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Recapitulation

What did we do last
lecture?
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Outline - Motivation

Base-band representations are complex-valued, thus we need
Complex RV and Processes (chap 17)

How do the following concepts extend for complex signals?
Energy, Power, and PSD of QAM (chap 18)

Let’s have a look at an important distribution...
Univariate Gaussian Distribution (chap 19)
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Motivation and Notation

Complex RV (CRV) C defined on (Ω,F ,P) with C : Ω→ C

CRV Z can be always seen as a pair of two real RVs X and Y
by Z = X + iY

mean, variance follow accordingly
Not always recommended since complex RV in Digital
Communicaitons often have an additional property which
simplifies analysis (“proper” aka “circular symmetric”)

Notation:
(·)∗ denotes component complex conjugate
(·)† denotes Hermitian conjugate
If A = A† matrix A is Hermitian, aka conjugate-symmetric,
self-adjoint

Convention: ’Vectors’ are usually column vectors
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Definition of some Standard Terms

Note that complex numbers cannot be sorted.

RV W and Z are of equal law (i.e., W L
= Z) iff

P
[
Re (W) ≤ x, Im (W) ≤ y

]
= P

[
Re (Z) ≤ x, Im (Z) ≤ y

]
, ∀x, y ∈ R

Density function, z ∈ C with x = Re (z) and y = Im (z):

fZ(z) , fRe(Z),Im(Z)(Re (z) , Im (z)) =
∂2

∂x∂y
P

[
Re (Z) ≤ x, Im (Z) ≤ y

]
Expectation: E [Z] = E [Re (Z)] + iE [Im (Z)]
Variance

Var [Z] , E
[
|Z −E [Z]|2

]
= ... = Var [Re (Z)] + Var [Im (Z)]
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Proper Complex Random Variables

Note: Var [Z] is specified by the covariance matrix of [X,Y]
with X = Re (Z) and Y = Im (Z)[

Var [Re (Z)] Cov [Re (Z) Im (Z)]
Cov [Re (Z) Im (Z)] Var [Im (Z)]

]
=

[
Var [X] Cov [XY]

Cov [XY] Var [Y]

]
Definition: Proper CRV
A CRV is said to be proper if

(i) it is of zero mean,
(ii) it is of finite variance, and

(iii) E
[
Z2

]
= 0

Note that Z2 = (X + iY)2 = X2
− Y2 + i2XY, thus

E

[
Z2

]
= 0 ⇔ E

[
X2

]
= E

[
Y2

]
and E [XY] = 0

Q: Does Var [Z] specify the covariance matrix of a (proper) CRV Z?
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Covariance and Characteristic Fct of a CRV

The covariance between CRVs is a complex scalar and not a
real matrix.

Definition: Covariance

Cov [Z,W] , E
[
(Z −E [Z]) (W −E [W])∗

]
For the characteristic function one can view a CRV as a pair of
real RVs ΦX,Y : R2

→ C, ΦX,Y(ω1, ω2) = E
[
ei(ω1X+ω2Y)

]
, ωi ∈ R.

Definition: Characteristic Function
The characteristic function ΦZ : C→ C of a CRV Z is defined as

ΦZ(ω) , E
[
eiRe(ω∗Z)

]
= E

[
ei(Re(ω)Re(Z)+Im(ω)Im(Z))

]
, ω ∈ C
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Transformation of Real Random Vectors (RV)

Let g : D→ R, be a one-to-one mapping. D,R ⊆ Rn.
g has continuous partial derivatives in D
Jacobian determinant det

(
∂g(x)
∂x

)
, 0 for all x ∈ D

Theorem: Transformation of Real Random Vectors
Let Y = g(X) with RV X and P [X ∈ D] = 1, then

fY(y) =
fX(g−1(y))∣∣∣∣∣det
(
∂g(x)
∂x

)
x=g−1(y)

∣∣∣∣∣
The joint density fR,Θ(r, θ) of CRV Z with r =

√
x2 + y2 and

θ = tan−1(y/x) is given by

fR,Θ(r, θ) = r fZ(reiθ), r > 0, θ ∈ [−π, π).
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Some Complex Analysis

g : D→ C is differentiable at z0 ∈ D if for every ε > 0 there
exists some δ > 0 such that for all h ∈ C with 0 ≤ |h| ≤ δ we have∣∣∣∣∣ g(z0 + h) − g(z0)

h
− g′(z0)

∣∣∣∣∣ < ε.
g is analytic (or holomorphic) if g is differentiable at every z ∈ D
Analytic functions satisfy the Cauchy-Riemann equations:

∂u(x, y)
∂x

=
∂v(x, y)
∂y

,
∂u(x, y)
∂y

= −
∂v(x, y)
∂x

with u(x, y) = Re
(
g(x + iy)

)
and v(x, y) = Im

(
g(x + iy)

)
and

g′(z) =
∂u(x, y)
∂x

+ i
∂v(x, y)
∂x

∣∣∣∣∣∣
z=x+iy
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Transforming CRV

Theorem: Transforming CRV
g : D→ R one-to-one mapping, analytic in D, and derivative , 0 for
all z ∈ D. Let W = g(Z) of CRV Z with P [Z ∈ D] = 1, then we have
the density

fW(w) =
fZ(g−1(w))
|g′(g−1(w))|2

, w ∈ R

Proof:
Consider CRV as pair of real RVs and apply previous theorem
g(x + iy) = u(x, y) + iv(x, y), thus g : (x, y) 7→ (u, v)∣∣∣∣∣∣∣det

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


∣∣∣∣∣∣∣ =

∣∣∣∣∣∣det
(
∂u
∂x −

∂v
∂x

∂v
∂x

∂u
∂x

)∣∣∣∣∣∣ =

(
∂u
∂x

)2

+

(
∂v
∂x

)2

= |g′(x + iy)|2

�
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Complex Random Vectors

Covariance matrix: KZZ , E
[
(Z −E [Z])(Z −E [Z])†

]
CRV Z is proper if it is of zero mean, finite variance, and

E

[
ZZT

]
= 0

Linear transformation Y = AZ of proper CRV Z are proper.

E

[
YYT

]
= E

[
AZ(AZ)T

]
= E

[
AZZTAT

]
= AE

[
ZZT

]
AT = 0
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Complex Stochastic Processes (CSP)

Complex stochastic process: collection of CRV (Z(t), t ∈ T )
defined on a common probability space (Ω,F ,P)

Definition of strongly and weakly stationary directly extend while
for the second moment the second term is conjugate complex.

CSP (Zν) is proper if it is centered, finite variance, and

E [ZνZν′] = 0 ν, ν′ ∈ Z

Autocovariance function of a WSS CSP (Zν), η ∈ Z,

KZZ(η) , Cov
[
Zν+η,Zν

]
= E

[
(Zν+η −E [Z1])(Zν −E [Z1])∗

]

Power spectral density defined by KZZ(η) =
1/2∫
−1/2

SZZ(θ)ei2πηθ dθ
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Let’s take a break!
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Energy, Power and PSD of QAM

QAM signal with complex symbols C`, W/2 bandlimited pulse g,
carrier frequency fc > W/2, and real amplitude A

X(t) = 2Re
(
XBB(t)ei2π fct

)
, XBB(t) = A

∑
`

C`g(t − `Ts)

Most of the previous concepts directly transfer from real-valued
to complex-valued, new aspects:

How is the relationship between passband and baseband?
Where to put the conjugate complex operation?
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Energy of QAM

Energy E of transmitted signal X(t)

E , E
[∫

∞

−∞

X2(t)dt
]

= 2E
[∫

∞

−∞

|XBB(t)|2dt
]

since ‖xPB‖
2 = 2‖xBB‖

2 and g(·) bandlimited to W/2

E

[∫
∞

−∞

|XBB(t)|2dt
]

=

∫
∞

−∞

E

(A N∑
`=1

C`g(t − `Ts))(A
N∑
`′=1

C`′ g(t − `′Ts))∗
dt

= A2
N∑
`=1

N∑
`′=1

E

[
C`C∗`′

]∫ ∞

−∞

g(t − `Ts)g∗(t − `′Ts)dt︸                             ︷︷                             ︸
=Rgg((`′−`)Ts)

E = 2A2
‖g‖2

N∑̀
=1
E

[
|C`|2

]
if {C`} are zero mean and uncorrelated, or
if pulses are orthogonal by time-shifts of integer multiples of Ts
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Power of QAM

Assumptions:
infinite sequence of complex symbols (N→∞)

pulse g satisfies decay condition |g(t)| ≤ β
1+|t/Ts|1+α , α, β > 0

sequence {C`} is bounded

Power in QAM

lim
T→∞

1
2T
E

[∫ T

−T
X2(t)dt

]
= 2 lim

T→∞

1
2T
E

[∫ T

−T
|X2

BB(t)|2dt
]

Relation does not hold for T < ∞ since X(t) is not bandlimited
If CSP (C`) is additionally zero-mean and WSS, then

lim
T→∞

1
2T
E

[∫ T

−T
X2(t)dt

]
=

2A2

TS

∞∑
m=−∞

KCC(m)R∗gg(mTs)
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Operational PSD of CSP

Definition
The CSP Z(t) is of operational power spectral density SZZ( f ) if

(i) Z(t) is measurable (real and complex part are measurable SP);
(ii) the function SZZ : R→ R is integrable; and
(iii) for every absolute integrable complex-valued function

h : R→ C the average power at the output of the filter with input
Z(t) is given by

Power of Z ? h =

∫
∞

−∞

|ĥ( f )|2SZZ( f ) d f

Difference to real-valued SP
→ (ii): operational PSD needs not be symmetric
→ (iii) has to hold for all complex-valued filters
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QAM Relationship between Passband and Baseband

Relationship between operational PSD SXX of a real QAM signal and
the operational PSD SBB of the corresponding baseband CSP XBB(t)

SXX( f ) = SBB(| f | − fc), f ∈ R.

PAM: g is W/2 bandlimited⇒ SBB( f ) = 0 for | f | > W/2.
For every h: g ? h = (g ? LPFW/2) ? h = g ? (LPFW/2 ? h) = g ? h′

Baseb. representation of passb. filter ĥ′BB( f ) = ĥ( f + fc)I{| f | ≤W/2}

Power in X ? h = 2 Power in XBB ? h′BB = 2
∫
∞

−∞

SBB( f )|ĥ′BB( f )|2d f

= 2
∫
∞

−∞

SBB( f )|ĥ′( f + fc)|2d f = 2
∫
∞

−∞

SBB( f̃ − fc)|ĥ( f̃ )|2d f̃

=

∫
∞

−∞

SBB( f̃ − fc)
(
|ĥ( f̃ )|2 + |ĥ(− f̃ )|2

)
d f̃ =

∞∫
−∞

SBB(| f | − fc)|ĥ( f )|2d f
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QAM with (C`) uncorrelated and zero mean

SXX( f ) =
A2

Ts

∞∑
m=−∞

KCC(m)ei2π(| f |− fc)mTs |ĝ(| f | − fc)|2
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Univariate Gaussian Distribution

Motivation
Noise is often modeled as a Gaussian stochastic process

Strongly motivated by Central limit theorem; when many small
independent disturbances add up, then distribution converges to
Gaussian distribution (good approximation for finite terms).
Mathematical convenience - often amenable to analysis.

Definition: Standard Gaussian Distribution
RV W is a standard Gaussian if its density is given by

fW(w) =
1
√

2π
e−

w2
2 , w ∈ R

Standard Gaussian random variable is symmetric⇒ E [W] = 0
From some simple analysis it follows that the variance is one.
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Gaussian Random Variables

Let W be standard Gaussian, then RV X is said
centered Gaussian if X = aW for some a ∈ R
Gaussian if X = aW + b for some a, b ∈ R

5-minute Exercise: Closed w.r.t. affine transformations
Show that if X is Gaussian, then αX + β is Gaussian.

Mean of X: E [X] = aE [W] + b = b
Variance of X: Var [X] = E

[
X2

]
− b2 = a2E

[
W2

]
+ 2aE [W] = a2

There exists only one RV X with Gaussian distribution of a given
mean µ and variance σ2. Notation: X ∼ N(ν, σ2)

Customary to require σ non-negative, then σ standard deviation

fX(x) =
1

√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ R
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Cumulative Distribution Function

Cumulative Distribution Function of standard Gaussian RV W

FW(w) = P [W ≤ w] =

∫ w

−∞

fW(ξ)dξ =

∫ w

−∞

1
√

2π
e−

ξ2
2 dξ

Q-function Q(α) , 1
√

2π

∫
∞

α
e−ξ/2dξ

P [a ≤W ≤ b] = Q(a) −Q(b)
If X ∼ N(µ, σ2), then

P [X ≤ a] = Q
( a−µ
σ

)
Craig’s formula: Q(α) = 1

π

∫ π/2
0 e

−
α2

2 sin2 φdφ
Upper and lower bounds on the Q-function

1
√

2πα2
e−α

2/2(1 − α−2) ≤ Q(α) ≤ min
{

1
√

2πα2
e−α

2/2,
1
2

e−α
2/2

}
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Characteristic Function

Characteristic fct of a RV X: ΦX(ω) = E
[
eiωX

]
=

∫
∞

−∞
fX(x)eiωxdx

X&Y are independent RVs⇒ ΦX+Y(ω) = ΦX(ω)ΦY(ω)

For X ∼ N(µ, σ2)⇒ Φ(ω) = eiωµ− 1
2ω

2σ2

Sums of independent Gaussians
Let X ∼ N(µx, σ2

x) and Y ∼ N(µy, σ2
y) be independent Gaussian RV,

then X + Y ∼ N(µx + µy, σ2
x + σ2

y).

Proof:

ΦX+Y(ω) = eiωµx−
1
2ω

2σ2
xeiωµy−

1
2ω

2σ2
y = eiω(µx+µy)− 1

2ω
2(σ2

x+σ2
y)
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Related Distributions

Central χ2-distribution with n degrees of freedom χ2
n

X1, . . . ,Xn ∼ IIDN(0, 1)⇒
n∑

j=1

X2
j ∼ χ

2
n

fχ2
n
(x) =

1
2n/2Γ(n/2)

e−x/2x(n/2)−1, , x > 0

with Γ(ξ) =
∫
∞

0 e−ttξ−1dt, ξ > 0.
Others

Generalized Rayleigh distribution:
√
χ2

n
Rayleigh distribution: n = 2
Noncentral χ2

n distribution using X j ∼ IIDN(ν j, σ2)
Generalized Rice distribution, Rice distribution (

√
Noncentral χ2

n)
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App: Definitions of Convergence

Good to know: Let RVs X1,X2, . . . be defined on (Ω,F ,P) we say
sequence converges to X...

with probability one or almost surely if

P

[{
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

}]
= 1;

in probability if

lim
n→∞

P [|Xn − X| ≥ ε] = 0, ε > 0;

in mean square if

lim
n→∞

E

[
(Xn − X)2

]
= 0;

It can be shown that convergence in mean-square and
almost-sure convergence implies convergence in probability.
Another type of convergence is weak convergence where the
cumulative distributions F1,F2, . . . converge F(·) at every point
ξ ∈ R at which F(·) is continuous.
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Outlook - Assignment

Complex RV and Processes
Operational Power Spectrum Density of QAM
Univariate Gaussian Distribution

Next lecture
Binary and Multiple Hypothesis Testing

Reading Assignment: Chap 20-21
Homework:

Problems in textbook: Exercise 17.1, 17.2, 17.6, 17.7, 17.12,
18.2, 18.6, 18.8, 19.7, and 19.11
Deadline: Nov 26
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