
1

Laboratory VHDL introduction
Digital Design IE1204 (Note! not included for IE1205)

Attention! To access the laboratory experiment you must have:

• booked a lab time in the reservation system (Daisy).
• completed your personal knowledge control on the Web (Web-quiz).
• done all preparation tasks mentioned in the lab booklet.

During the lab you work in groups of two, but both students are responsible individually for
their preparation and implementation.
Booth students should bring their lab booklets. This frontpage is used as your receipt that the
lab is completed. Save the receipt until you have received the full course registered in the
database (Ladok).

Since this is your receipt you must fill in the table with ink.

2

Introduction
This lab is about how to design digital logic with VHDL language and modern CAD software.
The idea is that you'll get a glimpse of how a "Digital" engineer work. VHDL language is a
very complex programming language, and it is not reasonable to "learn" that this brief first
Digital Design Course.
When you solve the lab assignments, you have therefore been given tutorials and template
code on the course web.

The school has several good VHDL courses that can be chosen by those who want to know
more, and who want to work with Digital Design in the future.

The best way to get to know a program is to install it on your own computer. Then you can in
peace searche through menus and help pages, and can take the time it takes to sort out what
you might have misunderstood.

If "computer hassles" threaten to consume too much time for you, you can also find the
programs installed in the school's Windows computer rooms - as a backup solution.

The goal of the lab

• Become familiar with modern CAD software, Quartus and ModelSim.
• Show how to simulate a digital design (a Moore-machine), how to generate input

signals, stimuli, and how to observe the outputs and behavior (ModelSim-Wave).
• Orienting yourself on how a digital technician can write a VHDL "test bench" to

ensure that the construction is completely correct.
• Practice the VHDL-construction of a state machine from a given state diagram (revise

and expand a given template program).
• Practice how to tie together the design "signals" with target chip "pins".
• Show how you program the target chip (MAX3000), and trying the operation in

reality.

Attention! Your lab time may be prior all course elements that may be needed for the lab has
been lectured. You would then have to read the course material for yourself in advance - there
are links to all slides for the lectures and exercises.

Attention! Lab equipment is completed. No wires should be changed, not added
or removed.

3

A VHDL-code lock

Lab task is to construct a code lock that opens to a unique four-digit code, but we begin by
studying a simpler template program, a code lock that opens to one key!

• Preparation task 1 (done before the lab at home)

Install the programs Quartus II and ModelSim on your own computer.

Follow the steps in the tutorial on the course web - Install the programs on your computer.

• Laboratory task 1 (do at lab in school)

Log on to the lab computer. On the school centrally managed lab computers You do not have
rights to install software. Quartus II and ModelSim are already installed. You may not
access the folders under C:\. At the laboratory, you should therefore use your "server" folder
 H:\.

• Create a folder H:\MAXWork\ for the files in this lab.

• Important operating system setup. Show file extensions should be set at all
programming courses!
Windows 7 show fileextensions

• Preparation task 2 (done before the lab at home)

Start Quartus and create a project codelock. Bring the content of the file lockmall.vhd as
the project VHDL-file and then compile the code.
Follow the steps in the tutorial on the course web - VHDL-program with Quartus.

http://maximumpcguides.com/windows-7/show-file-extensions/

4

Read about the template program VHDL code in the description on the course web
- VHDL for a codelock.

Read on how to tie the signal names to specific pins of the target chip in Quartus.
 - Pin-planning in Quartus.

Read about how to use the Quartus programming function with a JTAG USB Blaster.
- Chip-programing with Quartus.

• Laboratory task 2 (do at lab in school)

• Start Quartus and create a project codelock in your server-folder H:\MAXWork\.
Use the content of the file lockmall.vhd as the project VHDL-file and then compile the
code.

• Lab equipments have different wiring! Examine your lab equipment and enter the Pin-
planning table, and thereafter Pin Planner in Quartus.

Follow the steps in the tutorial on the course web - Pin-planning in Quartus

 Node Name Direction Location
 clk Input PIN_
 K[1..3] Input
 K[1] Input PIN_
 K[2] Input PIN_
 K[3] Input PIN_
 q[4..0] Output
 q[4] Output PIN_
 q[3] Output PIN_
 q[2] Output PIN_
 q[1] Output PIN_
 q[0] Output PIN_
 R[1..4] Input
 R[1] Input PIN_
 R[2] Input PIN_
 R[3] Input PIN_
 R[4] Input PIN_
 UNLOCK Output PIN_

5

Description of the pin-symbols se figure.

• When you have completed the pin planner in Quartus so
recompile the project.

• Program the device with the USB blaster.

• Check that the code lock opens when you press the "1" and
then release the key.

• Preparation task 3 (done before the lab at home)

At home, you have no hardware, no laboratory equipment. In such situations one usually
simulate the code to see if it is correct.

The leading simulation software ModelSim is available in a version for Altera's chips. Start
ModelSim and simulate the VHDL-code with the content from lockmall.vhd as VHDL-
file.

6

Follow the steps in the tutorial on the course web - Simulate with ModelSim.

 lockmall.vhd (lockmall.txt)

• Laboratory task 3 (do at lab in school)

Even when having access to the hardware, it is common to mix simulations with hardware
test.

Carry out the same simulation in school that you practiced at home, ie show in the wave
window that the lock opens for "1". Show Your lab assistant your "simulation expertise."

• Preparation task 3 (done before the lab at home)

Design of Digital hardware can often result in the production of an ASIC - An application
specific Integrerated Circuit. It is then often several months of lead time and, manufacturing
costs of the order of several million dollars.

Then you have to be sure that the design is absolutely correct!

(At the lab, we have a better starting point than the ASIC designer. If your design on a
programmable CPLD chip is wrong, You get the chance to reprogram it - again and again.)

As you can see, it is the test engineer who is Digital Technology Hero!

VHDL-language has various tools to enhance the ability to be able to write correct code.

• To reduce the risk of errors when transferring information from the data sheets, you
can use index that runs up or down, to suit the method that was used in the data sheet.

• You has also the ability to create user-defined data types that fit the description of the
construction. One can therefore often write VHDL code that is "obviously" correct!

• One can write a VHDL test bench. This is simulation code that can be used to test
many/all signal combinations that the circuit may be exposed to.

Attention! A test bench is usually a more complicated program than the original design as it
relates to test!

These lines from the template program is an example of code that obviously follow the given
state diagram.

case state is
 when 0 => if (K = "001" and R ="0001") then nextstate <= 1;
 else nextstate <= 0;
 end if;
 when 1 => if (K = "001" and R ="0001") then nextstate <= 1;
 elsif (K = "000" and R = "0000") then nextstate <= 2;
 else nextstate <= 0;
 end if;
 . . .

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

7

However, if one takes over the code from someone else, even if that person promise that it
works, the situation is different.

case state is
 when 0 => if(((R(2)='0') and (R(3)='0') and (K(2)='0') and
(K(3)='1')) and
 (not ((not ((K(1)='0') and (R(1)='0') and (R(4)='1')))
and
 (not ((K(1)='1') and (R(1)='1') and (R(4)='0'))))))
 then nextstate <= 1;
 else nextstate <= 0;
 end if;
 . . .
Here are the conditions written in such a way that it is no longer obvious what the code does -
And therefore we do not know if it is correct or if, despite all the promises, it is incorrect?

Try now the code correctness with a (pre-written) test bench
Follow the steps in the tutorial on the course web - Testbench in ModelSim.

 lockmall.vhd (lockmall.txt)
 lockmall_with_error.vhd (lockmall_with_error.txt)
 tb_lockmall.vhd (tb_lockmall.txt)

• Laboratory task 4 (do at lab in school)

• Perform also the simulation of the test bench in the school, and show lab assistant your
skills by simulating code with a test bench.

• Can you reveal anything wrong with the code? Show lab assistant.
• Close ModelSim and change to the program Quartus II. There you change the

contents of the VHDL file from lockmall.vhd to
 lockmall_with_error.vhd. Compile and download the code to the MAX-
chip.

• Check if the suspicious behavior from the simulation means that in practice You can
open the code lock incorrectly?

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd
https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd
https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

8

• Preparation task 5 (done before the lab at home)

A code lock that opens to a single key press is of course ridiculously easy to force, normally
you have a four digit code. Your task will be to develop the template program
(lockmall.vhd) to such a lock with four digits - the last four digits of your civic number.

Prepare such a VHDL program at home. Check that it is possible to compile. Take with you
the code to the school in any way, such as:

- Mail the text to yourself.
- Bring a USB flash drive with the code as a text file.
- Transfer the code to your server folder H:\.

Are you able to simulate the code at home, you'll increase the likelihood that you have the
correct code from the start at school.
The time at the lab school will not be enough to write the program code from "scratch"!

• Laboratory task 5 (do at lab in school)

Make a code lock that opens to a four-digit code. Lab Assistant determines the digit
combination so that - Two of the numbers taken from your preparation program, and the other
two from your lab colleague preparation program.

• Show the working code lock for lab assistant.

9

Do you have time for more?

If you are well prepared for the lab, and if you are not suffering from intermittent connections
or dead batteries, then you probably now have time for a "voluntary" task.

• Can you change the program so that it also opens for the previous hidden key
combination?
(so that there is a "hardware trojan" within the chip)

Good Luck!

When you are finished clean the lab desk.

Bill of materials
The "bill of material" for the lab equipment, could be helpful if you ever would need to use
simple MAX-chips yourself.

Altera USB-blaster ELFA 73-898-90
ALTERA CPLD EPM3032ALC44-10
Proto Advantage PLCC-44 Socket to DIP-44 Adapter
Breadboard MB-85 ELFA 48-428-37
Contact breadboard to 25-pol D-sub ELFA 48-426-96
Pin contact (JTAG) ELFA 43-155-03
Lightdiode with series resistor 5V red ELFA 75-012-59
Lightdiode with series resistor 5V yellow ELFA 75-015-11
Electronic chip 555 ELFA 73-042-65
Trimming Potentiometer 500 kO with adjustment knob ELFA 64-635-25

William Sandqvist william@kth.se

http://www.proto-advantage.com/store/product_info.php?products_id=3600003

10

VHDL for a code lock
Description of the code lock template

The Code Lock template applies to a simplified lock that opens when you press the key "1"
and then release the key.

Almost all digital designs are now carried out using high-level languages like VHDL/Verilog.
Our basic course in digital technology does not allow to teach VHDL language, however, you
will be able to transform the "template code lock" into useful VHDL code at the lab.

If you think that the VHDL language seems interesting, then the school has several advanced
digital technology courses

At lab you expand this code to create a four digit code
lock!

11

lockmall.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity codelock is
 port(clk: in std_logic;
 K: in std_logic_vector(1 to 3);
 R: in std_logic_vector(1 to 4);
 q: out std_logic_vector(4 downto 0);
 UNLOCK: out std_logic);
end codelock;

architecture behavior of codelock is
subtype state_type is integer range 0 to 31;
signal state, nextstate: state_type;

begin
nextstate_decoder: -- next state decoding part
process(state, K, R)
 begin
 case state is
 when 0 => if (K = "001" and R ="0001") then nextstate <= 1;
 else nextstate <= 0;
 end if;
 when 1 => if (K = "001" and R = "0001") then nextstate <= 1;
 elsif (K = "000" and R = "0000") then nextstate <= 2;
 else nextstate <= 0;
 end if;
 when 2 to 30 => nextstate <= state + 1;
 when 31 => nextstate <= 0;
 end case;
end process;

debug_output: -- display the state
q <= conv_std_logic_vector(state,5);

output_decoder: -- output decoder part
process(state)
begin
 case state is
 when 0 to 1 => UNLOCK <= '0';
 when 2 to 31 => UNLOCK <= '1';
 end case;
end process;

state_register: -- the state register part (the flipflops)
process(clk)
begin
 if rising_edge(clk) then
 state <= nextstate;
 end if;
end process;
end behavior;

12

Moore machine

The code lock is The code lock is designed as a Moore machine.

The different blocks in the code are identified with "labels".

VHDL processes

With a "process" you can describe what should be performed in a block without having to go
into the details of how this should be done.

VHDL code is written as such processes.

13

Parts of the program

entity
architecture

next_state_decoder:
output_decoder:
state_registers:

entity

The program entity is a description of the code lock as a "black box" with input and output
signals.

14

Bits and Bitvectors

You can customize the indexing of variables so that it is consistent with the data sheets - less
risk of mistakes!

Architecture - define suitable datatypes

The program part architecture contains the description of the behavior of the block.

Here we create a new datatype, state_type, that can have integer values between 0 and
31. The compiler then prevents us from (accidentally) use other values. Signals state and
nextstate are of this datatype.

15

Architecture - next state decoder

Next state decoder is the central part of the program. By using the case-statement you can
write the code in such a way that it confirms to the state diagram.

Troubleshooting help - the state is shown with five LEDs

To troubleshoot, we want to be able to follow which state the machine is in. The function
 conv_std_logic_vector() converts ,state (an integer between 0...31) to to a 5-bit
bitvector q, q(4) ... q(0). In order to use this conversion function one has to include the
library IEEE.std_logic_arith.all.

Output decoder

The output decoder is written "straightforward" by a case-statement.

16

State register

By using the function rising_edge(clk) we let the compiler "understand" that we want
to use the flip-flops inside the MAX-chip in order to build a register.

17

VHDL-program with Quartus

Choose the right program version from the school's start menu :

Altera 13.0.1.232 Web edition\
 Quartus II Web Edition 13.0.1.232\
 Quartus II 13.0sp1 (32bit)

Start Quartus. You need no license and you do not need not buy anything.
If not be directly offered to start New Project Wizard, You may also select this option from
the File menu.

Introduction
Clic on Next.

18

Project Name and Directory

In school, the entire project must be on your H:\, eg. H:\MAXwork (at home on C:\, eg.
 C:\MAXwork)

Name: codelock
Top-Level Entity: codelock
(Note! the name codelock must "match" the name you later on specify as entity in
your VHDL-file)

Proceed with Next.

Add files
We have no files to add to the project, so we proceed with Next.

Family and Device Settings
Here we specify which chip we intend to use during the lab.

Family: MAX3000A Available devices: EPM3032ALC44-10

Proceed with Next.

19

EDA tools setting
Here you can create context with software tools from other vendors. We will simulate with
the ModelSim program but that we need not enter.
Proceed with Next.

Summary.
Here you can see a summary of your selections, exit the "Wizard" with Finish.

20

The project has been created

VHDL-code

Create a blank file for VHDL-code. File, New, VHDL File.

Copy the Template lockmall.vhd and paste it in Quartus text editor.

21

library IEEE;

use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity codelock is
 port(clk: in std_logic;
 K: in std_logic_vector(1 to 3);
 R: in std_logic_vector(1 to 4);
 q: out std_logic_vector(4 downto 0);
 UNLOCK: out std_logic);
end codelock;

architecture behavior of codelock is
subtype state_type is integer range 0 to 31;
signal state, nextstate: state_type;

begin
nextstate_decoder: -- next state decoding part
process(state, K, R)
 begin
 case state is
 when 0 => if (K = "001" and R ="0001") then nextstate <= 1;
 else nextstate <= 0;
 end if;
 when 1 => if (K = "001" and R = "0001") then nextstate <= 1;
 elsif (K = "000" and R = "0000") then nextstate <= 2;
 else nextstate <= 0;
 end if;
 when 2 to 30 => nextstate <= state + 1;
 when 31 => nextstate <= 0;
 end case;
end process;

debug_output: -- display the state
q <= conv_std_logic_vector(state,5);

output_decoder: -- output decoder part
process(state)
begin
 case state is
 when 0 to 1 => UNLOCK <= '0';
 when 2 to 31 => UNLOCK <= '1';
 end case;
end process;

state_register: -- the state register part (the flipflops)
process(clk)
begin
 if rising_edge(clk) then
 state <= nextstate;
 end if;
end process;
end behavior;

22

Note that entity in the VHDL-file must "match" the project Top Level Entity!

Save the file: File, Save As and as VHDL-file. The name could be codelock.vhd (or
another).
Add File to current project shall be checked!

Analysis and Synthesis

When you have new code, it is unnecessary to run the entire tool chain - chances are that there
are errors along the way ...

23

From the start you only do Analysis & Synthesis.

Start Compilation

Start Compilation runs the full tool chain.

24

The 3 warnings (moore with other program versions) are about "software tools" that are
missing in our program version but we don’t need them.

25

Pin-planning in Quartus

The lab code locks has different wiring. MAX chips must therefore be programmed
differently to fit the equipment.

Quartus has a Pin-planning function. Either you can let the compiler choose pins for the
various signals - And then adapt the wiring after this, or the wiring is determined in advance
(which is the case here) and then you have to self pair signals with pins.

Start Pin Planner. Menu Assignements, choose Pin Planner, or by clicking on the icon for
Pin Planner.

You write the pin-number you want to assign in the column Location. Double click in the box
to get a list of possible pins. In the column Fitter Location shows which pin the autofitter
function has selected - but it is usually possible to make other choices yourself.

26

In the pin planner there is a picture of the pin layout for the selected chip, and a list of the
variables/signals that has occurred in the VHDL code.
MAX3000-chip has 44-pin. Some of them are occupied for supply voltages. Often MAX
circuits are used to connect digital equipment using different supply voltages, but since we do
not have such needs, we have linked all those pins to the same supply voltage + 3V.
Other pins are used for chip programming, they are connected to the so-called JTAG
connector (TDI TMS TCK TDO).
There are two clock inputs, one enable input and one reset input. Pin that are not used can be
left unattended because the compiler makes sure they are disconnected.
Total remains 26 user defined pins, to freely use as inputs or outputs.

Connections to the lab breadboard

The keys on the keyboard are arranged as a matrix with four rows
and three columns as a total of seven lines, connected to a DB-25
connector. The output signal is one yellow LED, and five red LEDs
used to present the code lock internal state.

27

MAX-chip is contained in a TQFP-44 package. To use the MAX circuit on a breadboard, we
have acquired an adapter, a breakout-board, which has pins positioned as a DIL-44 chip.
The figure shows the pin placement on the MAX-chip and on the breadboard.

MAX-chip has many voltage connections. You can take them to help orient you on the
breadboard.
(3 VCC, 10 GND, 15 VCC, 17 GND, 22 GND, 42 GND, 36 GND, 35 VCC, 30 GND, 23
VCC.)

Lab assistants has access to facit-files for the different lab equipment versions.
With them, we can quickly rule out possible problems, eg. if you have entered the pin
numbers incorrectly.

28

Chip-programing with Quartus
Choose chip programming equipment - USB-Blaster

Connect the USB blaster to your computer. Connect the USB Blastern JTAG connector to lab
equipment. Note! The lab equipment's voltage shall be off when plugging in or unplugging
the JTAG connector. Lab equipment's voltage must be turned on when you program the chip -
USB power alone is not enough for this.

From within Quartus, select the menu item Tools and Programmer, or you clic the icon
Programmer.

29

In the window Programmer you clic on Hardware Setup in order to select the USB blaster
as the programming equipment. (The computer then remembers this setting)

In the window Hardware Setup there is a list of "Available hardware items". There stands
USB blaster. (If not then you may have forgotten to plug it?) Select USB-blaster and clic
on Add Hardware.

Now the USB-blast should be your "Currently selected hardware". click on Close.
Quartus will remember your choice, so probably you do not need to repeat this one more time.

In the window Programmer you can see what hardvare (chip) that is selected.

30

Download the code to the chip

The compiled program is in a *.pof-file. Browse to it with Add File ... (it is probably in a
subfolder output_files) and choose the file.
The compiled project name is now in the box File.

Check Program/Configure and Verify. In the picture with the chip there is now emerging
symbols of your choices.

It is possible to program many chips in the same equipment. The picture then shows a daisy
chain of the chips that can be programmed, one at a time with different code.

We only have one chip, and you start programming by clicking on the Start button.
Attention! Do not forget that the power to the lab card should be on during programming!

31

Try twice if it does not work - then contact the lab assistant.
The most common problem is a bad battery.

32

Simulate with ModelSim
ModelSim - simulation software
ModelSim can be used to simulate VHDL-code, to determine whether it is "right" thinking.
The Altera version of ModelSim is also integrated with a "database" with facts about Altera-
chips, eg. MAX-chips, so one can also do simulations that take into account the "time delay"
and other phenomena within the intended target circuit. (As long as the target circuit is of
Altera's brand ...).

Select the correct software version - in school there are several
versions installed in the Start menu!
Altera 13.0.1.232 Web edition\
 ModelSim-Altera Starter Edition 13.0.1.232\
 ModelSim-Altera 10.1d(Quartus II 13.0sp1)

Start ModelSim.

In the window "important information" you click on Jumpstart to get help with setting up a
project.

33

Then you click on "Create a Project" in the welcome window.

Create a project.

Project Name
MAXsim can be a suitable name

Project location
H:/MAXwork browse to the same folder you used for Quartus.

Default Library Name
work keep the suggested name, it's the standard at VHDL-simulation

Klicka på OK.

34

We choose "Add Existing File" to add a VHDL-file to the project.
"Browse" to the file codelock.vhd that we created earlier with Quartus.

Clic on OK. Then click on Close.

Codelock code in ModelSim

ModelSim has a own compiler to produce the code for simulation. Though we have
compiled the VHDL code in Quartus we must now compile it again for ModelSim.

Choose Compile menu, alternative Compile All.

35

Now the VHDL-code is also compiled for Modelsim.
Status symbol changes from a blue question mark to a green check!

Simulate codelock-template!

We simulate by giving different commands in the Transcript-window, and then follow some
selected signals in the window Wave.

Transcript-window is a terminal window where you enter commands, but you can also give
most commands by menu selection, or by clicking on buttons. Commands are always written
in theTranscript-window, regardless of how they are given.

Load the Design to simulator..
Choose the tab Library, and open the folder work. Doubleclick on "Entity" codelock. A
series of commands are now executed resulting in that the design is loaded into the simulator.

In the Transcript-window you can follow the commands executed.

36

Prepare simulation

We need to have a number of windows open in order to follow the simulation.

Give thees commands in Transcript-window
or check in the View-menu.
VSIM> view objects
VSIM> view locals
VSIM> view source
VSIM> view wave -undock

Modelsim consists of "windows". It can be hard to see everything at the same time. With the
button Zoom/Unzoom you can enlarge the window. With the button Dock/Undock the
window can be moved to any location, it is that alternative we choose for Wave-window.
With the button Close those windows not needed for the time can be closed.

Signals in Wave window
If you have many signals, it is a good idea to select the signals you are interested to follow
in Wave-window, but this time we choose to follow them all:

add wave *

There are several ways to add signals to the Wave-window:

• Select signals in Object-window (Shift+Left Button) and "drag and drop" the
selection to Wave-window.

• Right-click in the Object-window and choose Add to Wave.
• A Add to Wave dialoge-window is reachable from the menu, Add.

37

Format, Radix, Hexadecimal

The state variable q has 32 different states, such a variable is easier to follow if it is presented
as a hexa-decimal number, 00 ... 1F instead of a binary number. We therefore suggest
that you check the variable and change the presentation to hexadecimal. UUUUU is exchanged
to XX in the Wave-window. Other variables are best suited to be presented as binary numbers.

Create stimuli

The default time resolution in Wave is nanoseconds, ns. A suitable clock frequency for a
code lock may however be as low as 5 Hz, or a period time of 0.2 sec.
The easiest way, of not having to make extensive adjustments of the program, is to "scale"

38

our problem to a higher clock speed with a period of 20 ns. We then has to imagine that there
are fast fingers that press the keys!

Stimuli, Inputsignals as clock pulses or key-presses, are created with the command force
in the Transcript-window.

force codelock/clk 1 0ns, 0 10ns -repeat 20ns
Generates clockpulses for ever.

force codelock/k 000
force codelock/r 0000
Initiates variables r and k.

run 100ns
Runs the simulation in 100 ns, which is five clock cycles.

Simulate keypresses

force codelock/k 001
force codelock/r 0001
run 30ns
force codelock/k 000
force codelock/r 0000
run 800ns

30 ns (20+10) means that the keypress is certain be in the gap between the clock edges. The
full simulationtime 100 ns +30ns + 800 ns = 930 ns corresponds to 46.5 clock pulse periods.
This is enough to show the lock's entire opening sequence.

39

Do-file

Transcript-window, you can run many commands in sequence from a Do-file.
Alternatively, you can copy the text in Windows (Ctrl-C) and paste it (Ctrl-V) in Transcript.
delete wave *
add wave codelock/clk
add wave codelock/k
add wave codelock/r
add wave codelock/q
add wave codelock/unlock
force codelock/clk 1 0ns, 0 10ns -repeat 20ns
force codelock/k 000
force codelock/r 0000
run 100ns
force codelock/k 001
force codelock/r 0001
run 30ns
force codelock/k 000
force codelock/r 0000
run 800ns

This is how to create a Do-file. Paste text commands above in the file. Then save it among the
other files (in MAXwork) with extension .do.

You run a Do-file with these commands (in Transcript):
restart -f
do lock.do

Find in the Wave window

It can be difficult to find what you are looking for in the Wave window. Therefore, there is a
whole series of tools like Zoom, Expanded time, Cursors ...
Add, Cursor.

40

A Cursor can be used together with the function Edit, Wave Signal Search.

Now the Cursor points what happens (this time nothing special!) when q has the state 07.

Spend a little time now to try different tools available for orientation in Wave Window!

The simulation has shown that the lock opens to the intended key-
press, but this is not enough - There is need for more "testing"
before one can trust the construction!

41

Testbench in ModelSim
Select the correct software version - in school there are several
versions installed in the Start menu!
Altera 13.0.1.232 Web edition\
 ModelSim-Altera Starter Edition 13.0.1.232\
 ModelSim-Altera 10.1d(Quartus II 13.0sp1)

Start ModelSim.

Klicka på Jumpstart. This time we choose "Open Project" for continue with our previous
MAXsim-project.

42

Testbench
In addition to the VHDL code for the lock, we now need another VHDL file for the test bench
code.

Create a new empty VHDL-file. Copy and paste the content of the file
 tb_lockmall.vhd and then save the file using the same name, tb_lockmall.vhd,
among the other files in the project.

Alternatively, you can copy the file tb_lockmall.vhd to the folder with the other files
of the project.

 tb_lockmall.vhd (tb_lockmall.txt)

Add the VHDL-file to the project

The project now has two files. The file tb_lockmall.vhd is not compiled yet, which can
be seen on the blue question mark.

Choose the menu Compile and the alternative Compile All. Now the file is compiled
 tb_lockmall.vhd. By the content of the file we can see that it controles the other file
 codelock.vhd, so that's why it gets the highest order.

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

43

Load the Design to the simulator.

We want to test the bench messages to appear (as arrows) at the top of the Wave-window.
Therefore, we write in the Transcript window:

vsim -msgmode both -displaymsgmode both tb_codelock

Then add the signals in the Wave-window.

add wave *

Start simulation

In the file tb_codelock.vhd you find clk <= not clk after 10 ns;. It
creates the clock pulses with a period of 20 ns, as we used before.

We can immediately start the simulation with the command run 3us in the Transcript-
window. The time 3 μs sufficient to try all possible key-press combinations.

In the Transcript-window we can read the encouraging message Note: Lock tries
to open for the right sequence!.
In Wave-window choose View, Zoom, and Zoom Full and then you can see the entire
process.

The green arrows show the when the desired event happens!
Now exit the simulation.

44

Reveal the wrong code!

Now we need to in Project window, double-click the file codelock.vhd so that it
appears in the text editor where we can change it. Copy and paste the content of the file
 lockmall_with_error.vhd. Then save the file under the same name as before and
recompile everything.

 lockmall_with_error.vhd (lockmall_with_error.txt)

Simulate in the same way as before. In Transcript-window you can read the message from
the test bench when event happens!

The red arrow in the Wave-window shows when/where the undesired event happens!

VHDL-test bench file
You do not of course be able to write a VHDL Test Bench file after a short first course on
Digital Design. Still take the opportunity to go through the file and see if you can understand
how it is intended!

Se VHDL testbench file

https://www.kth.se/social/files/54574b26f276543941b1f717/lockmall.vhd

45

VHDL Testbench for ModelSim

46

47

48

49

	Laboratory VHDL introduction
	Digital Design IE1204 (Note! not included for IE1205)
	Attention! To access the laboratory experiment you must have:

	Introduction
	The goal of the lab
	Attention! Lab equipment is completed. No wires should be changed, not added or removed.
	A VHDL-code lock
	 Preparation task 1 (done before the lab at home)
	 Laboratory task 1 (do at lab in school)
	 Preparation task 2 (done before the lab at home)
	 Laboratory task 2 (do at lab in school)
	 Preparation task 3 (done before the lab at home)
	lockmall.vhd (lockmall.txt)
	 Laboratory task 3 (do at lab in school)
	 Preparation task 3 (done before the lab at home)
	lockmall.vhd (lockmall.txt) lockmall_with_error.vhd (lockmall_with_error.txt) tb_lockmall.vhd (tb_lockmall.txt)
	 Laboratory task 4 (do at lab in school)
	 Laboratory task 5 (do at lab in school)

	Good Luck!
	When you are finished clean the lab desk.

	Bill of materials

	VHDL for a code lock
	Description of the code lock template
	At lab you expand this code to create a four digit code lock!
	lockmall.vhd
	Moore machine
	VHDL processes
	Parts of the program
	entity
	Bits and Bitvectors
	Architecture - define suitable datatypes
	Architecture - next state decoder
	Troubleshooting help - the state is shown with five LEDs
	Output decoder
	State register

	VHDL-program with Quartus
	The project has been created
	VHDL-code

	Pin-planning in Quartus
	Chip-programing with Quartus
	Choose chip programming equipment - USB-Blaster
	Download the code to the chip

	Simulate with ModelSim
	ModelSim - simulation software
	Select the correct software version - in school there are several versions installed in the Start menu!
	Codelock code in ModelSim

	Simulate codelock-template!

	Testbench in ModelSim
	Select the correct software version - in school there are several versions installed in the Start menu!
	tb_lockmall.vhd (tb_lockmall.txt)

	Reveal the wrong code!
	lockmall_with_error.vhd (lockmall_with_error.txt)

	VHDL-test bench file

	VHDL Testbench for ModelSim

