Complex RV and Processes, Energy, Power and PSD of QAM, Univariate Gaussian Distribution

Course: Foundations in Digital Communications

Tobias Oechtering presented by: Ragnar Thobaben

Royal Institute of Technology (KTH), School of EE and ACCESS Center, Communication Theory Lab Stockholm, Sweden

3rd lecture

Recapitulation

What did we do last lecture?

Outline - Motivation

- Base-band representations are complex-valued, thus we need
- Complex RV and Processes (chap 17)
- How do the following concepts extend for complex signals?
- Energy, Power, and PSD of QAM (chap 18)
- Let's have a look at an important distribution...
- Univariate Gaussian Distribution (chap 19)

Motivation and Notation

- Complex RV (CRV) C defined on (Ω, \mathcal{F}, P) with $C: \Omega \rightarrow \mathbb{C}$
- CRV Z can be always seen as a pair of two real RVs X and Y by $Z=X+i Y$
- mean, variance follow accordingly
- Not always recommended since complex RV in Digital Communicaitons often have an additional property which simplifies analysis ("proper" aka "circular symmetric")
- Notation:
- (.)* denotes component complex conjugate
- (.) ${ }^{\dagger}$ denotes Hermitian conjugate
- If $A=A^{+}$matrix A is Hermitian, aka conjugate-symmetric, self-adjoint
- Convention: 'Vectors' are usually column vectors

Definition of some Standard Terms

- Note that complex numbers cannot be sorted.
- RV W and Z are of equal law (i.e., $W \stackrel{\mathscr{L}}{=} Z$) iff
$\mathbb{P}[\operatorname{Re}(W) \leq x, \operatorname{Im}(W) \leq y]=\mathbb{P}[\operatorname{Re}(Z) \leq x, \operatorname{Im}(Z) \leq y], \quad \forall x, y \in \mathbb{R}$
- Density function, $z \in \mathbb{C}$ with $x=\operatorname{Re}(z)$ and $y=\operatorname{Im}(z)$:

$$
f_{Z}(z) \triangleq f_{\operatorname{Re}(Z), \operatorname{Im}(Z)}(\operatorname{Re}(z), \operatorname{Im}(z))=\frac{\partial^{2}}{\partial x \partial y} \mathbb{P}[\operatorname{Re}(Z) \leq x, \operatorname{Im}(Z) \leq y]
$$

- Expectation: $\mathbb{E}[Z]=\mathbb{E}[\operatorname{Re}(Z)]+i \mathbb{E}[\operatorname{Im}(Z)]$
- Variance

$$
\operatorname{Var}[Z] \triangleq \mathbb{E}\left[|Z-\mathbb{E}[Z]|^{2}\right]=\ldots=\operatorname{Var}[\operatorname{Re}(Z)]+\operatorname{Var}[\operatorname{Im}(Z)]
$$

Proper Complex Random Variables

- Note: $\operatorname{Var}[Z]$ is specified by the covariance matrix of $[X, Y]$ with $X=\operatorname{Re}(Z)$ and $Y=\operatorname{Im}(Z)$

$$
\left[\begin{array}{cc}
\operatorname{Var}[\operatorname{Re}(Z)] & \operatorname{Cov}[\operatorname{Re}(Z) \operatorname{Im}(Z)] \\
\operatorname{Cov}[\operatorname{Re}(Z) \operatorname{Im}(Z)] & \operatorname{Var}[\operatorname{Im}(Z)]
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Var}[X] & \operatorname{Cov}[X Y] \\
\operatorname{Cov}[X Y] & \operatorname{Var}[Y]
\end{array}\right]
$$

Definition: Proper CRV

A CRV is said to be proper if
(i) it is of zero mean,
(ii) it is of finite variance, and
(iii) $\mathbb{E}\left[Z^{2}\right]=0$

- Note that $Z^{2}=(X+i Y)^{2}=X^{2}-Y^{2}+i 2 X Y$, thus

$$
\mathbb{E}\left[Z^{2}\right]=0 \quad \Leftrightarrow \quad \mathbb{E}\left[X^{2}\right]=\mathbb{E}\left[Y^{2}\right] \text { and } \mathbb{E}[X Y]=0
$$

Q: Does Var [Z] specify the covariance matrix of a (proper) CRV Z?

Covariance and Characteristic Fct of a CRV

- The covariance between CRVs is a complex scalar and not a real matrix.

Definition: Covariance

$$
\operatorname{Cov}[Z, W] \triangleq \mathbb{E}\left[(Z-\mathbb{E}[Z])(W-\mathbb{E}[W])^{*}\right]
$$

- For the characteristic function one can view a CRV as a pair of real RVs $\Phi_{X, Y}: \mathbb{R}^{2} \rightarrow \mathbb{C}, \Phi_{X, Y}\left(\omega_{1}, \omega_{2}\right)=\mathbb{E}\left[\mathrm{e}^{\mathrm{i}^{i}\left(\omega_{1} X+\omega_{2} \gamma\right)}\right], \omega_{i} \in \mathbb{R}$.

Definition: Characteristic Function

The characteristic function $\Phi_{\mathrm{Z}}: \mathbb{C} \rightarrow \mathbb{C}$ of a CRV Z is defined as

$$
\Phi_{Z}(\omega) \triangleq \mathbb{E}\left[\mathrm{e}^{i \operatorname{Re}\left(\omega^{*} Z\right)}\right]=\mathbb{E}\left[\mathrm{e}^{i(\operatorname{Re}(\omega) \operatorname{Re}(Z)+\operatorname{Im}(\omega) \operatorname{Im}(Z))}\right], \quad \omega \in \mathbb{C}
$$

Transformation of Real Random Vectors (RV)

- Let $g: \mathcal{D} \rightarrow \mathcal{R}$, be a one-to-one mapping. $\mathcal{D}, \mathcal{R} \subseteq \mathbb{R}^{n}$.
- g has continuous partial derivatives in \mathcal{D}
- Jacobian determinant $\operatorname{det}\left(\frac{\partial g(x)}{\partial x}\right) \neq 0$ for all $x \in \mathcal{D}$

Theorem: Transformation of Real Random Vectors

Let $Y=g(X)$ with RV X and $\mathbb{P}[X \in \mathcal{D}]=1$, then

$$
f_{Y}(y)=\frac{f_{X}\left(g^{-1}(y)\right)}{\left|\operatorname{det}\left(\frac{\partial g(x)}{\partial x}\right)_{x=g^{-1}(y)}\right|}
$$

- The joint density $f_{R, \Theta}(r, \theta)$ of CRV Z with $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}(y / x)$ is given by

$$
f_{R, \Theta}(r, \theta)=r f_{Z}\left(r e^{i \theta}\right), \quad r>0, \theta \in[-\pi, \pi) .
$$

Some Complex Analysis

- $g: \mathcal{D} \rightarrow \mathbb{C}$ is differentiable at $z_{0} \in \mathcal{D}$ if for every $\varepsilon>0$ there exists some $\delta>0$ such that for all $h \in \mathbb{C}$ with $0 \leq|h| \leq \delta$ we have

$$
\left|\frac{g\left(z_{0}+h\right)-g\left(z_{0}\right)}{h}-g^{\prime}\left(z_{0}\right)\right|<\varepsilon .
$$

- g is analytic (or holomorphic) if g is differentiable at every $z \in \mathcal{D}$
- Analytic functions satisfy the Cauchy-Riemann equations:

$$
\frac{\partial u(x, y)}{\partial x}=\frac{\partial v(x, y)}{\partial y}, \quad \frac{\partial u(x, y)}{\partial y}=-\frac{\partial v(x, y)}{\partial x}
$$

with $u(x, y)=\operatorname{Re}(g(x+i y))$ and $v(x, y)=\operatorname{Im}(g(x+i y))$ and

$$
g^{\prime}(z)=\frac{\partial u(x, y)}{\partial x}+\left.i \frac{\partial v(x, y)}{\partial x}\right|_{z=x+i y}
$$

Transforming CRV

Theorem: Transforming CRV

$g: \mathcal{D} \rightarrow \mathcal{R}$ one-to-one mapping, analytic in \mathcal{D}, and derivative $\neq 0$ for all $z \in \mathcal{D}$. Let $W=g(Z)$ of $\mathrm{CRV} Z$ with $\mathbb{P}[Z \in \mathcal{D}]=1$, then we have the density

$$
f_{W}(w)=\frac{f_{Z}\left(g^{-1}(w)\right)}{\left|g^{\prime}\left(g^{-1}(w)\right)\right|^{2}}, \quad w \in \mathcal{R}
$$

Proof:

- Consider CRV as pair of real RVs and apply previous theorem
- $g(x+i y)=u(x, y)+i v(x, y)$, thus $g:(x, y) \mapsto(u, v)$

$$
\left|\operatorname{det}\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)\right|=\left|\operatorname{det}\left(\begin{array}{cc}
\frac{\partial u}{\partial x} & -\frac{\partial v}{\partial x} \\
\frac{\partial v}{\partial x} & \frac{\partial u}{\partial x}
\end{array}\right)\right|=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial v}{\partial x}\right)^{2}=\left|g^{\prime}(x+i y)\right|^{2}
$$

Complex Random Vectors

- Covariance matrix: $K_{Z Z} \triangleq \mathbb{E}\left[(Z-\mathbb{E}[Z])(Z-\mathbb{E}[Z])^{\dagger}\right]$
- CRV Z is proper if it is of zero mean, finite variance, and

$$
\mathbb{E}\left[\mathbf{Z Z}^{T}\right]=\mathbf{0}
$$

- Linear transformation $Y=A Z$ of proper CRV Z are proper.

$$
\mathbb{E}\left[\boldsymbol{Y} \boldsymbol{Y}^{T}\right]=\mathbb{E}\left[A \boldsymbol{Z}(A \boldsymbol{Z})^{T}\right]=\mathbb{E}\left[A \boldsymbol{Z} \boldsymbol{Z}^{T} A^{T}\right]=A \mathbb{E}\left[\boldsymbol{Z} \boldsymbol{Z}^{T}\right] A^{T}=\mathbf{0}
$$

Complex Stochastic Processes (CSP)

- Complex stochastic process: collection of $\operatorname{CRV}(Z(t), t \in \mathcal{T})$ defined on a common probability space (Ω, \mathcal{F}, P)
- Definition of strongly and weakly stationary directly extend while for the second moment the second term is conjugate complex.
- CSP $\left(Z_{v}\right)$ is proper if it is centered, finite variance, and

$$
\mathbb{E}\left[\boldsymbol{Z}_{v} \boldsymbol{Z}_{v^{\prime}}\right]=0 \quad v, v^{\prime} \in \mathbb{Z}
$$

- Autocovariance function of a $\operatorname{WSS} \operatorname{CSP}\left(Z_{v}\right), \eta \in \mathbb{Z}$,

$$
K_{Z Z}(\eta) \triangleq \operatorname{Cov}\left[Z_{v+\eta}, Z_{v}\right]=\mathbb{E}\left[\left(Z_{v+\eta}-\mathbb{E}\left[Z_{1}\right]\right)\left(Z_{v}-\mathbb{E}\left[Z_{1}\right]\right)^{*}\right]
$$

- Power spectral density defined by $K_{Z Z}(\eta)=\int_{-1 / 2}^{1 / 2} S_{Z Z}(\theta) \mathrm{e}^{\mathrm{i} 2 \pi \eta \theta} \mathrm{~d} \theta$

Let's take a break!

Energy, Power and PSD of QAM

- QAM signal with complex symbols $C_{\ell}, W / 2$ bandlimited pulse g, carrier frequency $f_{c}>W / 2$, and real amplitude A

$$
X(t)=2 \operatorname{Re}\left(X_{B B}(t) \mathrm{e}^{i 2 \pi f_{c} t}\right), \quad X_{B B}(t)=A \sum_{\ell} C_{\ell} g\left(t-\ell T_{s}\right)
$$

- Most of the previous concepts directly transfer from real-valued to complex-valued, new aspects:
- How is the relationship between passband and baseband?
- Where to put the conjugate complex operation?

Energy of QAM

- Energy E of transmitted signal $X(t)$

$$
E \triangleq \mathbb{E}\left[\int_{-\infty}^{\infty} X^{2}(t) \mathrm{d} t\right]=2 \mathbb{E}\left[\int_{-\infty}^{\infty}\left|X_{B B}(t)\right|^{2} \mathrm{~d} t\right]
$$

since $\left\|x_{P B}\right\|^{2}=2\left\|x_{B B}\right\|^{2}$ and $g(\cdot)$ bandlimited to $W / 2$

$$
\begin{aligned}
\mathbb{E}\left[\int_{-\infty}^{\infty}\left|X_{B B}(t)\right|^{2} \mathrm{~d} t\right] & =\int_{-\infty}^{\infty} \mathbb{E}\left[\left(A \sum_{\ell=1}^{N} C_{\ell} g\left(t-\ell T_{s}\right)\right)\left(A \sum_{\ell^{\prime}=1}^{N} C_{\ell^{\prime}} g\left(t-\ell^{\prime} T_{s}\right)\right)^{*}\right] \mathrm{d} t \\
& =A^{2} \sum_{\ell=1}^{N} \sum_{\ell^{\prime}=1}^{N} \mathbb{E}\left[C_{\ell} C_{\ell^{\prime}}^{*}\right] \underbrace{\int_{-\infty}^{\infty} g\left(t-\ell T_{s}\right) g^{*}\left(t-\ell^{\prime} T_{s}\right) \mathrm{d} t}_{=R_{g g}\left(\left(\ell^{\prime}-\ell\right) T_{s}\right)}
\end{aligned}
$$

- $E=2 A^{2}\|g\|^{2} \sum_{\ell=1}^{N} \mathbb{E}\left[\left|C_{\ell}\right|^{2}\right]$
- if $\left\{C_{\ell}\right\}$ are zero mean and uncorrelated, or
- if pulses are orthogonal by time-shifts of integer multiples of T_{s}

Power of QAM

Assumptions:

- infinite sequence of complex symbols $(N \rightarrow \infty)$
- pulse g satisfies decay condition $|g(t)| \leq \frac{\beta}{1+\left|t / T_{s}\right|^{1+\alpha}}, \alpha, \beta>0$
- sequence $\left\{C_{\ell}\right\}$ is bounded

Power in QAM

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \mathbb{E}\left[\int_{-T}^{T} X^{2}(t) \mathrm{d} t\right]=2 \lim _{T \rightarrow \infty} \frac{1}{2 T} \mathbb{E}\left[\int_{-T}^{T}\left|X_{B B}^{2}(t)\right|^{2} \mathrm{~d} t\right]
$$

- Relation does not hold for $T<\infty$ since $X(t)$ is not bandlimited
- If CSP $\left(C_{\ell}\right)$ is additionally zero-mean and WSS, then

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \mathbb{E}\left[\int_{-T}^{T} \mathrm{X}^{2}(t) \mathrm{d} t\right]=\frac{2 A^{2}}{T_{S}} \sum_{m=-\infty}^{\infty} K_{C C}(m) R_{g g}^{*}\left(m T_{s}\right)
$$

Operational PSD of CSP

Definition

The CSP $Z(t)$ is of operational power spectral density $S_{Z Z}(f)$ if
(i) $Z(t)$ is measurable (real and complex part are measurable SP);
(ii) the function $S_{Z Z}: \mathbb{R} \rightarrow \mathbb{R}$ is integrable; and
(iii) for every absolute integrable complex-valued function
$h: \mathbb{R} \rightarrow \mathbb{C}$ the average power at the output of the filter with input $Z(t)$ is given by

$$
\text { Power of } Z \star h=\int_{-\infty}^{\infty}|\hat{h}(f)|^{2} S_{Z Z}(f) \mathrm{d} f
$$

- Difference to real-valued SP
\rightarrow (ii): operational PSD needs not be symmetric
\rightarrow (iii) has to hold for all complex-valued filters

QAM Relationship between Passband and Baseband

Relationship between operational PSD $S_{X X}$ of a real QAM signal and the operational PSD $S_{B B}$ of the corresponding baseband CSP $X_{B B}(t)$

$$
S_{X X}(f)=S_{B B}\left(|f|-f_{c}\right), \quad f \in \mathbb{R} .
$$

- PAM: g is $W / 2$ bandlimited $\Rightarrow S_{B B}(f)=0$ for $|f|>W / 2$.
- For every h : $g \star h=\left(g \star \operatorname{LPF}_{W / 2}\right) \star h=g \star\left(\mathrm{LPF}_{W / 2} \star h\right)=g \star h^{\prime}$
- Baseb. representation of passb. filter $\hat{h}_{B B}^{\prime}(f)=\hat{h}\left(f+f_{c}\right) I\{|f| \leq W / 2\}$

Power in $X \star h=2$ Power in $X_{B B} \star h_{B B}^{\prime}=2 \int_{-\infty}^{\infty} S_{B B}(f)\left|\hat{h}_{B B}^{\prime}(f)\right|^{2} \mathrm{~d} f$

$$
\begin{aligned}
& =2 \int_{-\infty}^{\infty} S_{B B}(f)\left|\hat{h^{\prime}}\left(f+f_{c}\right)\right|^{2} \mathrm{~d} f=2 \int_{-\infty}^{\infty} S_{B B}\left(\tilde{f}-f_{c}\right)|\hat{h}(\tilde{f})|^{2} \mathrm{~d} \tilde{f} \\
& =\int_{-\infty}^{\infty} S_{B B}\left(\tilde{f}-f_{c}\right)\left(\left.\hat{h}(\tilde{f})\right|^{2}+|\hat{h}(-\tilde{f})|^{2}\right) \mathrm{d} \tilde{f}=\int_{-\infty}^{\infty} S_{B B}\left(|f|-f_{c}\right)|\hat{h}(f)|^{2} \mathrm{~d} f
\end{aligned}
$$

QAM with $\left(C_{\ell}\right)$ uncorrelated and zero mean

$$
S_{X X}(f)=\frac{A^{2}}{T_{s}} \sum_{m=-\infty}^{\infty} K_{C C}(m) \mathrm{e}^{\mathrm{i} 2 \pi\left(|f|-f_{c}\right) m T_{s}}\left|\hat{g}\left(|f|-f_{c}\right)\right|^{2}
$$

Univariate Gaussian Distribution

Motivation

- Noise is often modeled as a Gaussian stochastic process
- Strongly motivated by Central limit theorem; when many small independent disturbances add up, then distribution converges to Gaussian distribution (good approximation for finite terms).
- Mathematical convenience - often amenable to analysis.

Definition: Standard Gaussian Distribution

RV W is a standard Gaussian if its density is given by

$$
f_{W}(w)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{w^{2}}{2}}, \quad w \in \mathbb{R}
$$

- Standard Gaussian random variable is symmetric $\Rightarrow \mathbb{E}[W]=0$
- From some simple analysis it follows that the variance is one.

Gaussian Random Variables

- Let W be standard Gaussian, then RV X is said
- centered Gaussian if $X=a W$ for some $a \in \mathbb{R}$
- Gaussian if $X=a W+b$ for some $a, b \in \mathbb{R}$

5-minute Exercise: Closed w.r.t. affine transformations

Show that if X is Gaussian, then $\alpha X+\beta$ is Gaussian.

- Mean of $X: \mathbb{E}[X]=a \mathbb{E}[W]+b=b$
- Variance of $X: \operatorname{Var}[X]=\mathbb{E}\left[X^{2}\right]-b^{2}=a^{2} \mathbb{E}\left[W^{2}\right]+2 a \mathbb{E}[W]=a^{2}$
- There exists only one RV X with Gaussian distribution of a given mean μ and variance σ^{2}. Notation: $X \sim \mathcal{N}\left(v, \sigma^{2}\right)$
- Customary to require σ non-negative, then σ standard deviation

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad x \in \mathbb{R}
$$

Cumulative Distribution Function

- Cumulative Distribution Function of standard Gaussian RV W

$$
F_{W}(w)=\mathbb{P}[W \leq w]=\int_{-\infty}^{w} f_{W}(\xi) \mathrm{d} \xi=\int_{-\infty}^{w} \frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\frac{\xi^{2}}{2}} \mathrm{~d} \xi
$$

- Q -function $Q(\alpha) \triangleq \frac{1}{\sqrt{2 \pi}} \int_{\alpha}^{\infty} \mathrm{e}^{-\xi / 2} \mathrm{~d} \xi$
- $\mathbb{P}[a \leq W \leq b]=Q(a)-Q(b)$
- If $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, then
- $\mathbb{P}[X \leq a]=Q\left(\frac{a-\mu}{\sigma}\right)$
- Craig's formula: $Q(\alpha)=\frac{1}{\pi} \int_{0}^{\pi / 2} \mathrm{e}^{-\frac{\alpha^{2}}{2 \sin ^{2} \phi}} \mathrm{~d} \phi$
- Upper and lower bounds on the Q-function

$$
\frac{1}{\sqrt{2 \pi \alpha^{2}}} \mathrm{e}^{-\alpha^{2} / 2}\left(1-\alpha^{-2}\right) \leq Q(\alpha) \leq \min \left\{\frac{1}{\sqrt{2 \pi \alpha^{2}}} \mathrm{e}^{-\alpha^{2} / 2}, \frac{1}{2} \mathrm{e}^{-\alpha^{2} / 2}\right\}
$$

Characteristic Function

- Characteristic fct of a RV X: $\Phi_{X}(\omega)=\mathbb{E}\left[\mathrm{e}^{\mathrm{i} \omega \mathrm{X}}\right]=\int_{-\infty}^{\infty} f_{X}(x) \mathrm{e}^{i \omega x} \mathrm{~d} x$

$$
X \& Y \text { are independent RVs } \Rightarrow \Phi_{X+Y}(\omega)=\Phi_{X}(\omega) \Phi_{Y}(\omega)
$$

- For $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Rightarrow \Phi(\omega)=\mathrm{e}^{\mathrm{i} \omega \mu-\frac{1}{2} \omega^{2} \sigma^{2}}$

Sums of independent Gaussians

Let $X \sim \mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{y}, \sigma_{y}^{2}\right)$ be independent Gaussian RV, then $X+Y \sim \mathcal{N}\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$.

Proof:

$$
\Phi_{X+Y}(\omega)=\mathrm{e}^{i \omega \mu_{x}-\frac{1}{2} \omega^{2} \sigma_{x}^{2}} \mathrm{e}^{i \omega \mu_{y}-\frac{1}{2} \omega^{2} \sigma_{y}^{2}}=\mathrm{e}^{i \omega\left(\mu_{x}+\mu_{y}\right)-\frac{1}{2} \omega^{2}\left(\sigma_{x}^{2}+\sigma_{y}^{2}\right)}
$$

Related Distributions

- Central χ^{2}-distribution with n degrees of freedom χ_{n}^{2}

$$
\begin{aligned}
& X_{1}, \ldots, X_{n} \sim \operatorname{IID} \mathcal{N}(0,1) \Rightarrow \sum_{j=1}^{n} X_{j}^{2} \sim \chi_{n}^{2} \\
& f_{\chi_{n}^{2}}(x)=\frac{1}{2^{n / 2} \Gamma(n / 2)} \mathrm{e}^{-x / 2} x^{(n / 2)-1}, \quad, x>0
\end{aligned}
$$

with $\Gamma(\xi)=\int_{0}^{\infty} \mathrm{e}^{-t} t^{\xi}-1 \mathrm{~d} t, \xi>0$.

- Others
- Generalized Rayleigh distribution: $\sqrt{\chi_{n}^{2}}$
- Rayleigh distribution: $n=2$
- Noncentral χ_{n}^{2} distribution using $X_{j} \sim \operatorname{IIDN}\left(v_{j}, \sigma^{2}\right)$
- Generalized Rice distribution, Rice distribution ($\left.\sqrt{\text { Noncentral } \chi_{n}^{2}}\right)$

App: Definitions of Convergence

Good to know: Let RVs X_{1}, X_{2}, \ldots be defined on (Ω, \mathcal{F}, P) we say sequence converges to X...

- with probability one or almost surely if

$$
\mathbb{P}\left[\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}\right]=1 ;
$$

- in probability if

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-X\right| \geq \varepsilon\right]=0, \quad \varepsilon>0 ;
$$

- in mean square if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left(X_{n}-X\right)^{2}\right]=0
$$

- It can be shown that convergence in mean-square and almost-sure convergence implies convergence in probability.
- Another type of convergence is weak convergence where the cumulative distributions F_{1}, F_{2}, \ldots converge $F(\cdot)$ at every point $\xi \in \mathbb{R}$ at which $F(\cdot)$ is continuous.

Outlook - Assignment

- Complex RV and Processes
- Operational Power Spectrum Density of QAM
- Univariate Gaussian Distribution

Next lecture

Binary and Multiple Hypothesis Testing

- Reading Assignment: Chap 20-21
- Homework:
- Problems in textbook: Exercise 17.1, 17.2, 17.6, 17.7, 17.12, 18.2, 18.6, 18.8, 19.7, and 19.11
- Deadline: Nov 26

