048 'yt 0.1
o—>0 (] o
X Y X Y X Y

p: Xand Yind. ex. p(X=1) = 0.48 + 0.12 =0.6, p(Y=1) = 0.8, and p(X=1,Y=1) = 0.48

g: X and Y are dependent

[r

P

INDEPENDENGCE |-MAF

* |(G) independences implied by G (not yet defined)
*  |(P) independences in the distribution P

* G l-map for Pin I(G) ¢ I(P)

P X Y |P(X,)Y) Y
z’ oy 0.08 oy 0.4
20yl 0.32 20 gyt 0.3
b y0 0.12 b y0 0.2
' oyt 048 zt oyt 0.1
o—>0 Oe—0 ) o
X G Y X G2 Y X Gs Y

All three graphs are I-maps for p
G1 and Gg are I-maps for g, but Gs is not




TERMINOLOGY

* Parent
% Child
* Family
% Root
* Leaf

* Neighbor

TERMINOLOGY

% Degree (in and out)

% Cycle (directed or not)

% Directed Acyclic Graph (DAG)

% Topological order (parents < child)
% Path (directed or not)

% Ancestors

TERMINOLOGY

* Tree

% Polytree — directed tree with
multiple parents for some vertices

* Forest
% Subgraph
* Clique

% Maximal clique

p(x[5)) = p(z1)p(z2|T1)p(Ts| 1, T2)

ORDERED
MARKOV
PROPERTY

% The directed local Markov property.

Ty L m"\&’lesc(}f}'“"pa(ﬂ

% In this case

p(T4|Te, T2, 23)p(T5|T1, T2, 3, T4)

= p(x1)p(x2|T1)p(23 ‘
(4|2, 3)p(T5| T3




ORDERED
MARKOV
PROPERTY

% The directed local Markov property.

Ty L Ly \desc(t) |wpa(f)

*In general, if 1,...,V topological order,
the likelihood is decomposable
(factorizes)

v
p(m[‘] |G) = H p(wt |mpa(1) )
t=1

ORDERED
MARKOV
PROPERTY

% The ordered Markov property.
Ty L mpred(z‘)|mpa(1‘)
has path to t, does not include t

*In general, if 1,...,V topological order,
the likelihood is decomposable
(factorizes)

v
p(xy|G) = H!’(It\mpa(ﬂ)
=il

D-SEPARATION

% A path is d-separated by O if it
has

eachanX =Y = ZwhereY e O

e afork X <Y = ZwhereY € O

® g v-structure X =Y « Z
where (Y U desc(Y)) n O =@

*—0—0 Chain

YeO
% /.\ z Fork
L ®
X z

.\ v-struct
20

‘desc 20

D-SEPARATION
SETS AND CI OF
DAGS

% A is d-separated from B given O if
every undirected path between A and
B is d-separated by O

% In a DAG G,

x4 lg xzplzo

Ais d-separated from B given O




% Global (G): d-separation

* Local (L): Xt L Xvy\dese(t) | Xpa(t)

* Ordered (O)Z Xt _L Xpred(t)l-Xpa,(t)
where pred is according to a topological order
% Factorized (F): can be family-factorized

Theorem: GeLe OsF

—QUIVALENCE OF
INDEPENDENGE DEFINITIONS

SOUNDNESS AND
COMPLETENESS

*  Theorem
If a distribution P factorizes according to G, then I(G) ¢ I(P)

*  Theorem
If X and Y are not d-separated given Z in G, then X and Y are
dependent given Z in some distribution P that factorize over G.

We cannot have all. Ex. clique and independent distribution

¥

SKELETON AND
—QUIVALENCE

The skeleton is the underlying undirected graph
Immorality is a pair of unmarried parents

Theorem
Let Gy and Gz be two graphs over X. Then Gi and Gz have the
same skeleton and the same set of immoralities if and only if
1(G1)=1(G2)




