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BETA DISTRIBUTION
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BETA DISTRIBUTION

BIASED DICE - FIRST 
COIN

★ Assumption: we don’t know the outcome probabilities  

★ We need a prior over the outcome probabilities  

★ First likelihood  

★ N1 heads and N0 tails 

★ p(head) = θ 

★ sequence  

★ counts 

p(D) = �N1(1� �)N0

p(D) =
�

N1 + N0

N1

�
�N1(1� �)N0

iid Bernoulli

Binomial



★ Beta distribution up to a constant  

★ Posterior 

★ Prior that gives posterior of the same sort is called conjunctive 

★ Beta is a conjunctive prior for Binomial

BACK TO BAYES - 
PRIOR FOR BINOMIAL

p(�|�1, �0) = ��1�1(1� �)�0�1

p(�|D) � p(D|�)p(�|�1, �0)
= �N1(1� �)N0��1�1(1� �)�0�1

= �N1+�1�1(1� �)N0+�0�1

= Beta(�|N1 + �1, N0 + �0) LAPLACE’S RULE OF 
SUCCESSION 

Uniform prior, i.e., γ1=γ0=1, gives

p(x = 1|D) =
N1 + 1
N + 2

Black Swan “paradox”

BACK TO THE DICE – 
DIRICHLET-MULTINOMIAL

D = {x1, . . . , xN} xi � {1, . . . ,K}       where
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p(X = j|D) =
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N + �

Probability that next is j, posterior to D

3.4. The Dirichlet-multinomial model 81

3.4.4 Posterior predictive

The posterior predictive distribution for a single multinoulli trial is given by the following
expression:

p(X = j|D) =

∫
p(X = j|θ)p(θ|D)dθ (3.49)

=

∫
p(X = j|θj)

[∫
p(θ−j , θj |D)dθ−j

]
dθj (3.50)

=

∫
θjp(θj |D)dθj = E [θj |D] =

αj +Nj∑
k(αk +Nk)

=
αj +Nj

α0 +N
(3.51)

where θ−j are all the components of θ except θj . See also Exercise 3.13.
The above expression avoids the zero-count problem, just as we saw in Section 3.3.4.1. In

fact, this form of Bayesian smoothing is even more important in the multinomial case than the
binary case, since the likelihood of data sparsity increases once we start partitioning the data
into many categories.

3.4.4.1 Worked example: language models using bag of words

One application of Bayesian smoothing using the Dirichlet-multinomial model is to language
modeling, which means predicting which words might occur next in a sequence. Here we
will take a very simple-minded approach, and assume that the i’th word, Xi ∈ {1, . . . ,K}, is
sampled independently from all the other words using a Cat(θ) distribution. This is called the
bag of words model. Given a past sequence of words, how can we predict which one is likely
to come next?
For example, suppose we observe the following sequence (part of a children’s nursery rhyme):

Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, its fleece as white as snow

Furthermore, suppose our vocabulary consists of the following words:

mary lamb little big fleece white black snow rain unk
1 2 3 4 5 6 7 8 9 10

Here unk stands for unknown, and represents all other words that do not appear elsewhere on
the list. To encode each line of the nursery rhyme, we first strip off punctuation, and remove
any stop words such as “a”, “as”, “the”, etc. We can also perform stemming, which means
reducing words to their base form, such as stripping off the final s in plural words, or the ing
from verbs (e.g., running becomes run). In this example, no words need stemming. Finally, we
replace each word by its index into the vocabulary to get:

1 10 3 2 3 2 3 2
1 10 3 2 10 5 10 6 8

We now ignore the word order, and count how often each word occurred, resulting in a
histogram of word counts:BAG OF WORDS
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Counts:

82 Chapter 3. Generative models for discrete data

Token 1 2 3 4 5 6 7 8 9 10
Word mary lamb little big fleece white black snow rain unk
Count 2 4 4 0 1 1 0 1 0 4

Denote the above counts by Nj . If we use a Dir(α) prior for θ, the posterior predictive is
just

p(X̃ = j|D) = E[θj |D] =
αj +Nj∑
j′ αj′ +Nj′

=
1 +Nj

10 + 17
(3.52)

If we set αj = 1, we get

p(X̃ = j|D) = (3/27, 5/27, 5/27, 1/27, 2/27, 2/27, 1/27, 2/27, 1/27, 5/27) (3.53)

The modes of the predictive distribution are X = 2 (“lamb”) and X = 10 (“unk”). Note that the
words “big”, “black” and “rain” are predicted to occur with non-zero probability in the future,
even though they have never been seen before. Later on we will see more sophisticated language
models.

3.5 Naive Bayes classifiers

In this section, we discuss how to classify vectors of discrete-valued features, x ∈ {1, . . . ,K}D ,
where K is the number of values for each feature, and D is the number of features. We will use
a generative approach. This requires us to specify the class conditional distribution, p(x|y = c).
The simplest approach is to assume the features are conditionally independent given the class
label. This allows us to write the class conditional density as a product of one dimensional
densities:

p(x|y = c, θ) =
D∏

j=1

p(xj |y = c, θjc) (3.54)

The resulting model is called a naive Bayes classifier (NBC).
The model is called “naive” since we do not expect the features to be independent, even

conditional on the class label. However, even if the naive Bayes assumption is not true, it often
results in classifiers that work well (Domingos and Pazzani 1997). One reason for this is that the
model is quite simple (it only has O(CD) parameters, for C classes and D features), and hence
it is relatively immune to overfitting.
The form of the class-conditional density depends on the type of each feature. We give some

possibilities below:

• In the case of real-valued features, we can use the Gaussian distribution: p(x|y = c, θ) =∏D
j=1 N (xj |µjc,σ2

jc), where µjc is the mean of feature j in objects of class c, and σ2
jc is its

variance.

• In the case of binary features, xj ∈ {0, 1}, we can use the Bernoulli distribution: p(x|y =

c, θ) =
∏D

j=1 Ber(xj |µjc), where µjc is the probability that feature j occurs in class c.
This is sometimes called the multivariate Bernoulli naive Bayes model. We will see an
application of this below.

BAG OF WORDS
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Posterior predictive:
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• NAIVE BAYES 
CLASSIFIER –
NBC

★ Distribution over class 

★ Given class Xi:s independentX1

Class Y

XD

NAIVE BAYES CLASSIFIER –
NBC
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• Bernoulli, so �dc probability of head
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(b) Profile-HMM architecture:
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