
Applied Programming and Computer Science,
DD2325/appcs14

PODF, Programmering och datalogi för fysiker,
DA7011

Lecture 2, Complexity and Sorting

A. Maki, C. Edlund
November 2014

Complexity

We need to know how the elapsed time, T of an algorithm, varies
with the number of elements n.

This leads us to complexity analysis, i.e. to find a mathematical
expression of ordo-type which gives a measure of the time needed
to complete an algorithm.

The sequential search has elapsed time O(n) while the binary
search has O(log(n)).

Complexity

0 2 4 6 8 10 12 14 16 18 20
−50

0

50

100

150

200

250

300

350

400

n

n

log(n)

n*log(n)

n
2

Sorting Algorithms

An algorithm that puts elements of a list in a certain order.

The output is:

in nondecreasing order

a permutation (reordering) of the input

The properties:

complexity

stable/unstable

memory usage, ...

The choice of sorting algorithm depends on n, and application.
Interesting comparisons available at:
http://www.sorting-algorithms.com/

1. Selection sort

view the list as two parts; sorted and unsorted

Algorithm

* find the smallest number in the unsorted part of the list

* swap the first element with the smallest in the unsorted part

* the sorted part of the list expands with one element,

the unsorted reduces with one element

* if the unsorted part isn’t empty, use the algorithm again

- inefficient on large lists

Selection sort

function v = selection(v)

for i = 1:length(v)-1

minimum = v(i);

index = i;

for j = i+1:length(v)

if minimum > v(j)

minimum = v(j);

index = j;

end % if

end % for

tmp = v(i);

v(i) = minimum;

v(index) = tmp;

end % for

end % selection

2. Insertion sort

Algorithm

* take elements form othe list one by one

* insert them in their correct position into a new sorted list

- efficient for small lists and mostly sorted lists
- often used as part of other algotihms

Divide and conquer

Algorithm

program Sort(list)

if length of list is 1

* the list is sorted

if length of list is greater than 1

* Partition the list into a lower and a higher list

* Sort the lower list

* Sort the higher list

* Combine the sorted lower and sorted higher lists

Mergesort and quicksort use the above algorithm.

3. Mergesort (von Neumann, 1945)

Divide the list into two sublists of equal size and sort them
separately.
Merge the two sorted lists into one.
Combining the sorted lists needs some work.

4. Quicksort (Hoare, 1960)

Choose a pivot element.

Elements less than the pivot element comes in the lower list.
Elements greater than the pivot element comes in the higher list.

NB. There are variations.

5. Radixsort

Sort the numbers:

7 2 13 4 23 18 1

Place the numbers in boxes (0 - 9) with respect to the last digit:

box 0: box 5:

1: 1 6:

2: 2 7: 7

3: 13, 23 8: 18

4: 4 9:

Put the sublists together. Start with box 0 and keep the internal order!

1 2 13 23 4 7 18

Radixsort

Place the numbers in boxes (0 - 9) with respect to the next but
last digit:

box 0: 1, 2, 4, 7 box 5:

1: 13, 18 6:

2: 23 7:

3: 8:

4: 9:

Put the sublists together. Start with box 0 and keep the internal order!
The sorted list becomes:

1 2 4 7 13 18 23

6. Bubble sort (Demuth, 1956)

Algorithm

* scan the unsorted list from start to end

* if two adjacent numbers aren’t in order, swap

* the largest number in the unsorted list will bubble

up to the sorted list

* the sorted list expands with one element,

the unsorted reduces with one element

* if the unsorted list isn’t empty, use the algorithm again

Popular sorting algorithms?

Efficient implementations generally use a hybrid algorithm,
combining an asymptotically efficient algorithm for the overall sort
with insertion sort for small lists at the bottom of a recursion.

small data n (n < 50) insertion sort fast enough, but O(n2) !

large data n (n > 1000)

quicksort 1.5 to 2 times faster than the others
heapsort (in place)

(numerical Recipes in C, Press et al. 2nd Edition, 1992)

Programming technique

Write programs that are user friendly! The program should

be easy to use

instructions if necessary

Press h for help
give example or default values

Birthday (yyyymmdd)?
relevant, correct and polite communication

have error messages that are

easy to understand

Your birthday is not correct!
instructive

Write on format: yyyymmdd

User friendly program?

Welcome to your horoscope teller! Fill in your personal data and the
horoscope teller will cast your personal horoscope.
Do you want to continue? Yes
What’s your name? Alice
Do you want to continue? Yes
Birthday? 19000403
Fill in correct!
Do you want to continue? Yes
Birthplace? Stockholm
Do you want to continue? Yes
When were your parents born? 18720404

Do you want to continue? Yes

*************** YOUR HOROSCOPE ********************

Your horoscope couldn’t be cast due to lack of information.

Good programming

Use descriptive names on variables, functions/subprograms

Comments. The code should be written so the reader
understands how it works. Comments should explain why it
works and what it does. Use preconditions and
postconditions, see lecture 1.

Write the code in a simple way, avoid smart solutions that are
hard to follow

Use global variables only when necessary

If code is repeated write a function (subprogram) instead

Use constants or variables instead of using the value
repeatedly

Program code

% checks if there is no element then if it’s one element

% and at last if it’s more than one element

function [x, y] = pop(z)

if length(z)==0 %

x = [];

elseif length(z)==1 % check if length equals one

x = z(1);

y = [];

else % fix the rest

x = z(1);

y = z(2:end);

end

Compare with the pop function and its description in lecture 1.

easy to read?

disp(’Exchange sek to euro and vice versa’)

kr = input(’The amount is: ’);

sek = input(’The currency is: ’,’s’);

if strcmp(sek, ’sek’)

disp(kr*0.1002)

else

disp(kr*(1/0.1002))

end

TF = strcmp(s1,s2) compares two strings for equality.
The strings s1,s2 are considered to be equal if the size and
content of each are the same (the comparison is case sensitive).
The function returns a scalar logical 1/0 for equality/inequality.

