SN L

Laboratory VHDL introduction Zis
Digital Design IE1204 (Note! not included for 1E1205)

CP nn
Input ::> _|\;.,

signals g;; :>State Output Qutput
i decoder i
T—‘> S reglster—‘ signals
feedback

Attention! To access the laboratory experiment you must have:

e booked a lab time in the reservation system (Daisy).
o completed your personal knowledge control on the Web (Web-quiz).
e done all preparation tasks mentioned in the lab booklet.

During the lab you work in groups of two, but both students are responsible individually for
their preparation and implementation.

Booth students should bring their lab booklets. This frontpage is used as your receipt that the
lab is completed. Save the receipt until you have received the full course registered in the
database (Ladok).

Since this is your receipt you must fill in the table with ink.

Mame:

Social Security
Mummber:

® Knowledge Control {Webh-quiz)

BEundle no: Drate:

Lab-assistant receipt:

® Preparation tasks in the lab hooldet

Lah-assistant receipt:

® Lab implementation

Laboration date:

Lab-assistant receipt:

Introduction

This lab is about how to design digital logic with VHDL language and modern CAD software.
The idea is that you'll get a glimpse of how a "Digital” engineer work. VHDL language is a
very complex programming language, and it is not reasonable to "learn™ that this brief first
Digital Design Course.

When you solve the lab assignments, you have therefore been given tutorials and template
code on the course web.

The school has several good VHDL courses that can be chosen by those who want to know
more, and who want to work with Digital Design in the future.

The best way to get to know a program is to install it on your own computer. Then you can in
peace searche through menus and help pages, and can take the time it takes to sort out what
you might have misunderstood.

If "computer hassles" threaten to consume too much time for you, you can also find the
programs installed in the school's Windows computer rooms - as a backup solution.

The goal of the lab

e Become familiar with modern CAD software, Quartus and ModelSim.

e Show how to simulate a digital design (a Moore-machine), how to generate input
signals, stimuli, and how to observe the outputs and behavior (ModelSim-Wave).

« Orienting yourself on how a digital technician can write a VHDL "test bench" to
ensure that the construction is completely correct.

e Practice the VHDL-construction of a state machine from a given state diagram (revise
and expand a given template program).

« Practice how to tie together the design "signals” with target chip "pins".

e Show how you program the target chip (MAX3000), and trying the operation in
reality.

Attention! Your lab time may be prior all course elements that may be needed for the lab has
been lectured. You would then have to read the course material for yourself in advance - there
are links to all slides for the lectures and exercises.

Attention! Lab equipment is completed. No wires should be changed, not added
or removed.

A VHDL-code lock

Lab task is to construct a code lock that opens to a unique four-digit code, but we begin by
studying a simpler template program, a code lock that opens to one key!

« Preparation task 1 (done before the lab at home)
Install the programs Quartus Il and ModelSim on your own computer.

Follow the steps in the tutorial on the course web - Install the programs on your computer.

« Laboratory task 1 (do at lab in school)

Log on to the lab computer. On the school centrally managed lab computers You do not have
rights to install software. Quartus Il and ModelSim are already installed. You may not
access the folders under C:\. At the laboratory, you should therefore use your "server™ folder
H:o\.

o Create a folder H:\MAXWork\ for the files in this lab.

« Important operating system setup. Show file extensions should be set at all
programming courses!
Windows 7 show fileextensions

« Preparation task 2 (done before the lab at home)

Start Quartus and create a project code lock. Bring the content of the file lockmall.vhd as
the project VHDL-file and then compile the code.
Follow the steps in the tutorial on the course web - VHDL-program with Quartus.

first digit
released

firstdigit
slill pressad

“!all I‘:!f
first digit thelockis open

for 30 clock pulses

http://maximumpcguides.com/windows-7/show-file-extensions/

Read about the template program VHDL code in the description on the course web
- VHDL for a codelock.

Read on how to tie the signal names to specific pins of the target chip in Quartus.
- Pin-planning in Quartus.

Read about how to use the Quartus programming function with a JTAG USB Blaster.
- Chip-programing with Quartus.

« Laboratory task 2 (do at lab in school)

o Start Quartus and create a project codelock in your server-folder H:\MAXWork\.
Use the content of the file lockmall.vhd as the project VHDL-file and then compile the
code.

o Lab equipments have different wiring! Examine your lab equipment and enter the Pin-
planning table, and thereafter Pin Planner in Quartus.

Follow the steps in the tutorial on the course web - Pin-planning in Quartus

Node Name | Direction | Location

clk Input PIN_
K[1..3] Input

K[1] Input PIN_
K[2] Input PIN_
K[3] Input PIN_
q[4..0] Output

ql4] Output PIN_
q[3] Output PIN_
ql2] Output PIN_
ql1] Output PIN_
q[0] Output PIN_
R[1..4] Input

R[1] Input PIN_
R[2] Input PIN_
R[3] Input PIN_
R[4] Input PIN_

UNLOCK | Output PIN_

male
13

Yo GHIJ
5 1% 3"4

T

e Ba ¥Fal

KIK2 K1 R4 BRI R2 R

T
4

'-Cj:ﬂm

C}nmo
DR

® GND

% YO
Q »w
{___jslm
Onrcx
SR
vm}un
() 2 1D

2|‘| 1 Iﬂ1
o el
1 CLR ggeBddsdsen
2 CLE2 B OS5 4 3 @ 1 4 4r 4 4 W
3 veC e OOOAMGEMOO
4 10 m 7 O
s O
6 1o 0 s _
T TCI o e Top View
3 EE GHD mv
10 GHD 1o
L L8l WD 1z (Q'
1210 O_J
13 TS TMS 12
zne | O MAX3000A
15 ¥oo e 15 A
16 [0
17 GND 1w w O EMP3032ALC44-10
b GHD 1
19 [0 | _ - J
o OOOOVAOOOOO
i;il}'?]:l 1% 19 0 M OB oM X Mmoo
- 2928288222978
o] =23
> JTAG
& oI THE [Too | TCK
¥ e ™ II MDD VoG | GHD

Description of the pin-symbols se figure.

e When you have completed the pin planner in Quartus so

recompile the project.

e Program the device with the USB blaster.

o Check that the code lock opens when you press the 1" and

then release the key.

« Preparation task 3 (done before the lab at home)

&1 OE
43 CLK1
42 GHD
4] 1D
40 1D
39 1D
3& TDo
37 1D
36 GHD
35 weo
3410
33 10
32 TCK
31 1D
0 GHD
29 10
B 1D
p el
26 10
5 10
1 1D
peiH
S';.fml:n:nl |F'|n Type
g Lser IjiO
'. User Assigned Ifo
[] Fitter Assigned Ij0
IUnbonded Pad
. Reserved Fin
(E) DEY_OF
(R) DEV_CLR
LK
O TOI
Ky TCK
by TMS
&y TDO
My YOCINT
) YOCIO
@D

At home, you have no hardware, no laboratory equipment. In such situations one usually

simulate the code to see if it is correct.

The leading simulation software ModelSim is available in a version for Altera's chips. Start
ModelSim and simulate the VHDL-code with the content from lockmall .vhd as VHDL-

file.

Follow the steps in the tutorial on the course web - Simulate with ModelSim.

lockmall.vhd (E,l lockmall.txt)

« Laboratory task 3 (do at lab in school)

Even when having access to the hardware, it is common to mix simulations with hardware
test.

Carry out the same simulation in school that you practiced at home, ie show in the wave
window that the lock opens for "1". Show Your lab assistant your "simulation expertise."

« Preparation task 3 (done before the lab at home)

Design of Digital hardware can often result in the production of an ASIC - An application
specific Integrerated Circuit. It is then often several months of lead time and, manufacturing
costs of the order of several million dollars.

Then you have to be sure that the design is absolutely correct!

(At the lab, we have a better starting point than the ASIC designer. If your design on a
programmable CPLD chip is wrong, You get the chance to reprogram it - again and again.)

As you can see, it is the test engineer who is Digital Technology Hero!
VHDL-language has various tools to enhance the ability to be able to write correct code.

o To reduce the risk of errors when transferring information from the data sheets, you
can use index that runs up or down, to suit the method that was used in the data sheet.

e You has also the ability to create user-defined data types that fit the description of the
construction. One can therefore often write VHDL code that is "obviously" correct!

e One can write a VHDL test bench. This is simulation code that can be used to test
many/all signal combinations that the circuit may be exposed to.

Attention! A test bench is usually a more complicated program than the original design as it
relates to test!

These lines from the template program is an example of code that obviously follow the given
state diagram.

case state 1is

when 0 => 1If (K = 001" and R ="0001") then nextstate <= 1;
else nextstate <= 0;
end if;

when 1 => if (K = "001" and R ="0001") then nextstate <= 1;

elsif (K = 000" and R = "0000') then nextstate <= 2;
else nextstate <= 0;
end if;

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

first digit
released

first digit
still pressed

waitfor
first digit

However, if one takes over the code from someone else, even if that person promise that it
works, the situation is different.

case state is
when 0 => IF(((R(2)="0") and (R(3)="0") and (K(2)="0") and

(K(3)="1")) and
(not ((not ((K(1)="0") and (R(1)="0") and (R(4)="17)))
(not ((K(1)="17") and (R(1)="1") and (R(4)=7"07))))))

then nextstate <= 1;
else nextstate <= 0;
end if;

and

Here are the conditions written in such a way that it is no longer obvious what the code does -
And therefore we do not know if it is correct or if, despite all the promises, it is incorrect?

Try now the code correctness with a (pre-written) test bench
Follow the steps in the tutorial on the course web - Testbench in ModelSim.

lockmall.vhd (B jockmall.xt)
lockmall with _error.vhd (El lockmall with_error.txt)
tb_lockmall.vhd (& tb_lockmall.txt)

« Laboratory task 4 (do at lab in school)

o Perform also the simulation of the test bench in the school, and show lab assistant your
skills by simulating code with a test bench.

o Can you reveal anything wrong with the code? Show lab assistant.

e Close ModelSim and change to the program Quartus Il. There you change the
contents of the VHDL file from lockmall .vhd to

lockmall _with_error.vhd. Compile and download the code to the MAX-

chip.

e Check if the suspicious behavior from the simulation means that in practice You can
open the code lock incorrectly?

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd
https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd
https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

« Preparation task 5 (done before the lab at home)

second digit
waitfor still pressed

second digit second digit waitfor
released third digit

first digit
released

third

digit pressed

third digit
still pressed

first digit
still pressed

wrong digit
pressed

wrong digit

e third digit

waitfor released

first digit

wrong digit
pressed

fourth digit
still pressed

the lock is open

for 24 clock pulses released

A code lock that opens to a single key press is of course ridiculously easy to force, normally
you have a four digit code. Your task will be to develop the template program
(Fockmal I .vhd) to such a lock with four digits - the last four digits of your civic number.

Prepare such a VHDL program at home. Check that it is possible to compile. Take with you
the code to the school in any way, such as:

- Mail the text to yourself.

- Bring a USB flash drive with the code as a text file.

- Transfer the code to your server folder H-\.

Are you able to simulate the code at home, you'll increase the likelihood that you have the

correct code from the start at school.
The time at the lab school will not be enough to write the program code from "scratch™!

« Laboratory task 5 (do at lab in school)
Make a code lock that opens to a four-digit code. Lab Assistant determines the digit
combination so that - Two of the numbers taken from your preparation program, and the other

two from your lab colleague preparation program.

e Show the working code lock for lab assistant.

Do you have time for more?

If you are well prepared for the lab, and if you are not suffering from intermittent connections
or dead batteries, then you probably now have time for a "voluntary" task.

« Can you change the program so that it also opens for the previous hidden key
combination?
('so that there is a "hardware trojan" within the chip)

Good Luck!

When you are finished clean the lab desk.

Bill of materials

The "bill of material” for the lab equipment, could be helpful if you ever would need to use
simple MAX-chips yourself.

Altera USB-blaster ELFA 73-898-90

ALTERA CPLD EPM3032ALC44-10

Proto Advantage PLCC-44 Socket to DIP-44 Adapter

Breadboard MB-85 ELFA 48-428-37

Contact breadboard to 25-pol D-sub ELFA 48-426-96

Pin contact (JTAG) ELFA 43-155-03

Lightdiode with series resistor 5V red ELFA 75-012-59

Lightdiode with series resistor 5V yellow ELFA 75-015-11
Electronic chip 555 ELFA 73-042-65

Trimming Potentiometer 500 kO with adjustment knob ELFA 64-635-25

William Sandqvist will1am@kth.se

http://www.proto-advantage.com/store/product_info.php?products_id=3600003

S L

VHDL for a code lock Z=Ei=s

Description of the code lock template

first digit
released

first digit
still pressed

wail far

first digit thelockis open

for 30 clock pulses

The Code Lock template applies to a simplified lock that opens when you press the key "1"
and then release the key.

Almost all digital designs are now carried out using high-level languages like VHDL/Verilog.
Our basic course in digital technology does not allow to teach VHDL language, however, you
will be able to transform the "template code lock™ into useful VHDL code at the lab.

If you think that the VHDL language seems interesting, then the school has several advanced
digital technology courses

At lab you expand this code to create a four digit code
lock!

second digit
wail for still pressed
sicond digi sicand digit waltfor

third digit

tirst it
releasad third

digitprassed

third digit
stll pressed

farst dhgit
still pressed

wrang digit

thiird chgit
pressed L

vl for riglirased

First cigit

0000
000
0000

wrong digit
presged Tourth

thelockisopen
for 24 clock pulses

10

lockmall.vhd

library IEEE;
use IEEE.std logic_1164_all;
use IEEE.std _logic_arith.all;

entity codelock is

port(clk: in std logic;
K: in std logic_vector(l to 3);
R: in std logic_vector(l to 4);
q: out std_logic_vector(4 downto 0);

UNLOCK: out std_logic);
end codelock;

architecture behavior of codelock is

subtype state_type is integer range 0 to 31;

signal state, nextstate: state_type;

begin

nextstate decoder: -- next state decoding part

process(state, K, R)
begin
case state is

when 0 => if (K = 001" and R ="0001")

else nextstate <= 0;
end if;

when 1 => if (K = 001" and R = "0001')

then nextstate <=

then nextstate <=

elsif (K = 000" and R = "0000") then nextstate <=

else nextstate <= 0;
end if;

when 2 to 30 => nextstate <= state + 1;

when 31 => nextstate <= 0;
end case;
end process;

debug_output: -- display the state

q <= conv_std_logic_vector(state,5);
output_decoder: -- output decoder part
process(state)

begin

case state is
when O to 1 => UNLOCK <= "0%;
when 2 to 31 => UNLOCK <= ="1-";
end case;
end process;

state register: -- the state register part (the flipflops)

process(clk)
begin
if rising_edge(clk) then
state <= nextstate;
end if;
end process;
end behavior;

11

Moore machine
The code lock is The code lock is designed as a Moore machine.

state register: output decoder:

CP nn_
Input :> _L

s

signals g;"l:a :> State Output Output

T—:) e I'EQISIEF—‘ decoder signals
feedback

The different blocks in the code are identified with "labels".

next state decoder:
output decoder:
state register:

VHDL processes

With a "process” you can describe what should be performed in a block without having to go
into the details of how this should be done.

Label | Sensitivity list. Every change in
A theese variables leads to updating of
the process!

next_st atéide coder:

{:____.--"-:..__.--" II_:-"'
process (state, K, R)

beai
gin Body. What should be
_ done.

end process;

VHDL code is written as such processes.

12

Parts of the program

start

Rl:f [TR

likbwawy IEEE;

uide TTEE, nd_lopie_ii64. sll;
wiw TEEE. ivd_legie_aritk.all;

artity codalock i

(;ul.pul._hdt-hl
process (statel
begin

caps state im

== gt dessder pavt

whar. 0 to 1 = UNLOCE <= “0°;
whar, 3 to 31 == UHLOCKE <= “1°;

wrd case;
W ard process;

perk [elh: in atd legie:
K: in atd logic_wector(l to ¥;
B: in std logic_wector{l to 4);
q: sat wtd logic_weotowid dowrts OF ;
UNLOCK: sak etd_lagia §
wrad el gk, end

svarlteature bakavier of osdelaodk e
subiyme state_tyPe bs Leteger warge © e Ji;
sdgral state, rextetate: state type:

Bagin
T 3

Pucsess (statae, K, B}
L
SaEE EEETE LE
whar O = of (K = 1007 ard B ="000L7)
slie reststate o= O

thar reaststats <= 1

wrell &0
mm if (K = 166 mrd R ="00017) thar raxtatate <= 1;
wlgaf (K = "000° ard R = "00007) than raztstate <= 2;
alys rextstats o= O
ard af;
whan 2 to 30 =5 nactstate <= ceate + 1)
wihar 31
wrad pEEE]

whar 1

= pamtetats om O;

J

dubeog cubput: == displey the state
q €= oony_wtd leogis_vectovistats, Bk

entity
architecture

next_state decoder:
output_decoder:
state_registers:

entity

staxrt

The program entity is a description of the code lock as a "black box" with input and output

Block-description, input
output signals

i-li:H“l'ﬂlI'll‘l - W
procens ialhl

began

if rhsirg_sdpeieik) then

wrd if;

g ——— E el

Etals wegistay pavi (U

state = resxtstate;

architecture
nextﬁstate“deccder:
output decoder:
state register:

signals and

library IEEE; e
uze IEEE.std logic 1164.all; ":I_11 ?
uze IEEE.ztd legic arith.all; Rir-4|

—

q4.0]
UNLOCK [—

entity codelock is

port{ clk: in std logic:
K: in std logic wector (1
R: in std logic wvector (1l
q: out stleo-gic:vectDrH
UNLOCK: cut =td leogic };

end codelock:

signals.

13

to 3):
to 4);
downto 0);

Bits and Bitvectors

K3 K2 K1
Vo —_EL—W;
R4 — [X N5 | S
w— PR Y
il @00 —:| L— g2
SR 000
L
K: in stﬂ_lcgic_vectcr{l to 3): . 3 q0
R: in =std logic wector({l to 4): ;m__:{:];_-

q: out std logic wector (4 downto 0):

123 43210
K ="001" bitvector q ="00001" bitvector
K(3)='1" bit q(0)="1r bit

You can customize the indexing of variables so that it is consistent with the data sheets - less
risk of mistakes!

Architecture - define suitable datatypes
The program part architecture contains the description of the behavior of the block.

. . . Description of the
e architecture behavior of the block

mtart
architecture DERAVIOY of codelock is
saubtype state type iz integer range 0 to 31;
aignal state, nextatate: state type;

begin;

Here we create anew datatype, state type, thatcan
have integer values between 0 and 31. The compiler then
prevents us from (accidentally) use other values.

Signals state and nextstate are ofthis datatvpe.

Here we create a new datatype, state_type, that can have integer values between 0 and
31. The compiler then prevents us from (accidentally) use other values. Signals state and
nextstate are of this datatype.

14

Architecture - next state decoder

tstate_ decoder: =-- next state dacoding part
brocess (state, K, R)

begin
cass atate ia
when O = if (K = "001" and R ="0001") then nextstate <= 1;
alss nextstats <= 0;

and if:
whan 1 => if (K = "001" and R =="0001") then nextstate <= 1;
alsif (K = "000" and R = "0000") then nextstate <= 2;
alze neaxtstate <m 0;
and 1L
when 2 to 30 => nextstate <= state + 1; ik
when 31 =>» nextstate <= 0; g
and case: —— -
and process; _— :::--.;::

T lock i open

Yol M) 15
\ - -\-“-..Gixnly

Next state decoder is the central part of the program. By using the case-statement you can
write the code in such a way that it confirms to the state diagram.

Troubleshooting help - the state is shown with five LEDs

debug output: -- display the state
i <= conv_std logic wector(state,3):

The function c:c:nv_std_lc:qic_ve ctor () converts
state (aninteger between0...31) to a 5-bit bitvector g
q(4) .. g(0).

To troubleshoot, we want to be able to follow which state the machine is in. The function
conv_std_logic_vector() converts ,state (an integer between 0...31) to to a 5-bit
bitvector g, q(4) ... q(0). In order to use this conversion function one has to include the
library IEEE.std_logic_arith.all.

Output decoder

output_decoder: =-- ocutput decoder part -L\.I
process (stata)
begin
case state is
when 0 te 1 => UNLOCK <= '0';
when 2 to 31 =» UNLOCK <= 'l';
end case;
end process;

The output decoder is written "straightforward" by a case-statement.

15

State register

state register: -- the state)\register part (the flipflops)
process (elk)
bagin
— - % hy
if rising edge{clk) then i ——DT
atate <= nextatatas: 1

end if;: —
end process;

nextstate 4 —% L state

L ___LLE

?EJ?],
end behavior; —

july

gl S

clk —

By using the function rising_edge(clk) we let the compiler "understand" that we want
to use the flip-flops inside the MAX-chip in order to build a register.

16

] L

VHDL-program with Quartus Zhs
% I New Quartus® Il Software

'\

Choose the right program version from the school's start menu :

Altera 13.0.1.232 Web edition\
Quartus Il Web Edition 13.0.1.232\
Quartus 11 13.0spl (32bit)

", Quartus 11 32-bit 13.0 Web Edition

Sadect one of the Folowing boersing options bo continos:
Saleck e of the follwing options

0 Bury the Quaartus 11 Subscription Edition softwars
[Runthe quartus 1 software |
{0 Add an IF Bcense Fle (For users who have purchased 1)

[o]| conem |

Start Quartus. You need no license and you do not need not buy anything.
If not be directly offered to start New Project Wizard, You may also select this option from
the File menu.

4, Quartus II

File Edit Yiew Projeck Assignments

[Mew... Chrl-+N
= CIpEM. .. Chrl+0
Glose (Zkr|+F4
@ Mew Project ‘Wizard. .,
E? Cpen Project, .. Chrl+3
Introduction
Clic on Next.
T =
Tntrocuction
The Pdows Fraoct Wiard b viou conabs 4 new peaiect and prolininery peaiect settngs, ndudiog He Folloeng
- ramel nare ared drediay
- ‘aara cf ta bop-le=sl cesign andey
- Frorimct Plass i Mbawris
- Lt chvics Loy anvd dervics
- ot
Yemynar chaeg U sedaen o et sy pd M, - s wo® L St cormesard | fnsigreenia mevsl. You canue
ta 34 of tha o
T Dont show wa e ntrodhetion, ager
|[et Pt cans e

17

Project Name and Directory

In school, the entire project must be on your H:\, eg. H:\MAXwork (at home on C:\, eg.
C:\MAXwork)
Name: codelock
Top-Level Entity: codelock
(Note! the name code lock must "match™ the name you later on specify as entity in
your VHDL-file)

Proceed with Next.

4 Mew Project Wizard A x|

Directory, Mame, Top-Level Entity [page 1 of 5]
Veltuat: k= thee weorking dieechory for this prosect?

e il

e b thes nanes of bl proech?

|r.1‘|mn|'r _J

Wiraak i thes e of e bog-bresl desigrs sntity for this progect? This ranes is cose serediee snd must scacky mabrh e entity e in e dessign il
[ecctaicet. e

WLk Eaisting Perogect Settings...

:m|mmﬂ1 cm]lﬂ:]

Add files
We have no files to add to the project, so we proceed with Next.

EEITT =
Ak Files: [page 2 of 5]

Sedac thas chessign Filss wos ko inchuds inSe: praject, Cldk Add All in add all design Fles. in the project dractony o the prosest.
Ficte: o i shamrys s dasign fies Lo the promd: leter

P raswrec | [

Fis Hyrwe | Type [bvmy [Cospn Entrpprihasis Toed WA version

L

Spscify tha puath rewss of srw non-deld Brwiss. Ler Librariss... I

apak || et Frah L o |

Family and Device Settings
Here we specify which chip we intend to use during the lab.

Family: MAX3000A Available devices: EPM3032ALC44-10

Proceed with Next.

18

EDA tools setting
Here you can create context with software tools from other vendors. We will simulate with

the ModelSim program but that we need not enter.
Proceed with Next.

cha P this; ol st tacsly o ihesize ths navent design
Mo P gate-brvel snulation ity aftur
Bk | W Al this beand muearastionly sftar

S Inkegrity
Boundary Soan

JUi

Summary.
Here you can see a summary of your selections, exit the "Wizard" with Finish.

19

The project has been created

. Yuarius [- HyPMAKwork codelod - codelod

Fla Bt W Projed Rssgewenis Proteisng Tods Wrdes FHep

IDSHE S w0 | <] 1Y S FED T D e

Prorject Marvigator a8 x

WLCDNL: EFMNIE,C44-10
* ook

B ey | T P | o Dmsign ks |
Tasks & x
[S Fm———

VHDL-code

[enew

N Cliartiis T Project
SOPC Eulder Syshem
=1 Dsign Files

AHOL File
Edock Diagram'Schamatic Fils
EDMF File
State Machine Fie
SystemVerilog HOL Fie
Tl Fili:

Weriog HOL Fils
= Miniry Filkes
Hezcadecimal (Intel-Format) File
Memory bebabzation File
= Verification D bugging Files
TneSystem Souroes and Probes Fle
Logic Analyzer Inkerface Fie
Signallap 11 Logic Analvzer Fie
=i~ Cither Files
AHIL Inichce File:
Black Symbol File
Chesiny Do npioh Fle
Syriopsys Design Conshraints Fie
Test File

o |)l | e

£

Create a blank file for VHDL-code. File, New, VHDL File.

Copy the Template Tockmall .vhd and paste it in Quartus text editor.

20

library IEEE;

use IEEE.std logic_1164_all;
use IEEE.std logic_arith.all;

entity codelock is

port(clk: in std_logic;
K: in std logic_vector(l to 3);
R: in std logic_vector(l to 4);

q: out std logic_vector(4 downto 0);
UNLOCK: out std_logic);
end codelock;

architecture behavior of codelock is
subtype state_type is integer range 0 to 31;
signal state, nextstate: state type;

begin

nextstate decoder: -- next state decoding part

process(state, K, R)

begin

case state is
when 0 => if (K = "001" and R ="0001") then nextstate <=

else nextstate <= 0;
end if;

when 1 => if (K = "001" and R = "0001') then nextstate <=
elsift (K = "000" and R = "0000'") then nextstate <=
else nextstate <= 0;
end if;
when 2 to 30 => nextstate <= state + 1;
when 31 => nextstate <= 0;
end case;
end process;

debug_output: -- display the state

q <= conv_std logic_vector(state,5);
output_decoder: -- output decoder part
process(state)

begin

case state 1is
when O to 1 => UNLOCK <= "07;
when 2 to 31 => UNLOCK <= "1°%;
end case;
end process;

state_register: -- the state register part (the flipflops)
process(clk)
begin

if rising_edge(clk) then

state <= nextstate;

end if;
end process;
end behavior;

21

Fhr*mhﬂlwﬁm\u J\kw\r\dm—v;

IDEEd & 1hn nﬂ-l!—e jl_?f@w@m-w'am "l

B wme aj

AT EE 4B ARR 1D B o«
| libzmry TEEL:

uss TEPE,srd logleo_tied.alll j
urs TEEX .wtd_logic_mrcith.wli:

Hanticy ook im
B porcd ol 1h aud_logic)
K: in acd logic_wvectoril to
s I ux

e T =] = moe-
-l
by [oz
-
-
Wy Gl
-
-
Riphakacd: [ZTEES wudeimch. v - &
e : L A5
Exmmppe [UHDL FEsiT ond " ord) B Cocsl

R aud b iy parvend peogeat:

Note that entity in the VHDL-file must "match" the project Top Level Entity!

Save the file: File, Save As and as VHDL-file. The name could be codelock.vhd (or

another).
Add File to current project shall be checked!

Analysis and Synthesis

Duartus 1T - H Prowate MHMASwork foodelock - cedelock

Pils Eckt Wew Froject Assignments | Procsssing Took ‘Wirdow Help

u O ﬂ ’l 5 [-‘E-E & Ston Frocessng e $5heE4 ”E? ra @_g@_:ﬂ_l:i l'_lb_!_h_"ﬂl
Frepect Kanigstor B Shat Covpdation L a |
=y %momm ABABR 1T B E »
. codelock vhd B Start Arskeis & Elaboration
R - -
& Compelation Report SHE BT St Pentition Mange
Dvawachy B rte [Do 11 popurstay Poves arsyoer Too B2 Stat Fittes
Tesa 3 S5 Anszer Tod " Start ssember
. - P "ty Start Terelumst Tewng fnshezwe CirkeShit+ 1
Flom: |Compdation = m_l @ *dh Start EDA Netist veriter
[_:i i 8 Start Design fssstant
- 11 end VHPL
[5% S G = B St PovssrPlay Power Analyosc CirkeShit e
- - W Anskek B Synthess : Liﬁ et Flacchites " Stat 534 Anshaer dl
b 'ﬁ Start: SignadProbe Comglation CirlaShilt #5
& “’F=|ﬂ'=ﬂ==ﬂ"= . Stark 13 Assionment Andyzis]I
B Start Earky Timing Extimate
5 Start Crack & Save Al Netlist Chareges
if
;Muumuuumnuumumwwm Stait Taik Berah Tartolokn Weltar 1]

When you have new code, it is unnecessary to run the entire tool chain - chances are that there

are errors along the way ...

22

From the start you only do Analysis & Synthesis.

22| G coaeidone ia *E'mﬂmnmutﬂ
L]
I . Table of Conbanis
& TN, EPATIOOEELC - 10 ﬂ = x
o & Seliing
Fl o5 | _.rl I Fices Mo Def sk Ghabad Sasttings
1M Fices Bapand Tare:
% ety Fits | o Designiints 1M Fices 15 Surwnary
— B Fowiog
Tk X E] Ansheis b Sprthesis
=
[k T
L= Compls Desgn x
' A B Ensbis B Sarthesi i Bnabpuy B Symitemi e rcensful
4| |
x|
H e =]
W@ B Info: Inplemented 23 dewi UFEES [Lan che final rESOUEcE COURT Emight
Hm J,.- Info! (roarcws IT Amalysis ‘Eh-nr.:nta:l.a was agtcesafal. O errors, O warnings
fova ™ o0

Start Compilation

»

1T - 1, Privat e /Miciwork codelock - codelock

Fili B Wi Projped Assghments | Prooesdng Took Window Heip
DB & B ©ombenem i 45

ST TE |
MY 7 SESITI» ¥ DD

[Enezey ¥ | Arsbyrn Currect T

iy PHOCCRNA: [PMIIEALC$4-10 At i
=l mcelack Lipciabs Mersory Indisizstion File
J| | & compation e chie

iy w [B Fes | pesy s sy Tael

Tasks I S5 Sk Tod

*
& | Tvpe | nemmage

Info; Impl=me=nted 23 device respurces after synthesi= - che final Tesource count might
Info; Casrtus I1 Amslymis & Synthesiz was muccessful. D ercore, O warnings

Start Compilation runs the full tool chain.

23

i Quartus 11 - M/ Private HAdwork, codelock - codelodk

Fib= Ede Wmw . Froject Gssignments - Procssang Tooks Wndow - Help

DFEDP S| & BB o oo de¥ sr@€@ T »¥ 0O -
Praject Havigator B % | F codekckwbd | © Conplabon Regont £
Tabie of Contents
m L] o= e
i MAXI0004; EFMI032ALCH-10 :I =::
B 1 = Settings
4|“ todsioc. { L'J BB Fiow Mon-Default Global Settings
B0 Fiow Elagsed Tire:
Ay Fsearehy | B Fies | P Decgnings | B0 P 05 Sy
e B FiowLog
Tasks B x| -] Anshrsis & Syrthesis
B
Pl [Corcan T | Esps
—1 | B] Tmeuest T Anaher
Tk Quartues 11 S
w' = P Compils Cesign .
w E ™ ariabysis B Syrkhess \y {Full Compilation was successhl (3 marnings)
| 1] | L] |
_ 1
== (=]

Bl Infor Quartus II 1T L sful., 0 =ccors; 3 wACnings
i) Infor Quartus IT Full Compilaticn oss suocessful. O errora, 3 warnings

The 3 warnings (moore with other program versions) are about "software tools" that are
missing in our program version but we don’t need them.

24

] L

Pin-planning in Quartus %S

The lab code locks has different wiring. MAX chips must therefore be programmed
differently to fit the equipment.

Quartus has a Pin-planning function. Either you can let the compiler choose pins for the
various signals - And then adapt the wiring after this, or the wiring is determined in advance
(which is the case here) and then you have to self pair signals with pins.

Z

Start Pin Planner. Menu Assignements, choose Pin Planner, or by clicking on the icon for
Pin Planner.

You write the pin-number you want to assign in the column Location. Double click in the box
to get a list of possible pins. In the column Fitter Location shows which pin the autofitter
function has selected - but it is usually possible to make other choices yourself.

& Pm Plarmer - He AR work feodelock - codelock [

Fie Edt Wew Processing Tool ‘Windos

= & x

= AT

& Hode Hame | Dretion | Loason ¥o: 3 b O

| & e.9) It G [¥e »

(k|5 & q4.0] | Cutput Group Tep ‘i 8)

@, & iF 2[1..4] | trput Group) "

@ AN QIoupE R = g %“

x] 8 u

T W O n

: w) RAACHIS0A (;}. 3

_= :: "E} PRI AL 44 1 %:

: TOTOVATITID

&y I i -

e : haresd:| * .'.lﬁhl' o[Jrma] =

&b Hods Narie | oweton | tocation | Resewed | =

=) i ok | inprat | PN _43 =

A X0 [Ingna I

e iz] | Ingrat

A [UE) | Inprat 1] |

5 BT | Dukpr]]] =l
| T

25

In the pin planner there is a picture of the pin layout for the selected chip, and a list of the
variables/signals that has occurred in the VHDL code.

MAX3000-chip has 44-pin. Some of them are occupied for supply voltages. Often MAX
circuits are used to connect digital equipment using different supply voltages, but since we do
not have such needs, we have linked all those pins to the same supply voltage + 3V.

Other pins are used for chip programming, they are connected to the so-called JTAG
connector (TDI TMS TCK TDO).

There are two clock inputs, one enable input and one reset input. Pin that are not used can be
left unattended because the compiler makes sure they are disconnected.

Total remains 26 user defined pins, to freely use as inputs or outputs.

Connections to the lab breadboard symbol_|Pin Type
(_J User TiO

The keys on the keyboard are arranged as a matrix with four rows =~ @ User Assianed 10
o Fitter Assigned [0

and three columns as a total of seven lines, connected to a DB-25
connector. The output signal is one yellow LED, and five red LEDs
used to present the code lock internal state.

Unbonded Pad
Reserved Pin
DEY_CE
DEY_CLR
CLE

TDI

TiCK

™S

T

WZCINT
WZCIO

GMD

@O

| Il_.[m

8,

male oo "-"_n IR K1 R RO B2 R
|+1.-
1 1

o i

3 5 =, 52
i CLR H2LZoE B é =] g = 44 OE
1 CLK2 Ay 43 CLK1
3ovee o OOOMNN®ELIN OO 42 OHD
1 1o 7 {7 Dweuw | 410
500 _ e 40 10
T we) Tob Vi (y=mTo0 | w0
7 TOI 10 s O op View) # w0 38 TDO
8 10 =i = 37 10
T GHD Y,/ Y ®GND | 36 oD
10 GHD W 1 () Jo s vee | 3 vee
1 1o 10 1) 30 10O 34 10
1210 /\) = 33 1O
ame | msodl MAX3000A Q@ |3k
14 L0 o i () Cymorek | 3O
O (y 2 TCK
15 ¥C© v =1 0 GHD
16 10 i . L 0 10
D e EPM3032ALC44-10 N/ o anp | 2 10
18 10 I A 77 10
H T Iy i 2
19 110 GHD 17, I 26 10
20 10 elelelerviiNelelslele 25 10
Ao WO N OB M5 W3 2410
12 GND o o o 5 ee
228848 § 2285

&. o | - | Tws [Too | Tk
> ' GMD| - | - |voco|GhND

26

MAX-chip is contained in a TQFP-44 package. To use the MAX circuit on a breadboard, we
have acquired an adapter, a breakout-board, which has pins positioned as a DIL-44 chip.
The figure shows the pin placement on the MAX-chip and on the breadboard.

MAX-chip has many voltage connections. You can take them to help orient you on the

breadboard.
(3 VCC, 10 GND, 15 VCC, 17 GND, 22 GND, 42 GND, 36 GND, 35 VCC, 30 GND, 23

VCC.)
Lab assistants has access to facit-Files for the different lab equipment versions.

With them, we can quickly rule out possible problems, eg. if you have entered the pin
numbers incorrectly.

27

S L

Chip-programing with Quartus Zhs

Choose chip programming equipment - USB-Blaster

2
P _ N
asaa;ﬂi.,e 0 «
T Ea

JTAG
[T - Tmws[moo]rex]
[esn] - 1 - [weefono]

Connect the USB blaster to your computer. Connect the USB Blastern JTAG connector to lab
equipment. Note! The lab equipment's voltage shall be off when plugging in or unplugging
the JTAG connector. Lab equipment's voltage must be turned on when you program the chip -
USB power alone is not enough for this.

&

From within Quartus, select the menu item Tools and Programmer, or you clic the icon
Programmer.

huhmwhﬂnmmﬂ

DFED & & Gm - Furs EZoh Sammsation Took
s s B T v Tl
B Lt P St Lbesry Compde
Enty | - R Expler

By MDA [P

Opara & Programmes sinckes Hw-:un-
" tdSoph...

Clrtomas
(e
Lenras Sebp. ..

28

In the window Programmer you clic on Hardware Setup in order to select the USB blaster
as the programming equipment. (The computer then remembers this setting)

i3 Programmer. - C:

File Edit Wiew Pro

[é; Hardware Setup.,]

In the window Hardware Setup there is a list of "Available hardware items". There stands
USB blaster. (If not then you may have forgotten to plug it?) Select USB-blaster and clic
on Add Hardware.

Now the USB-blast should be your "Currently selected hardware". click on Close.
Quartus will remember your choice, so probably you do not need to repeat this one more time.

> Hardware Setup

Hardware Settings | ITAG Settings

Select a programming hardware setup to use when programming devices, This programming
hardware setup applies only bo the current programmer window,

Currently selected hardware: ILISE-BIasI:er [usE-0] W

fvailable hardware ikems

Hardware SEFVEr Port Add Hardware, .,

IJSE-EBlaster iLocal IJSE-0

Remove Hardware

Close

In the window Programmer you can see what hardvare (chip) that is selected.

2 Programmer, - C:/MAXworkicodelock - codelock - [codelock. cdf]
File Edit Wiew Processing Tools ‘Window Help &)

-
Hardware 5EtUF'---]ﬂI_ISB-BIaster [USE-0] | Made: |ITAG v

29

Download the code to the chip

A Progr e W SAEmerk oodeiock - oodelork - [oodelockedl]) 0

| (% addFie... |

The compiled program is in a * . pof-file. Browse to it with Add File ... (itis probably in a
subfolder output_files) and choose the file.
The compiled project name is now in the box File.

Check Program/Configure and Verify. In the picture with the chip there is now emerging

symbols of your choices.

It is possible to program many chips in the same equipment. The picture then shows a daisy
chain of the chips that can be programmed, one at a time with different code.

=] [=]

o En:! f [g “;En': o

TOI g &

o b :

o [=]

=] [=]

=] [=]
oooooooono
ERMI0G2AL44

DO

il

TDO

TOI

»

Eaﬂ f [g "; Enh

DD

EPMZ052AL44

We only have one chip, and you start programming by clicking on the Start button.
Attention! Do not forget that the power to the lab card should be on during programming!

30

e IE AT ek ockelogk o dodebih - [oadeboiiod]

L vwderrn setip...| [mmm 0] Modes [Fiz B I
™ Ervable peatime 15525 alow backoround progrimvers ffor MAK [and B4 ¥ evices)

Coa D

é(

2 Programmer - He™Maxwork codelock - codelock - [oodelocd.cdl]
Fila Edit Viww Processing Tools Window

& e St | (RS e [0 =] rogress: [100% Guccassiil)

T Erakiy real-tires 159 o aows background pecsgrasseniee (for MAS LT and MAX ¥ devices)
I Fie Deervice Chescksum Liseroods m Werfy
edekocl EPMIN3ZALA4 OMOGEITS FFFFFFFF W =

P st
[|

Try twice if it does not work - then contact the lab assistant.
The most common problem is a bad battery.

31

sy

Simulate with ModelSim Z=

/AN

ModelSim - simulation software

ModelSim can be used to simulate VHDL-code, to determine whether it is "right" thinking.
The Altera version of ModelSim is also integrated with a "database™ with facts about Altera-
chips, eg. MAX-chips, so one can also do simulations that take into account the "time delay"
and other phenomena within the intended target circuit. (As long as the target circuit is of
Altera's brand ...).

—

[-] Modelsim ALTERA STARTER EDITION 6.6d - Custom Altera ¥ersion

Select the correct software version - in school there are several
versions installed in the Start menu!
Altera 13.0.1.232 Web edition\

ModelSim-Altera Starter Edition 13.0.1.232\
ModelSim-Altera 10.1d(Quartus 11 13.0spl)

Start ModelSim.

i =k

[z - s e |) = o i
(O-dRaeE @ -u&%u|¢*ﬂﬂ“ﬂhgjﬁr
I Lavast [Uabeaign wl || Cohenleves [Li1colueea -

LT Tipe Path

sl vk Lbrary E-lamrag'| 1 werh.

vl e T e BACDEL_PECHY. Laler o el i 2 Dwnindel

vl 2200t Uemy SMODEL_TECH). Loherybvrbogiiiin

- t::: O ot r— BT]
: i o Model il Welcome to version 6.6d

' L LRy o

il dwra i | Tl release wses the following beensmg versions:

vl dhera_ver | FLEXmet vI0.8 5

vl thoch | Mewter Graphic: Licensmg MSL w2009 2 wath

el mon | BIGLS +87_4.2.0 and PCLS 2009 268

il Shgh v -

i e | ok e

iy L A |

L i" ot | Access coinpiehensive ModelSun doctmpeitation

e Select Help - MaielSim PI'F Bookcase

R AR

M e Z_

M s b = =
My gpn; T Dot ahema Ui disicg agan uﬁwhwm?1 Jumpstart I caia|[48]
§- rearacrig HdA
¥ Bmadizg C:/alteza/ll.0/modelsis_sse/tol freisipeet, kol =

=)
[k Dot Lot |

In the window "important information™ you click on Jumpstart to get help with setting up a
project.

32

"] Welcome to ModelSim

o b

Welcomne to ModelSim

MlodelSun Frojects contam smmlation detals hle

compile settmgs, source files, or bbranes. The Project
Manager also lets vou mehide references to shared

global files. Start here to create a new RModelSum

project, I

* Open a Project
Y our most recent project 15 opened when vou start =]
dmel

Then you click on "Create a Project” in the welcome window.

[7] Create Project x|

— Project Mame

Masin

—Project Location

|H: SR ok Erowse, ..

—Default Library Mame

|t-1|:| rk

— Copy Settings From
|D,-“m|:| delsim_ases/modelsim.ini Browse. ..
* Copy Library Mappings ¢ Reference Library Mappings

oK | Cancel|

Create a project.

Project Name

MAXsim can be a suitable name
Project location

H:/MAXwork browse to the same folder you used for Quartus.
Default Library Name

work keep the suggested name, it's the standard at VHDL-simulation

Klicka pa OK.

33

Iﬁ]‘.ﬂuh:l items to the Proje
Click on the icon to add items of that type:

[]

Create Mew File Add Existing File

[7] Add file to Project | x|
— File Mame —
|H:,-’I-[A}Cwnr}:,-’ccudeluc}:.vhd IErnwse...]
—Add file as bype Falder

|default ﬂ |T|:|p Lewel ﬂ

f* Reference From current location i~ Copy ko project directory

(e | Cancel |

We choose "Add Existing File" to add a VHDL-file to the project.
"Browse" to the file codelock.vhd that we created earlier with Quartus.

Clic on OK. Then click on Close.

Codelock code in ModelSim

IE]'r'~1||:u|:|||3|5in'| ALTERA STARTER EDITION 6.6d - Custom Altera ¥ersion

. =18 x|
File Edit Wiew Compile Simulate Add Project Tools Lawouk Window Help
|0-= @ azsE|ecsan| 2l %
J Lavout [HoDesign b J ColumnLayout [411Colunns

Order |Modified
WHOL 0O 0921011 100514 PM

M Library Ilﬂl Project ~€| ?'l
Fl Transcripk FES H A X
Reading C:/faltera/ll.0/modelsin ase/tcl/wain/pref. ol ;I
Loading project Miksim

ModelSimn =

-

| |F‘ru:-jeu:t : MAXsim |::N|:| Design Loaded = ,§

ModelSim has a own compiler to produce the code for simulation. Though we have
compiled the VHDL code in Quartus we must now compile it again for ModelSim.

Mame |Statu5

IE codelack, vhd

Choose Compile menu, alternative Compile All.

34

Marne |Status |
codelock, vhd

Now the VHDL-code is also compiled for Modelsim.
Status symbol changes from a blue question mark to a green check!

Simulate codelock-template!

first digit
released

first digit
still pressed

waitfaor

first digit the lock is open

for 30 clock pulses

We simulate by giving different commands in the Transcript-window, and then follow some
selected signals in the window Wave.

Transcript-window is a terminal window where you enter commands, but you can also give

most commands by menu selection, or by clicking on buttons. Commands are always written
in theTranscript-window, regardless of how they are given.

Load the Design to simulator..

Choose the tab Library, and open the folder work. Doubleclick on "Entity" codelock. A
series of commands are now executed resulting in that the design is loaded into the simulator.

1, Library e . H2
T‘IName |Ty|:ue
— il wark, Libraty

(3 codelock,

+h) 220model Library
| | 3

IMLiI:urar';.-' ¥ Praject | &2 sim

In the Transcript-window you can follow the commands executed.

35

B Transcript =100 x|
File Edit Wiew Window
= Transcripk

Compile of codelock.vhd was successful. ﬂ
Modelsim> weim work.codelock

waim work.codelock

Loading std.standard

Loading ieee.zstd_logic_ll6d({hady)
Loading ieee.std logic_arith(body)
Loading work.codelock (behawior)

WSIM 1582

w L4

Prepare simulation

We need to have a number of windows open in order to follow the simulation.

Vigw Compile Simulate

Give thees commands in Transcript-window ~ . by

or check in the View-menu. v Locals
VSIM> view objects v Ohjects
VSIM> view locals v Process
VSIM> view source v Project (x)
VSIM> view wave -undock v Transcripk

W Wave
Hdl x|

Modelsim consists of "windows". It can be hard to see everything at the same time. With the
button Zoom/Unzoom you can enlarge the window. With the button Dock/Undock the
window can be moved to any location, it is that alternative we choose for Wave-window.
With the button Close those windows not needed for the time can be closed.

Signals in Wave window
If you have many signals, it is a good idea to select the signals you are interested to follow
in Wave-window, but this time we choose to follow them all:

add wave *
There are several ways to add signals to the Wave-window:
o Select signals in Object-window (Shift+Left Button) and "drag and drop" the
selection to Wave-window.

e Right-click in the Object-window and choose Add to Wave.
e A Add to Wave dialoge-window is reachable from the menu, Add.

36

add Objects Tools Lawoub Window

To Wave Selected Signals
To Lisk ¥ Signals in Begion
To Log » Signals in Diesign
To Dataflow #

Window Pane j J ﬁ ﬂ I

Mame Yalue

Format, Radix, Hexadecimal

File Edit W%iew &dd | Format Tools Window
Global Signal Radix. ..

Forrnak
i Svmbolic

Binary
Qickal
Decimal
Unsigned
H Cirnal
aao ASCIT

Color. ..
Height. ..

0ooo Time
FEixed Paint. .,
Default

The state variable q has 32 different states, such a variable is easier to follow if it is presented
as a hexa-decimal number, 00 ... 1F instead of a binary number. We therefore suggest

that you check the variable and change the presentation to hexadecimal. UUUUU is exchanged
to XX in the Wave-window. Other variables are best suited to be presented as binary numbers.

Create stimuli

WSIM 3> force codelocksclk 1 Ons, 0 1l0ns -repeat Z20ns
WasIM4> force codelock/sk 000

W3IM5> force codelocksr 0000

W3IMe> run 100ns

The default time resolution in Wave is nanoseconds, ns. A suitable clock frequency for a
code lock may however be as low as 5 Hz, or a period time of 0.2 sec.
The easiest way, of not having to make extensive adjustments of the program, is to "scale"

37

our problem to a higher clock speed with a period of 20 ns. We then has to imagine that there
are fast fingers that press the keys!

T=20ns
=H0MHz

10ns —

L L

10ns

Stimuli, Inputsignals as clock pulses or key-presses, are created with the command force
in the Transcript-window.

force codelock/clk 1 Ons, O 10ns -repeat 20ns
Generates clockpulses for ever.

force codelock/k 000
force codelock/r 0000
Initiates variables r and k.

run 100ns
Runs the simulation in 100 ns, which is five clock cycles.

Simulate keypresses

Press "1" Release

ﬁ Lock

force codelock/k 001

force codelock/r 0001
run 30ns

force codelock/k 000

force codelock/r 0000
run 800ns

30 ns (20+10) means that the keypress is certain be in the gap between the clock edges. The

full simulationtime 100 ns +30ns + 800 ns = 930 ns corresponds to 46.5 clock pulse periods.
This is enough to show the lock's entire opening sequence.

38

Do-file

Transcript-window, you can run many commands in sequence from a Do-file.
Alternatively, you can copy the text in Windows (Ctrl-C) and paste it (Ctrl-V) in Transcript.

delete wave *

add wave codelock/clk
add wave codelock/k

add wave codelock/r

add wave codelock/q

add wave codelock/unlock
force codelock/clk 1 Ons, O 10ns -repeat 20ns
force codelock/k 000
force codelock/r 0000
run 100ns

force codelock/k 001
force codelock/r 0001
run 30ns

force codelock/k 000
force codelock/r 0000
run 800ns

[7]ModelSim ALTERA STARTER EDITION 6.6d
|Fi|e Edit “iew Compile Simulate Add Library Tools Lawout Wi

u:ulu:ler I‘x P Wk BEE Bh M
Source MHOL

 Werilog
G Swskemc

| Systemierilog

This is how to create a Do-file. Paste text commands above in the file. Then save it among the
other files (in MAXwork) with extension .do.

You run a Do-file with these commands (in Transcript):
restart -f
do lock.do

Find in the Wave window

IniipgigiginininigininininEaininiginlainininl
000 jool jood
0000 joodl jo00d
o0 [jo1 o2 s jo4 Jos o 0F Jos 09 foe J0B J0d oo foE JoF Jio fiif J1F

00 ps 30000 0 ps

It can be difficult to find what you are looking for in the Wave window. Therefore, there is a
whole series of tools like Zoom, Expanded time, Cursors ...
Add, Cursor.

39

File Edit “iew | add Format =~

Divider...
Breakpoint
Bookmark. ..

ijci-”EI-

A Cursor can be used together with the function Edit, Wave Signal Search.

File | Edit “iew Add Format Tools ﬁ\h‘a\re Signal Search {window Wave)

B Zuk kel
Copy ChrlHiC
Paste ChelY
Delete
Wave
Edit Cursar,.,

Delete Cursar

—Signal Mamels)

sim: fcodelock/g

Delete Window Pane
Remoyve Al

—Search Twpe
(& Ay Transition

i~ Rising Edge
{” Faling Edge

¥ Search for Signal value Yalue: |X"EI?"

" Search for Expression Expression: |

Builder

Select Al
Unseleck all
Expand

Find... Chrl4+F

]EM-H ITF-!IT| I| . E

: Signal Search...

—5earch and Match Count Opkions

" Search until time:

¥ Move active cursor ko location of match

{* Search until EMD of data. Skop after (L mabchis)

i

Search Forward

Search Reverse

Stop Search

Done

Now the Cursor points what happens (this time nothing special!) when q has the state 07.

Spend a little time now to try different tools available for orientation in Wave Window!

The simulation has shown that the lock opens to the intended key-
press, but this is not enough - There is need for more *'testing"’
before one can trust the construction!

40

N L

Testbench in ModelSim Zis
Select the correct software version - in school there are several
versions installed in the Start menu!

Altera 13.0.1.232 Web edition\
ModelSim-Altera Starter Edition 13.0.1.232\
ModelSim-Altera 10.1d(Quartus 11 13.0spl)

Start ModelSim.

“pebunde Bbers AL TEHA % DAJLTER. ELN T 10M &l - Dusbomn ARieras Veraion

Fia B hew LCoWps Daniiahs A0E L Dbols Lapbul SWWalDw

ST REL =E ﬁt‘bu]]ﬁmﬂﬂ[l X ol Bl A

[P T rer—— wl || Cohenlevs [L11coumea

]

il ek ubrary Colaberadl1 Ghwerh
4l e Uwary EMO0EL_PECOH latenahdiZiiwds
“‘ 22wl wey Ly FACDEL_TECH]. Lol edagveribogiil. ..
sl e
“'al-w IO e et nkeemation B
Sl Model 0. Welcome to version 6.6d
L}
+-lll e o Tlus release uses the follovang heensmg versions: =
-l e FLEXmet v10.8 5,
ol et Meter Graplics: Licensing RSL v 20002 vath
ol Ft BIGLS v8.7_4.2.0 and PCLS 2009 268
il Shgh v -
i e PRk
ol g _hem
il wwag:_fum Access coinpuehensve ModelSm documnenitation
= Helect Help - MaodelSim PIVF Bookease
eIy ;I_'l
:ﬁm iru: 1 Jdumpstart I hrim 'ﬂﬂ
HdA
FSultazell.0/aodelris axe/bol fraimdprel. Bcl _:J
! |
b Do Lt [i

Klicka pa Jumpstart. This time we choose "Open Project" for continue with our previous
MAXsim-project.

" welcome to Modelsim g x|

Welcomne to ModelSim

= Create a Project

loadel S ij:-,t-; contan somilation detmls hlze

n.on:q.'ll]l'.' ‘.-:“fl.llﬁb sorce files, or hbranes. The PI{IJtut
Manager also lets vou mehide references to shared

global files. Start here to create a new RModelSum

project. I

s Open a Progect
Y our most recent project 15 opened when vou start =]
l.‘_hsul

41

Testbench
In addition to the VHDL code for the lock, we now need another VHDL file for the test bench
code.

ﬁMDdElSin‘l ALTERA STARTER EDITION 6.6d - Custom Altera Yersion

File Edit Miew Compile Simolate Add Project Tools Lawouk SWindow

Ealder B = J
; M
Dpen... Source m YHOL I |
Inad... Prriert. .. PRI e

Create a new empty VHDL-file. Copy and paste the content of the file
tb_lockmall.vhd and then save the file using the same name, tb_lockmall .vhd,
among the other files in the project.

Alternatively, you can copy the file tb_lockmall .vhd to the folder with the other files
of the project.

B th lockmallvhd (& th_lockmall.txt)

Add the VHDL-file to the project

| Project Tools Layout ‘Window Help
Edt 5 || v,
Execuke
Add to Projeck Existing File. ..
[7] Add file to Project x|
— File Narme
|H: AMdmork/th lockmall.whd Browse. ..
—Add file as tvpe Folder
|default ﬂ |T|:|p Lewel ﬂ
{*' Reference from current location " Copy to project directory
[0]4 | Cancel |

The project now has two files. The file tb_lockmall .vhd is not compiled yet, which can
be seen on the blue question mark.

wwg Project - H: (MAxworkMAxsin

Mame Status |Type | Crder

i tb_lackmall, vhd '? YHOL 1
i codelock.vhd + wHDL 0

Choose the menu Compile and the alternative Compile All. Now the file is compiled
tb_lockmall .vhd. By the content of the file we can see that it controles the other file
codelock.vhd, so that's why it gets the highest order.

42

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

|Name |Sl:atus |Ty|:ue |Or|:|er
A tb_lockmall.whd « WHDL 1
A codelock, vhd « WHODL O

Load the Design to the simulator.

We want to test the bench messages to appear (as arrows) at the top of the Wave-window.
Therefore, we write in the Transcript window:

vsim -msgmode both -displaymsgmode both tb_codelock
Then add the signals in the Wave-window.

add wave *

Start simulation

In the file tb_codelock.vhd you find clk <= not clk after 10 ns;. It
creates the clock pulses with a period of 20 ns, as we used before.

T=20ns
=H0MHz

10ns —

L L

10ns

We can immediately start the simulation with the command run 3us in the Transcript-
window. The time 3 ps sufficient to try all possible key-press combinations.

In the Transcript-window we can read the encouraging message Note: Lock tries
to open for the right sequencel.

In Wave-window choose View, Zoom, and Zoom Full and then you can see the entire
process.

L]
T

The green arrows show the when the desired event happens!
Now exit the simulation.

Simulate Add Library Toaol

Lesign Cpkimizakion. ..

|
_ Stk Simulation. .. L P e
Runtime Options. . E “_./ Are wou sure wou wank ko quit simulaking?
= Rum 3 E :
Ereak: de 1 |

End Simulakicn

43

Reveal the wrong code!

g Project - Hi iMAKwork MAxXsim o A HiMakworkicodelock, vhd S
Mame Status |Twpe [Order |Modified Ln# |
ﬁ tb_lockmall.whd \(YHOL 1 092611 1 likbrary IEEE:

-ﬁ codelock, vhd WHOL 0 09/z1/11 2 use IEEE.std logic 1164.=l1l1;
3 use IEEE.std logic_arith.all;
4
5 entity codelock i=

o s I » E5

Jil Library |ﬁ| Project | ‘él ?l 1 tb_lackmall,vhd I M cndeluck.vhdj

Now we need to in Project window, double-click the file codelock.vhd so that it
appears in the text editor where we can change it. Copy and paste the content of the file

lockmall_with_error.vhd. Then save the file under the same name as before and
recompile everything.

@ lockmall with error.vhd (E] lockmall with error.txt)

Simulate in the same way as before. In Transcript-window you can read the message from
the test bench when event happens!

The red arrow in the Wave-window shows when/where the undesired event happens!

LA
nn

VHDL-test bench file

You do not of course be able to write a VHDL Test Bench file after a short first course on
Digital Design. Still take the opportunity to go through the file and see if you can understand
how it is intended!

Se VHDL testbench file

44

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

VHDL Testbench for ModelSim Zis

Template -program action

The lock opens
when the key 717
18 pressed and
then released.

firstdigit
released

first digit
still pressed

m_raitfo_r_
first digit the lock is open

for 30 clock pulses

Keypad and Statecounter

Good choice of K3 K2 K1

data types makes cik CERUR)
= K[1..9] UNLOCK 1—

the code self- e g

explanatory!

K: in std logic vector(l to 3);
R: in std logic vector(l to 4);

123 1234
K ="001" bitvector R ="0001" bitvector
K(3)='1’ bit R(4)='1" bt
43210

Statecounter: g ="00001" bitvector
q(o)="1’ b1t

45

This code 15 given 000
library IEEE: e @ @

use IEEE.std logic 1164.all; cutput decoder: -- cutput decoder part {7] (5) o
use IEEE.std logic mrith.all; process (state)

begin
entity codelock is e o o

case ctate ig

port(clk: ir std logie; when 0 to 1 => UNLOCK <= '0°;
K: in std logic wector(l teo 3); when 2 to 31 == UNLOCK == "1°;
B: in std logic_vector(l to 4); ernd case;
q: out std logic vector(4 downto 0); end process;
UNLOCE: out std logic };
erd codelock; stete register: -- the state register part (the flipflops)
process (clk)
architecture behavior of codelock is begin
subtype state type iz integer range 0 to 31; if wisming (clk} then
signal state, nextstate: state type; state <= mextstate;
i end if;
begin end process;
nextstate decoder: -- next state decoding part end behavior;

process(state, K, R)

i -’ H H »
pesic .. At’s easy to see that this is correct! firstdigi
wher 0 == 2f (K = "100" arnd R ="0001") ther nextstate <= 1; FEleaSEd
Sioe Temistate = U firstdigit
when 1 == if (K = "100" and R ="00017) then nextstate <= 1; still pressed
elsif (K = "000° and R = "0000") then nextstate <= 2; PP
i : firstdigit
el:e- r‘.l.Eltstﬂ.td: == 0;) pressed ‘
end if; waitfor 50 '
when 2 to 30 =+ nextstate <= ztate + 1; first digit 0 thelockis open
when 31 = nextstate == 0;
end case; fl;‘rf 30 C|0Ck U|SE'5
end process; @ x D

debug_output: -- display the state
q <= conv_std logic vector(state, 5);

lockmall with error.vhd

library IEEE;
use IEEE.=td logic 1164.a11;
use I[EEE.std logic srith.all;

debug output: -- display the state
q <= conv_std logic vector(state, 5);

entity codelock is cutput decoder: -- output decoder part
port(clk: ir std legie; PFDFESS istate)
K: in std logic wvector(l to 3); Legin cote s
R: in =std logic_wvector(l to 4); caze sSta is .
q: out std logic vector(4 downto 0); when 0 to 1 => UNLOCK <= "0°;

when 2 to 31 => UNLOCK <= "1°;

UHLOCE: out std logic }; -
end case;

end codelock;
‘ end process;

architecture behavior of codelock is

subtype stmte type iz integer wange 0 to 31; state register: -- the state register part (the flipflops)
~) ! 1k
signal state, nextstate: state type; ptDlj:d:s:[l: !
- begin

begin if rising edgeiclk) then

) tate <= totate;
nextstate decoder: -- next state decoding part 5_ = nextctate;
bagin - end if;
nextstate decoder: -- next state decoding part =nd process;

process (stete, K, R) end behavior;

-] L) . . s
Begin Now it’s hard to see if this is correct or not?
wher 0 == if (((R(2)="0") and (R(3)="0") and (K(2)="0") ard (K(3}="1'}) and
not ((not ((E(21)="0") and (R(1})="0") and (R(4)="1"})) ard
rot ((K{1)='1"} ard (R(1)="1") ard (R{4)="0"}})1}}
thern nextstate <= 1;
else nextstate <= 0;
end if;
wher 1 == if(((R({2})="0") mnd (R{3})="0") ard (K(2)="0"} and (K(3}="1")) and
{ mot ((not ((K(1}="0") ard (R{1)="0") and (R(4)="1"})) and
[mot ((K(1})="1") and (R(1}="1") and (R{4)="0"1111})
ther rextstate == 1;

alzif (K = "000" and B = "00007) ther nextstate <= 2;
else nextstate <= 0;
end if;

wher 2 to 30 == nextstate <= state + 1

when 31 == pextstate <= 0;

end case;
end process;

46

Does both expressions mean the same?
(K= "100" and R ="0001")

Is this really the same thing?

(((R(2)='0"') and (R(3)='0') and (K(2)='0') and (K(3)='1')) and
(not ((not ((K(L)='0') and (R(1)='0') and (R(4)='1'))) and
(not ((K(1)='1') and (R(1)="'1') and (R(4)='0"))))))

Someone "promises" that the codeis correct - but
how can you know that this is absolutely true?

tb lockmall.vhd

We need to write a VHDL -testbench

A test bench program can test all the possible key
combinations and report 1f there 1s a problem ...

It can automatically loop through all possible key-presses and
report on whether the lock trying to open or not.

There are 27 = 128 possible key combinations and we'd be
totally exhausted 1f we tried to test them all by hand.

entity — a testbench has no ports

entity tb codelock 1is
-— entity tb codelock has no ports
—— because 1t's for simulation only
end thb codelock;

a7

Some internal signals are needed

signal clk : std logic := '0';
signal K test : std_logic_vector(l to 3);
signal R test : std logic vector(l to 4);

signal prev K test : std logic vector(l to 3);
signal prev R test : std logic vector(l to 4);
signal q : std logic vector (4 downto 0);
signal unlock : std logic;

Our codelock is used as a component

—-— we use our codelock as a component
component codelock
port(clk : in std logic;
K : in std logic vector(l to 3);
R : in std logic vector(l to 4);
q : out std logic vector (4 downto 0);
UNLOCK : out std logic);
end component;

Generate a simulation clock

T=20ns
-— generate a simulation clock f=50MHz
clk <= not clk after 10 ns; 1&_‘_‘_,_*—*
10ns

Instantiatiation and signal
mapping

—-— instantiation of the device under test,
—-— mapping of signals
inst codelock:
codelock
port map (
clk => clk,
K => K test,
R => R test,
q => d,
UNLOCK => unlock);

48

Two nested loops creates keystrokes

process
8 begin
for k in 0 to 7 loop
K test <= conv std logic wvector (k, 3);
16 for r in 0 to 15 loop
prev K test <= K test;
prev R test <= R test;
R test <= conv_std_logic_vector(r,4};
wait until CLK="1";
end loop;

end loop; 8-16=128 turns
end process;

report, severity note, severity error

Tests if state g = "00001 " will be reached by any combination.

firstdigit ﬁ
check: sﬁllprglssed

process (q} first digit

waitlor ﬁl Pies3ed
begin if ((g = "00001") and first digit (‘?
(prev K test = conv _std logic vector(l,3)) and
(prev R test = conv std logic vector(1l,4)))

then assert false report BB
"Lock tries to open for the right sequence!” III
severity note;
else 1f ((g = "00001"™))
then
assert false report
"Lock tries to open with the wrong Sequence!”lll
severity error;
else report "Lock closed!" sewverity note;
end if;
end if;
end process check;

Simulate and find the error!

What else besides pressing the "1" key
could open the lock? 000

ot
. ::

49

	Laboratory VHDL introduction
	Digital Design IE1204 (Note! not included for IE1205)
	Attention! To access the laboratory experiment you must have:

	Introduction
	The goal of the lab
	Attention! Lab equipment is completed. No wires should be changed, not added or removed.
	A VHDL-code lock
	 Preparation task 1 (done before the lab at home)
	 Laboratory task 1 (do at lab in school)
	 Preparation task 2 (done before the lab at home)
	 Laboratory task 2 (do at lab in school)
	 Preparation task 3 (done before the lab at home)
	lockmall.vhd (lockmall.txt)
	 Laboratory task 3 (do at lab in school)
	 Preparation task 3 (done before the lab at home)
	lockmall.vhd (lockmall.txt) lockmall_with_error.vhd (lockmall_with_error.txt) tb_lockmall.vhd (tb_lockmall.txt)
	 Laboratory task 4 (do at lab in school)
	 Laboratory task 5 (do at lab in school)

	Good Luck!
	When you are finished clean the lab desk.

	Bill of materials

	VHDL for a code lock
	Description of the code lock template
	At lab you expand this code to create a four digit code lock!
	lockmall.vhd
	Moore machine
	VHDL processes
	Parts of the program
	entity
	Bits and Bitvectors
	Architecture - define suitable datatypes
	Architecture - next state decoder
	Troubleshooting help - the state is shown with five LEDs
	Output decoder
	State register

	VHDL-program with Quartus
	The project has been created
	VHDL-code

	Pin-planning in Quartus
	Chip-programing with Quartus
	Choose chip programming equipment - USB-Blaster
	Download the code to the chip

	Simulate with ModelSim
	ModelSim - simulation software
	Select the correct software version - in school there are several versions installed in the Start menu!
	Codelock code in ModelSim

	Simulate codelock-template!

	Testbench in ModelSim
	Select the correct software version - in school there are several versions installed in the Start menu!
	tb_lockmall.vhd (tb_lockmall.txt)

	Reveal the wrong code!
	lockmall_with_error.vhd (lockmall_with_error.txt)

	VHDL-test bench file

	VHDL Testbench for ModelSim

