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Recapitulation

What did we do last
lecture?
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Outline - Motivation

@ Base-band representations are complex-valued, thus we need
e Complex RV and Processes (chap 17)

@ How do the following concepts extend for complex signals?
o Energy, Power, and PSD of QAM (chap 18)

@ Let’s have a look at an important distribution...
e Univariate Gaussian Distribution (chap 19)
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Motivation and Notation

@ Complex RV (CRV) C defined on (QQ,7,P) withC: Q — C
@ CRV Z can be always seen as a pair of two real RVs X and Y
by Z=X+1iY
@ mean, variance follow accordingly
e Not always recommended since complex RV in Digital
Communicaitons often have an additional property which
simplifies analysis (“proper” aka “circular symmetric”)
@ Notation:
e (-)* denotes component complex conjugate
e ()" denotes Hermitian conjugate
e If A= A" matrix A is Hermitian, aka conjugate-symmetric,
self-adjoint

@ Convention: "Vectors’ are usually column vectors
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Definition of some Standard Terms

@ Note that complex numbers cannot be sorted.
@ RV W and Z are of equal law (i.e., W Z Z) iff

P[Re(W)<x,Im(W)<y]=P[Re(Z) <x,Im(Z)<y], Yx,yeR

@ Density function, z € C with x = Re (z) and y = Im (z):

az
f2(2) = fre(z)im(z)(Re (z),Im(z)) = Iy P [Re(Z) < x,Im(Z) < y]
@ Expectation: [E [Z] = E [Re (Z2)] + i[E [Im (Z)]
@ Variance
Var[Z] £ E[|Z - E[Z]| = ... = Var[Re (2)] + Var [Im (Z)]
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Proper Complex Random Variables

@ Note: Var[Z] is specified by the covariance matrix of [X, Y]
with X = Re(Z) and Y = Im (Z)

Var [Re (Z)] Cov[Re(Z)Im(Z)]
Cov [Re (Z) Im (Z2)] Var [Im (Z)]

Definition: Proper CRV

A CRYV is said to be proper if
(i) itis of zero mean,
(i) it is of finite variance, and
(i) B[Z2] =0

[ var[X] Cov[XY]]
~ [CovIXY]  Var[Y] |

@ Note that Z% = (X +iY)? = X% — Y? + i2XY, thus
D [ZZ] =0 o ]E[XZ] - [Y2] and E[XY] =0

Q: Does Var [Z] specify the covariance matrix of a (proper) CRV Z?
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Covariance and Characteristic Fct of a CRV

@ The covariance between CRVs is a complex scalar and not a
real matrix.

Definition: Covariance

Cov[Z, W] 2 E[(Z-E[Z]) (W - E[W])]

@ For the characteristic function one can view a CRV as a pair of
real RVs ®@xy : R? — C, Oxy(wi, @) = E [ei(“’lx’fwm], w; € R.

Definition: Characteristic Function
The characteristic function @z : C — C of a CRV Z is defined as

Dy (w) LR [eiRe(w*Z)] - [ei(Re(a))Re(Z)+Im(a))Im(Z))]/ weC
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Transformation of Real Random Vectors (RV)

@ Let g: D — R, be a one-to-one mapping. D, R € R".
@ g has continuous partial derivatives in D
e Jacobian determinant det(ag(x)) #0foralxeD

Theorem: Transformation of Real Random Vectors
Let Y = ¢(X) with RV X and P [X € D] =1, then

fx(§7'(v))

fr(y) = ‘d t ag(x))

x=g"1(y)

@ The joint density fz o(r, 8) of CRV Z with r = /32 + 2 and
0 = tan~!(y/x) is given by

fro(r,0) = rfz(re'%), r>0,0¢[-n,m).
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Some Complex Analysis
@ ¢: D — Cis differentiable at zo € D if for every ¢ > 0 there
exists some 6 > 0 such that for all € C with 0 < |h| < 6 we have

EEER R

@ ¢ is analytic (or holomorphic) if g is differentiable at every z € D
@ Analytic functions satisfy the Cauchy-Riemann equations:

du(x,y)  dou(x,y) du(x,y) _ dulx,y)

Jx dy Ay ox

with u(x, y) = Re (g(x + iy)) and v(x, y) = Im (g(x + iy)) and

o odu(x,y)  .do(x,y)
g = ox T ox

z=x+iy
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Transforming CRV
Theorem: Transforming CRV

g : D — R one-to-one mapping, analytic in O, and derivative # 0 for
allze D. Let W = g(Z) of CRV Z with IP [Z € D] = 1, then we have
the density

_ f2(g7 (w)

g (g W) <R

fw(w)

Proof:
@ Consider CRV as pair of real RVs and apply previous theorem
@ g(x+iy) = u(x,y) +iv(x,y), thus g : (x,y) = (u,°v)

u u au _ao\[ (9u\?  [dv)\
det 8§ azy;] det(% ix) :(_u) +(—) =g’ (x + iy)P
(g_x g_y o u ox ox
o
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Complex Random Vectors

@ Covariance matrix: Kzz = £ [(Z ~E[Z])(Z-E [Z])*]
@ CRV Z is proper if it is of zero mean, finite variance, and

E[zZ"]|=0
@ Linear transformation Y = AZ of proper CRV Z are proper.

E[YY'| = E[AZ(A2)"| = B [AZZ"AT| = AR [2Z"]AT = 0
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Complex Stochastic Processes (CSP)

@ Complex stochastic process: collection of CRV (Z(¢),t € T)
defined on a common probability space (Q, 7, P)

o Definition of strongly and weakly stationary directly extend while
for the second moment the second term is conjugate complex.

@ CSP (z,) is proper if it is centered, finite variance, and
E[Z,Z,]=0 vV eZ
@ Autocovariance function of a WSS CSP (Z,), n € Z,

Kzz(1) £ Cov|Zyn, Zy| = B[ (Zyrn ~ BIZ1)Zy ~ BIZ1)Y ]

1/2
o Power spectral density defined by Kzz() = [ Sz2(0)e™>™° do
-1/2
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Let's take a break!
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Energy, Power and PSD of QAM

@ QAM signal with complex symbols C,, W/2 bandlimited pulse g,
carrier frequency f. > W/2, and real amplitude A

X(t) = 2Re (Xpa(t)e™ ),  Xpn(t) = A )" Crg(t - (T,)
¢

@ Most of the previous concepts directly transfer from real-valued
to complex-valued, new aspects:

e How is the relationship between passband and baseband?
o Where to put the conjugate complex operation?
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Energy of QAM

@ Energy E of transmitted signal X(t)

ELE [ f ) Xz(t)dt] =2FE [ f ) |XBB(t)|2dt]

since ||lxps|l* = 2||lxp5l*> and g(-) bandlimited to W/2

E[IZ |XBB(t)|2dt] = I:]E

= A2 i i E [cgc;,,] f ) gt — €T)g (t — €'T,)dt

(=1 '=1

dt

N N
(A) Ceglt—TYNA Y Coglt - Ty
=1 =1

:Rgg((['_[)Ts)

N
o E=24%glF ¥ E lic?]

e if {C,} are zero mean and uncorrelated, or
o if pulses are orthogonal by time-shifts of integer multiples of T
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Power of QAM

Assumptions:
@ infinite sequence of complex symbols (N — o0)
@ pulse g satisfies decay condition [g(f)| <
@ sequence {C,} is bounded

p
w0 F >0

Power in QAM

1 T, 1 T2
lim ﬁEMTX (t)dt] =2 Jim ﬁ]E[IT X2, ()t

@ Relation does not hold for T < oo since X(t) is not bandlimited
@ If CSP (Cy) is additionally zero-mean and WSS, then

[o0]

1 T, 2A2
711_I)I‘;lo ﬁE [ITX (t)dt] = T—S Z ch(m)Rgg(st)

m=—oo0
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Operational PSD of CSP

The CSP Z(t) is of operational power spectral density Szz(f) if
(i) Z(t) is measurable (real and complex part are measurable SP);
(if) the function Szz : R — R is integrable; and

(iii) for every absolute integrable complex-valued function
h: R — C the average power at the output of the filter with input
Z(t) is given by

Power of Z x h = foo I(f)PSzz(f) df

@ Difference to real-valued SP

— (ii): operational PSD needs not be symmetric
— (i) has to hold for all complex-valued filters
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QAM Relationship between Passband and Baseband

Relationship between operational PSD Sxx of a real QAM signal and
the operational PSD Sgp of the corresponding baseband CSP Xpp(t)

Sxx(f) = See(fl - fo), fe€R.

@ PAM: g is W/2 bandlimited = Sggp(f) = 0 for |f| > W/2.
o Foreveryh: gxh=(g*xLPFyp) xh=g* (LPFwaxh)=g*xn
o Baseb. representation of passb. filter i, (f) = A(f + f)Ill | < W2}

Power in X x h = 2 Power in Xpp * hpp = Zf SBB(f)lfng(f)lzdf

2 f Sss(PI(F + fPdf =2 f Sealf — FIRPAS

(o8]

- [ " Suu(F— RIBGP + -PP)df = | w011 - fotipias

—00
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QAM with (C,) uncorrelated and zero mean

[e¢]

2 .
Sxx(f) =2 Y Kectme Uil — fp

m=—0o0

J
la(nP?
’/ J
[a(1f1 = £)*

A

—fe
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Univariate Gaussian Distribution

Motivation
@ Noise is often modeled as a Gaussian stochastic process
e Strongly motivated by Central limit theorem; when many small
independent disturbances add up, then distribution converges to
Gaussian distribution (good approximation for finite terms).
e Mathematical convenience - often amenable to analysis.

Definition: Standard Gaussian Distribution
RV W is a standard Gaussian if its density is given by

1 w?
fw(w) = e 2, weR

V2n

@ Standard Gaussian random variable is symmetric = E[W] =0
@ From some simple analysis it follows that the variance is one.
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Gaussian Random Variables

@ Let W be standard Gaussian, then RV X is said

o centered Gaussian if X = aW for somea € R
o Gaussianif X =aW + b forsome g, b e R

5-minute Exercise: Closed w.r.t. affine transformations

Show that if X is Gaussian, then aX + f is Gaussian.

@ Meanof X: E[X]=aE[W]+b=10
@ Variance of X: Var[X] = E [Xz] - ? =a’E [WZ] + 24 [W] = a?

@ There exists only one RV X with Gaussian distribution of a given
mean u and variance 0. Notation: X ~ N(v,0?)
e Customary to require o non-negative, then ¢ standard deviation
(@-u?

1 _
= 52
fx(x) 2n02e 22, xeR
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Cumulative Distribution Function

@ Cumulative Distribution Function of standard Gaussian RV W

Fw(w)=P[W <w] = f fw(&)dé = f

2
e_é2 dé

@ Q-function Q(«) = \/_f e ¢2d¢

o Pla<W <b]=Q(a)—-Q(b)
@ If X ~ N(u,0?%), then o)
o P[X <a]=Q(%)

[

aZ
@ Craig’s formula: Q(a) = 0”/2 29 dgh .

@ Upper and lower bounds on the Q-function

_e—a2/2(1 —a?) < Qa) < min{

—a2/2 le—a2/2}
212

212 "2
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Characteristic Function

o Characteristic fct of a RV X: @x(w) = E [eX] = [ fx(x)e*dx

X&Y are independent RVs = Oy, y(w) = Px(w)Py(w) J

2.2

@ For X ~ N(i,0%) = ®(w) = el@#-1¢0

Sums of independent Gaussians

Let X ~ N(ux, 03) and Y ~ N(uy, oy) be independent Gaussian RV,
then X +Y ~ N(ux + iy, 0% + 03).

Proof:

®X+Y(C‘)) — eimyx—%wzaieiwyy—%wzoﬁ — eia)(‘ux+‘uy)—%w2(0§+oﬁ)
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Related Distributions

@ Central y?-distribution with n degrees of freedom x2

n
Xi,..., Xy ~ DN, 1) = Y X3~ )

j=1
1
- - x/2.(n/2)-1
fa(x) = 2”/2F(n/2)e MexE=t x>0
with (&) = [~ e"*71dt, & > 0.

@ Others

o Generalized Rayleigh distribution: \/;(_ﬁ
e Rayleigh distribution: n =2
e Noncentral x2 distribution using X; ~ IIDN (v}, 0?)

e Generalized Rice distribution, Rice distribution (y/Noncentral x?2)
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App: Definitions of Convergence

Good to know: Let RVs X1, X,... be defined on (QQ, ¥, P) we say
sequence converges to X...
@ with probability one or almost surely if
P [{a) € Q: lim X, (w) = X(a))}] =1;

n—oo
@ in probability if
ImP[X,-X|>¢]=0, &>0;

n—oo

@ in mean square if
lim B {(X, - X)*| = 0;

n—-00

@ It can be shown that convergence in mean-square and
almost-sure convergence implies convergence in probability.

@ Another type of convergence is weak convergence where the
cumulative distributions Fyq, Fp, ... converge F(-) at every point
& € R at which F(-) is continuous.
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Outlook - Assignment

@ Complex RV and Processes
@ Operational Power Spectrum Density of QAM
@ Univariate Gaussian Distribution

Binary and Multiple Hypothesis Testing

@ Reading Assignment: Chap 20-21
@ Homework:

@ Problems in textbook: Exercise 17.1,17.2,17.6,17.7,17.12,
18.2, 18.6, 18.8, 19.7, and 19.11
@ Deadline: Nov 26
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