Energy and Power in PAM, Operational PSD, QAM

Course: Foundations in Digital Communications

Tobias Oechtering presented by: **Ragnar Thobaben**

Royal Institute of Technology (KTH), School of EE and ACCESS Center, Communication Theory Lab Stockholm, Sweden

2nd lecture

What did we do last lecture?

- In battery operated devices, energy and power are very important parameters.
 - Energy and Power in PAM (chap 14)
- PAM waveforms are not WSS, thus PSD is not defined.
 - Operational Power Spectrum Density (chap 15)
- Spectral efficient and flexible modulation scheme for passband transmission.
 - Quadrature Amplitude Modulation (chap 16)

Energy in PAM

Let's consider PAM waveform

$$X(t) = A \sum_{\ell=1}^{N} X_{\ell} g(t - \ell T_s)$$

- $X_{\ell} \in \mathbb{R}$ are information carrying symbols (random)
- $g \in \mathcal{L}_2$ energy-limited real pulse
- A is a scaling factor, T_s is the baud period
- \Rightarrow **Note:** *X*(*t*) is a stochastic process since *X*_{*l*} are random!

Expected Energy

$$E = \mathbb{E}\left[\int_{-\infty}^{\infty} |X(t)|^2 \mathrm{d}t\right] = A^2 \sum_{\ell=1}^{N} \sum_{\ell'=1}^{N} \mathbb{E}\left[X_{\ell} X_{\ell'}\right] R_{gg}((\ell - \ell')T_s).$$

 ∞

• self-similarity function $R_{gg}(\tau) = \int g(t+\tau)g^*(t) dt, \tau \in \mathbb{R}$

Discussion: Energy in PAM

• We have
$$E = A^2 ||g||^2 \sum_{\ell=1}^{N} \mathbb{E} \left[X_{\ell}^2 \right]$$
 if we have
• orthogonality condition: $\int_{-\infty}^{\infty} g(t)g(t - \kappa T_s)dt = ||g||^2 I \{\kappa = 0\}$, or
• uncorrelated symbols: $\mathbb{E} \left[X_{\ell} X_{\ell'} \right] = \mathbb{E} \left[X_{\ell}^2 \right] I \{\ell = \ell'\}$

Binary to reals (K,N) block encoder

enc : $\{0,1\}^K \to \mathbb{R}^N$, $D_1, \ldots, D_K \mapsto X_1, \ldots, X_N$

- Energy per bit: $E_b \triangleq E/K$
- Energy per symbol: $E_s \triangleq E/N$
- Transmitted power: $P = E_s/T_s$
 - Hmm, does the last relation make sense (missing assumption)?

Power in PAM

Power

$$P \triangleq \lim_{T \to \infty} \frac{1}{2T} \mathbb{E}\left[\int_{-T}^{T} \|X(t)\|^2 \, \mathrm{d}t\right]$$

- If a finite number of symbols are send, then $P \to 0$ as $T \to \infty$?!
- Modeling trickery: Pretend infinite sequence of symbols

$$X(t) = A \sum_{\ell=-\infty}^{\infty} X_\ell g(t-\ell T_s)$$

- New problem: Convergence for each t?
- Series converges if (i) symbols uniformly bounded (X_ℓ)_ℓ ∈ ℓ_∞ and (ii) pulse decays faster than 1/t, i.e., ∃α, β > 0: |g(t)| ≤ β/(1+t)(T_s)^{1+α}.

Power in PAM if (X_{ℓ}) is centered WSS SP

- Centered WSS SP: $\mathbb{E}[X_{\ell}] = 0$ and $\mathbb{E}[X_{\ell}X_{\ell+m}] = K_{XX}(m)$
- Compute energy in interval $[\tau, \tau + T_s)$:

$$\mathbb{E}\left[\int_{\tau}^{\tau+T_s} |X(t)|^2 dt\right] = \int_{\tau}^{\tau+T_s} \mathbb{E}\left[\left(A \sum_{\ell=-\infty}^{\infty} X_{\ell}g(t-\ell T_s)\right)^2\right] dt$$
$$= A^2 \sum_{m=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} \mathbb{E}\left[X_{\ell}X_{\ell+m}\right] \int_{\tau}^{\tau+T_s} g(t-\ell T_s)g(t-(\ell+m)T_s) dt$$
$$= A^2 \sum_{m=-\infty}^{\infty} K_{XX}(m) \sum_{\ell=-\infty}^{\infty} \int_{\tau-\ell T_s}^{\tau+T_s-\ell T_s} g(t')g(t'-mT_s) dt'$$
$$= A^2 \sum_{m=-\infty}^{\infty} K_{XX}(m) R_{gg}(mT_s), \quad (\leftarrow \text{ does not depend on } \tau)$$

Sandwich argument

• Interval [-T, +T)

- contains $\lfloor 2T/T_s \rfloor$ disjoint intervals $[\tau, \tau + T_s)$ and
- is contained in the union of $[2T/T_s]$ disjoint intervals $[\tau, \tau + T_s)$

so that

$$\left\lfloor \frac{2T}{T_s} \right\rfloor \mathbb{E}\left[\int_{\tau}^{\tau+T_s} |X(t)|^2 \, \mathrm{d}t \right] \le \mathbb{E}\left[\int_{-T}^{T} |X(t)|^2 \, \mathrm{d}t \right] \le \left\lceil \frac{2T}{T_s} \right\rceil \mathbb{E}\left[\int_{\tau}^{\tau+T_s} |X(t)|^2 \, \mathrm{d}t \right]$$

• Sandwich argument: $\lim_{T \to \infty} \frac{1}{2T} \left\lfloor \frac{2T}{T_s} \right\rfloor = \lim_{T \to \infty} \frac{1}{2T} \left\lceil \frac{2T}{T_s} \right\rceil = \frac{1}{T_s}$ \Rightarrow we have $\lim_{T \to \infty} \frac{1}{2T} \mathbb{E} \left[\int_{-T}^{T} |X(t)|^2 dt \right] = \frac{1}{T_s} \mathbb{E} \left[\int_{\tau}^{\tau+T_s} |X(t)|^2 dt \right]$

$$P = \frac{A^2}{T_s} \sum_{m=-\infty}^{\infty} K_{XX}(m) R_{gg}(mT_s) = \frac{A^2}{1} ||g||^2 \sigma_X^2$$

Time Shifts of Pulses are Orthonormal

Orthonormal condition:

$$\int_{-\infty}^{\infty} \phi(t - \ell T_s) \phi(t - \ell' T_s) \, \mathrm{d}t = \mathrm{I} \{ \ell = \ell' \}$$

- Orthogonality over interval (−∞, ∞) does not to hold for [−T, T]
- Require decay condition on pulses: $\exists \alpha, \beta > 0$: $|\phi(t)| \le \frac{\beta}{1+|t/T_c|^{1+\alpha}}$.

Theorem

Consider SP $X(t) = A \sum_{\ell=-\infty}^{\infty} X_{\ell} \phi(t - \ell T_s)$ where $\phi(t)$ satisfies the decay and orthogonality condition and $(X_{\ell}) \in \ell_{\infty}$, then

$$\lim_{T \to \infty} \frac{1}{2T} \mathbb{E}\left[\int_{-T}^{T} |X(t)|^2 dt\right] = \frac{A^2}{T_s} \lim_{L \to \infty} \frac{1}{2L+1} \sum_{\ell=-L}^{L} \mathbb{E}\left[|X_\ell|^2\right]$$

Proof: The proof is technical and combines the previous steps.

Motivation: Operational Power Spectral Density

- **Motivation:** PSD of a WSS SP describes how the power is distributed among the frequencies.
 - PAM waveforms are not WSS!
- New concept: Operational Power spectral density
 - Coincides with PSD for WSS processes
 - Provides an operational meaning
- **Natural approach** following the definition of other *differential definitions of densities*, we would heuristically define the power spectral density $S_{XX}(f)$ as

$$S_{XX}(f) = \lim_{\Delta \downarrow 0} \frac{\text{Power in frequencies } [f - \frac{\Delta}{2}, f + \frac{\Delta}{2}]}{\Delta}$$

Filter Approach

 Interpretation: Interpret "Power of SP X(t) in frequencies D" as average power at the output of a filter with transfer function ĥ(f) = I {f ∈ D} and SP X(t) as input, i.e.,

Power in frequencies
$$\mathcal{D} = \int_{-\infty}^{\infty} I\{f \in \mathcal{D}\} S_{XX}(f) df$$

Filter Approach

Define the PSD as a function S_{XX} for which

Power of
$$X \star h = \int_{-\infty}^{\infty} |\hat{h}(f)|^2 S_{XX}(f) df$$

holds for all BIBO stable filters , i.e., $h \in \mathcal{L}_1$ (A.L. called them "nice").

 Differential definition implies filter approach. Heuristic argument: Approximate filter h
(f) by a composition of {0, 1}-filters.

Real Stochastic Processes

• We want to consider only filters with *real* impulse responses for real stochastic processes $\Rightarrow |\hat{h}(f)|^2$ is symmetric, thus

$$\int_{-\infty}^{\infty} |\hat{h}(f)|^2 S_{XX}(f) \, \mathrm{d}f = \int_{0}^{\infty} |\hat{h}(f)|^2 \Big(S_{XX}(f) + S_{XX}(-f) \Big) \, \mathrm{d}f$$

• Only sum $S_{XX}(f) + S_{XX}(-f)$ is specified \Rightarrow Non-unique

- ⇒ For sake of **uniqueness**, for real stochastic processes we additionally require $S_{XX}(f)$ to be symmetric!
 - Once one has identified a function $S(f) \ge 0$ which satisfies the integral equation, then we obtain the *symmetrized version* by

$$S_{XX}(f) = \frac{1}{2} (S(f) + S(-f))$$

Operational PSD of a Real SP

Definition

The real-valued SP X(t) is of **operational power spectral density** $S_{XX}(f)$ if

- (i) X(t) is a measurable SP;
- (ii) the function $S_{XX}(f)$ is integrable and symmetric; and
- (iii) for every stable real filter ($h \in \mathcal{L}_1$) the average power at the output of the filter with input X(t) is given by

Power of
$$X \star h = \int_{-\infty}^{\infty} |\hat{h}(f)|^2 S_{XX}(f) df$$

Properties

- If ∫[∞]_{-∞} |ĥ(f)|²s(f) df = 0 for every complex function h : ℝ → ℂ, then s(f) is zero for almost all frequencies f¹.
- If s(f) is symmetric and $\int_{-\infty}^{\infty} |\hat{h}(f)|^2 s(f) df = 0$ holds for **every** real function $h : \mathbb{R} \to \mathbb{R}$, then s(f) is zero for almost all f.
- Uniqueness: If S_{XX} and S'_{XX} are both operational PSD for the real SP X(t), then S_{XX}(f) = S'_{XX}(f) for almost all frequencies f.

Definition: Bandlimited SP

A SP X(t) with operational PSD S_{XX} is **bandlimited** to W Hz, if $S_{XX} = 0$ for almost all frequencies |f| > W.

¹That is, the set of frequencies at which they differ is of Lebesgue measure zero. KTH course: Foundations in Digital Communications ©Tobias Oechtering 14/24

Operational PSD of Real PAM Signals

- Passing a pulse g through a stable filter h is equivalent to changing the pulse from g to g ★ h.
 - Convolution is linear: $(\alpha u + \beta v) \star h = \alpha u \star h + \beta v \star h$
 - Convolution of h(t) with $u(t t_0)$ is equal to $(u \star h)(t t_0)$

$$(X \star h)(t) = A \sum_{\ell = -\infty}^{\infty} X_{\ell} (g \star h)(t - \ell T_s)$$

- ⇒ Apply previous results with new pulses $g \star h$ to compute power and compare expressions!
 - E.g. (X_{ℓ}) centered uncorrelated with equal variance. Thus, Power of $X \star h = \frac{A^2 \sigma_X^2}{T_s} ||g \star h||^2$

5-minute exercise

Show that
$$S_{XX}(f) = \frac{A^2 \sigma_X^2}{T_s} |\hat{g}(f)|^2, f \in \mathbb{R}.$$

Further Comments

• If (X_{ℓ}) is centered and WSS

Power in
$$X \star h = \int_{-\infty}^{\infty} \underbrace{\left(\frac{A^2}{T_s} \sum_{m=-\infty}^{\infty} K_{XX}(m) e^{i2\pi f m T_s} |\hat{g}(f)|^2\right)}_{=S_{XX}(f)} \hat{h}(f) |^2 df$$

• Note: $S_{XX}(f)$ is a symmetric function (why?).

- About the more formal account in the textbook:
 - Issue: The convergence has to be treated more carefully.
 - Convert the problem into WSS stochastic process which requires an interesting *"stationarization argument"* and apply Wiener-Khinchin Theorem.

Let's take a break!

Motivation Quadrature Amplitude Modulation

• Our system has **bandwidth** *W* **around carrier frequency** *f_c*. Thus, we can only send non-zero signals at frequencies

$$\left||f| - f_c\right| \le W/2$$

- ⇒ We want linear modulation in passband!
 - With PAM we can communicate R_s real symbols/second using pulses with bandwidth $R_s/2$ Hz \Rightarrow Achievable spectral efficiency:

 $2 \frac{[\text{real dimensions/sec}]}{[\text{baseband Hz}]}$

• Can this also be obtained for passband signaling? How?

$$2\frac{\text{[real dimensions/sec]}}{\text{[passband Hz]}} \Leftrightarrow 1\frac{\text{[complex dimensions/sec]}}{\text{[passband Hz]}}$$

- Simple up-conversion using cos(2πf_ct) doubles bandwidth!?
- Design pulsed directly for passband is possible, but not flexible with respect to different carrier frequencies.

(One) Solution: The QAM Signal

- Easiest to describe QAM signal by looking at its baseband representation x_{BB}(·) of the transmitted passband signal x_{PB}(·)
 - $x_{BB}(\cdot)$: Structure of PAM, but *complex symbols* C_{ℓ} and pulses $g(\cdot)$

$$X_{BB}(t) = A \sum_{\ell=1}^{n} C_{\ell} g(t - \ell T_s)$$

- QAM encoder: $\phi : \{0,1\}^k \to \mathbb{C}^n$
- Rate: k/n [bit/complex symbol]

Passband QAM signal

$$X_{PB}(t) = 2\operatorname{Re}\left(X_{BB}(t)e^{i2\pi f_c t}\right) = 2\operatorname{Re}\left(A\sum_{\ell=1}^n C_\ell g(t-\ell T_s)\right)$$

• If *g* is bandlimited to *W*/2 Hz, then QAM signal is bandlimted to *W* Hz around carrier frequency *f_c*.

Pass-band signal

• ... with $\operatorname{Re}(wz) = \operatorname{Re}(w)\operatorname{Re}(z) - \operatorname{Im}(w)\operatorname{Im}(z)$ we get...

$$X_{PB}(t) = \sqrt{2}A \sum_{\ell=1}^{n} \operatorname{Re}(C_{\ell}) g_{I,\ell}(t) + \sqrt{2}A \sum_{\ell=1}^{n} \operatorname{Im}(C_{\ell}) g_{Q,\ell}(t)$$

with Inphase and Quadrature components

$$g_{I,\ell}(t) = 2\operatorname{Re}\left(g_{BB,I,\ell}(t)e^{i2\pi f_c t}\right), \qquad g_{BB,I,\ell}(t) = \frac{1}{\sqrt{2}}g(t-\ell T_s)$$
$$g_{Q,\ell}(t) = 2\operatorname{Im}\left(g_{BB,Q,\ell}(t)e^{i2\pi f_c t}\right), \qquad g_{BB,Q,\ell}(t) = i\frac{1}{\sqrt{2}}g(t-\ell T_s)$$

¹/_{√2} factor is normalization for unit energy per dimension
... if pulse *g* is real, then components simplify...

QAM signal generation if pulses g real

$$g_{I,\ell}(t) = \sqrt{2}g(t - \ell T_s)\cos(2\pi f_c t) \qquad g_{Q,\ell}(t) = \sqrt{2}g(t - \ell T_s)\sin(2\pi f_c t)$$

KTH course: Foundations in Digital Communications ©Tobias Oechtering

Further Comments

• Orthonormal: Similarly to PAM consider pulses which are orthonormal by time shifts of integer multiples of *T_s*

$$X_{PB}(t) = \sqrt{2}A \sum_{\ell=1}^{n} \operatorname{Re}(C_{\ell}) \psi_{I,\ell}(t) + \sqrt{2}A \sum_{\ell=1}^{n} \operatorname{Im}(C_{\ell}) \psi_{Q,\ell}(t)$$

• Recovering via inner products (different realizations)

$$\operatorname{Re}\left(C_{\ell}\right) = \frac{1}{\sqrt{2}A} \left\langle X_{PB}, \psi_{I,\ell} \right\rangle \qquad \operatorname{Im}\left(C_{\ell}\right) = \frac{1}{\sqrt{2}A} \left\langle X_{PB}, \psi_{Q,\ell} \right\rangle$$

• **Spectral efficiency:** QAM with orthogonal *W*/2-bandwidth pulses sinc(*Wt*) transmits 2*W* real symbols per second and achieves spectral efficiency

$$2\frac{\text{[real dimensions/sec]}}{\text{passband Hz}} = 1\frac{\text{[complex dimensions/sec]}}{\text{passband Hz}}$$

• QAM constellations C: 4-QAM or QPSK, M-PSK, 16 QAM,...

Some QAM constellations

Outlook - Assignment

- Energy, Power of PAM
- Operational Power Spectrum Density
- Passband Modulation: QAM

Next lecture

Complex random variables & processes; energy, power, and PSD of QAM; univariate Gaussian distribution

- Reading Assignment: Chap 17-19
- Homework:
 - Problems in textbook 14.1, 14.2, 14.3, 15.3, 15.6, 16.4, 16.5, 16.7, 16.10.
 - Deadline: Nov 7