VHDL Testbench for ModelSim Zis

Template -program action

The lock opens
when the key 717
1s pressed and
then released.

firstdigit
released

firstdigit
still pressed

waitfor
first digit

the lock is open
for 30 clock pulses

Keypad and Statecounter

Good choice of K3 K2 K1

data types makes cik CERUR)
= K[1..9] UNLOCK 1—

the code self- e g

explanatory!

K: in std logic vector(l to 3);
R: in std logic vector(l to 4);

123 1234
K ="001" bitvector R ="0001" bitvector
K(3)='1’ bit R(4)='1" bt
43210

Statecounter: g ="00001" bitvector
q(o)="1’ b1t

This code 15 given 000
library IEEE: e @ @

use IEEE.std logic 1164.all; cutput decoder: -- cutput decoder part {7] (5) o
use IEEE.std logic mrith.all; process (state)

begin
entity codelock is e o o

case ctate ig

port(clk: ir std logie; when 0 to 1 => UNLOCK <= '0°;
K: in std logic wector(l teo 3); when 2 to 31 == UNLOCK == "1°;
B: in std logic_vector(l to 4); ernd case;
q: out std logic vector(4 downto 0); end process;
UNLOCE: out std logic };
erd codelock; stete register: -- the state register part (the flipflops)
process (clk)
architecture behavior of codelock is begin
subtype state type iz integer range 0 to 31; if wisming (clk} then
signal state, nextstate: state type; state <= mextstate;
i end if;
begin end process;
nextstate decoder: -- next state decoding part end behavior;

process(state, K, R)

i -’ H H »
pesic .. At’s easy to see that this is correct! firstdigi
wher 0 == 2f (K = "100" arnd R ="0001") ther nextstate <= 1; FEleaSEd
Sioe Temistate = U firstdigit
when 1 == if (K = "100" and R ="00017) then nextstate <= 1; still pressed
elsif (K = "000° and R = "0000") then nextstate <= 2; PP
i : firstdigit
el:e- r‘.l.Eltstﬂ.td: == 0;) pressed ‘
end if; waitfor 50 '
when 2 to 30 =+ nextstate <= ztate + 1; first digit 0 thelockis open
when 31 = nextstate == 0;
end case; fl;‘rf 30 C|0Ck U|SE'5
end process; @ x D

debug_output: -- display the state
q <= conv_std logic vector(state, 5);

lockmall with error.vhd

library IEEE;
use IEEE.=td logic 1164.a11;
use I[EEE.std logic srith.all;

debug output: -- display the state
q <= conv_std logic vector(state, 5);

entity codelock is cutput decoder: -- output decoder part
port(clk: ir std legie; PFDFESS istate)
K: in std logic wvector(l to 3); Legin cote s
R: in =std logic_wvector(l to 4); caze sSta is .
q: out std logic vector(4 downto 0); when 0 to 1 => UNLOCK <= "0°;

when 2 to 31 => UNLOCK <= "1°;

UHLOCE: out std logic }; -
end case;

end codelock;
‘ end process;

architecture behavior of codelock is

subtype stmte type iz integer wange 0 to 31; state register: -- the state register part (the flipflops)
~) ! 1k
signal state, nextstate: state type; ptDlj:d:s:[l: !
- begin

begin if rising edgeiclk) then

) tate <= totate;
nextstate decoder: -- next state decoding part 5_ = nextctate;
bagin - end if;
nextstate decoder: -- next state decoding part =nd process;

process (stete, K, R) end behavior;

-] L) . . s
Begin Now it’s hard to see if this is correct or not?
wher 0 == if (((R(2)="0") and (R(3)="0") and (K(2)="0") ard (K(3}="1'}) and
not ((not ((E(21)="0") and (R(1})="0") and (R(4)="1"})) ard
rot ((K{1)='1"} ard (R(1)="1") ard (R{4)="0"}})1}}
thern nextstate <= 1;
else nextstate <= 0;
end if;
wher 1 == if(((R({2})="0") mnd (R{3})="0") ard (K(2)="0"} and (K(3}="1")) and
{ mot ((not ((K(1}="0") ard (R{1)="0") and (R(4)="1"})) and
[mot ((K(1})="1") and (R(1}="1") and (R{4)="0"1111})
ther rextstate == 1;

alzif (K = "000" and B = "00007) ther nextstate <= 2;
else nextstate <= 0;
end if;

wher 2 to 30 == nextstate <= state + 1

when 31 == pextstate <= 0;

end case;
end process;

Does both expressions mean the same?
(K= "100" and R ="0001")

Is this really the same thing?

(((R(2)='0"') and (R(3)='0') and (K(2)='0') and (K(3)='1')) and
(not ((not ((K(L)='0') and (R(1)='0') and (R(4)='1'))) and
(not ((K(1)='1') and (R(1)="'1') and (R(4)='0"))))))

Someone "promises" that the codeis correct - but
how can you know that this is absolutely true?

tb lockmall.vhd

We need to write a VHDL -testbench

A test bench program can test all the possible key
combinations and report 1f there 1s a problem ...

It can automatically loop through all possible key-presses and
report on whether the lock trying to open or not.

There are 27 = 128 possible key combinations and we'd be
totally exhausted 1f we tried to test them all by hand.

entity — a testbench has no ports

entity tb codelock 1is
-— entity tb codelock has no ports
—— because 1t's for simulation only
end thb codelock;

Some internal signals are needed

signal clk : std logic := '0';
signal K test : std_logic_vector(l to 3);
signal R test : std logic vector(l to 4);

signal prev K test : std logic vector(l to 3);
signal prev R test : std logic vector(l to 4);
signal q : std logic vector (4 downto 0);
signal unlock : std logic;

Our codelock is used as a component

—-— we use our codelock as a component
component codelock
port(clk : in std logic;
K : in std logic vector(l to 3);
R : in std logic vector(l to 4);
q : out std logic vector (4 downto 0);
UNLOCK : out std logic);
end component;

Generate a simulation clock

T=20ns
-— generate a simulation clock f=50MHz
clk <= not clk after 10 ns; 1&_‘_‘_,_*—*
10ns

Instantiatiation and signal
mapping

—-— instantiation of the device under test,
—-— mapping of signals
inst codelock:
codelock
port map (
clk => clk,
K => K test,
R => R test,
q => d,
UNLOCK => unlock);

Two nested loops creates keystrokes

process
8 begin
for k in 0 to 7 loop
K test <= conv std logic wvector (k, 3);
16 for r in 0 to 15 loop
prev K test <= K test;
prev R test <= R test;
R test <= conv_std_logic_vector(r,4};
wait until CLK="1";
end loop;

end loop; 8-16=128 turns
end process;

report, severity note, severity error

Tests if state g = "00001 " will be reached by any combination.

firstdigit ﬁ
check: sﬁllprglssed

process (q} first digit

waitlor ﬁl Pies3ed
begin if ((g = "00001") and first digit (‘?
(prev K test = conv _std logic vector(l,3)) and
(prev R test = conv std logic vector(1l,4)))

then assert false report BB
"Lock tries to open for the right sequence!” III
severity note;
else 1f ((g = "00001"™))
then
assert false report
"Lock tries to open with the wrong Sequence!”lll
severity error;
else report "Lock closed!" sewverity note;
end if;
end if;
end process check;

Simulate and find the error!

What else besides pressing the "1" key
could open the lock? 000

ot
. ::

	VHDL Testbench for ModelSim

