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Recapitulation

What did we do last
lecture?
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Outline - Motivation

@ In battery operated devices, energy and power are very
important parameters.

e Energy and Power in PAM (chap 14)

@ PAM waveforms are not WSS, thus PSD is not defined.
o Operational Power Spectrum Density (chap 15)

@ Spectral efficient and flexible modulation scheme for passband
transmission.

e Quadrature Amplitude Modulation (chap 16)
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Energy in PAM
@ Let’s consider PAM waveform

N
X(H) =AY Xg(t- (T,
=1

@ Xy € IR are information carrying symbols (random)
e g € [, energy-limited real pulse
e Ais a scaling factor, T; is the baud period
= Note: X(t) is a stochastic process since X, are random!

Expected Energy

00 N N
E=FE [ I IX(t)[2 dt] = A2 Z Z E [X,Xp [Rgg((€ = £)T5).

& =1 ¢'=1

o self-similarity function Ree(7) = [ g(t + 1)g"(t)dt, T € R
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Discussion: Energy in PAM

N
@ Wehave E=A%gl? Y E [Xg] if we have
=1

e orthogonality condition: [ g(t)g(t — xTs)dt = [Ig]* I {x = 0}, or

e uncorrelated symbols: E[X;X,] = E [X?] 1{t=1¢)

Binary to reals (K,N) block encoder

enc:{0,1}X > RV, Dy,...,Dx > Xq,..., XN

@ Energy per bit: E, = E/K
@ Energy per symbol: E; = E/N
@ Transmitted power: P = E;/T;
e Hmm, does the last relation make sense (missing assumption)?
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Power in PAM

= hm —E[ f I1X(H)I? dt]

@ If a finite number of symbols are send, then P - 0as T — oo!?!

@ Modeling trickery: Pretend infinite sequence of symbols

X(t) = A Z Xog(t — €Ts)

f:—oo

e New problem: Convergence for each ¢?
e Series converges if (i) symbols uniformly bounded (X;), € £- and

(i) pulse decays faster than 1/¢, i.e., da, p > 0: |g()| < T
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Power in PAM if (X/) is centered WSS SP

@ Centered WSS SP: E [Xg] =0and E [Xng_,_m] = Kxx(m)
@ Compute energy in interval [, T + Ts):

+T; T+Ts © 2
E[f T, |X(t)|2dt] :f ! EllA Z ng(t—fTs)] }dt

+Ts

Y Y BIXXe] f §(t = CT)g(t— (C+ mTy) e

M=—00 {=—00

= A2 Z Kx(1m) Z f g(t)g(t' —mT)d¥

m=—o0o {=—00

= A? Z Kxx(m)Rgg(mTs), (< does not depend on 7)

m=—o0
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Sandwich argument

@ Interval [-T,+T)

e contains [2T/Ts] disjoint intervals [7, T + T;) and
@ is contained in the union of [2T/T;] disjoint intervals [z, T + Ts)

so that
2T T+T5 T T+T5
{—JE[ f X dt] < E[ f IX(H)P dt] < [E}E[ f X dt]
Ts T -T T T
@ Sandwich argument: hm ﬁ \_ZT—TJ = 1111‘1’1 L PTTW Tl

. 1 _ T+Ts
= we have Jim 5[] T|X(t>|2dt] FE[ [T xR )

A2 & A?
=T Z Kxx(m)Rgg(mTs) = T||g||20§< |
m=—oo

if Kxx(m)=0% {m=0} 1s
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Time Shifts of Pulses are Orthonormal

@ Orthonormal condition:
f Ot —LTs)p(t — O'Ts)dt =1{€ = '}

e Orthogonality over interval (-0, 00) does not to hold for [-T, T]

o Require decay condition on pulses: da, > 0: [p(t)] < SRR

Consider SP X(t) = AY.;2 _, X¢p(t — €Ts) where ¢(t) satisfies the
decay and orthogonality condition and (X;) € £, then

L
1

1 2 A~ 1 Z 2

hm E[f X0 dt] Ts ng?o 2L+1 A L]E[le’l]

Proof: The proof is technical and combines the previous steps.
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Motivation: Operational Power Spectral Density

@ Motivation: PSD of a WSS SP describes how the power is
distributed among the frequencies.
e PAM waveforms are not WSS!
@ New concept: Operational Power spectral density

@ Coincides with PSD for WSS processes
e Provides an operational meaning

@ Natural approach following the definition of other differential
definitions of densities, we would heuristically define the power
spectral density Sxx(f) as

Power in frequencies [f — 5, f + 5]

Sxx(f) = 1&% A
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Filter Approach

@ Interpretation: Interpret “Power of SP X(t) in frequencies D” as
average power at the output of a filter with transfer function
h(f) =1{f € D} and SP X(t) as input, i.e.,

Power in frequencies D = f I{f € D}Sxx(f)df

Filter Approach

Define the PSD as a function Sxx for which

Power of X x h = f"o (f)PSxx(f) df

holds for all BIBO stable filters , i.e., h € £; (A.L. called them “nice”).

@ Differential definitign implies filter approach. Heuristic argument:
Approximate filter h(f) by a composition of {0, 1}-filters.
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Real Stochastic Processes

@ We want to consider only filters with real impulse responses for
real stochastic processes = |h(f)|* is symmetric, thus

[ iipscnar = [ iOR(sxs( + Sext-p)as

@ Only sum Sxx(f) + Sxx(—f) is specified = Non-unique

= For sake of uniqueness, for real stochastic processes we
additionally require Sxx(f) to be symmetric!

e Once one has identified a function S(f) > 0 which satisfies the
integral equation, then we obtain the symmetrized version by

Sxx(f) = 5(S) + S(-)
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Operational PSD of a Real SP

The real-valued SP X(t) is of operational power spectral density
Sxx(f) if

(i) X(t)is a measurable SP;

(i) the function Sxx(f) is integrable and symmetric; and

(iii) for every stable real filter (h € £;) the average power at the
output of the filter with input X(¢) is given by

Power of X % 1 = foo h(F)PSxx(f) df

4
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Properties

o If f_ojo |fz(f)|zs(f) df = 0 for every complex function# : R — C,
then s(f) is zero for almost all frequencies f'.

o If s(f) is symmetric and [~ [i(f)s(f) df = 0 holds for every
real function 1 : R — R, then s(f) is zero for almost all f.

@ Uniqueness: If Sxx and S/, are both operational PSD for the
real SP X(t), then Sxx(f) = S (f) for aimost all frequencies f.

Definition: Bandlimited SP

A SP X(t) with operational PSD Sxx is bandlimited to W Hz, if
Sxx = 0 for almost all frequencies [f| > .

'That is, the set of frequencies at which they differ is of Lebesgue measure zero.
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Operational PSD of Real PAM Signals

@ Passing a pulse g through a stable filter /1 is equivalent to
changing the pulse from g to g x h.

e Convolutionis linear: (au+ o) xh=auxh+poxh
e Convolution of h(t) with u(t — o) is equal to (u x h)(t — t)

(X *h)(t) = A Z X¢ (g * h)(t — €Ty)

{=—00
= Apply previous results with new pulses g x I to compute power
and compare expressions!
e E.g. (X¢) centered uncorrelated with equal variance. Thus,
2.2
Power of X % h = “7%|g  hP

5-minute exercise

Show that Sxx(f) = A;fgflg(f)l% feR.
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Further Comments

o If (Xy) is centered and WSS

(o]

PowerinX»o(h:foo A Z Kxx(m)e™ ™16 £)2 [ F)Pd
T xx(m)e SOOI h(HI~df

m=—oo

=Sxx(f)
@ Note: Sxx(f) is a symmetric function (why?).

@ About the more formal account in the textbook:
e Issue: The convergence has to be treated more carefully.
e Convert the problem into WSS stochastic process which requires
an interesting “stationarization argument” and apply
Wiener-Khinchin Theorem.
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Let's take a break!
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Motivation Quadrature Amplitude Modulation

@ Our system has bandwidth W around carrier frequency f..
Thus, we can only send non-zero signals at frequencies

If1 - f:| < W/2
= We want linear modulation in passband!

@ With PAM we can communicate R, real symbols/second using
pulses with bandwidth R;/2 Hz = Achievable spectral efficiency:

2 [real dimensions/sec]
[baseband Hz]

@ Can this also be obtained for passband signaling? How?

2 [real dimensions/sec]
[passband Hz]

1 [complex dimensions/sec]
[passband Hz]

=4

e Simple up-conversion using cos(27 f.t) doubles bandwidth!?
e Design pulsed directly for passband is possible, but not flexible
with respect to different carrier frequencies.
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(One) Solution: The QAM Signal

@ Easiest to describe QAM signal by looking at its baseband
representation xpz(-) of the transmitted passband signal xpz(-)
e xpp(-): Structure of PAM, but complex symbols C, and pulses g(-)

Xps(t) = A Y Ceg(t—(T,)
=1

e QAM encoder: ¢ : {0,1}F — C"
o Rate: k/n [bit/complex symbol]

Passband QAM signal

Xpp(f) = 2Re (XBB(t)eiZ”fft) = 2Re

A Z Crglt - €Ts)]

=1

@ If g is bandlimited to W/2 Hz, then QAM signal is bandlimted to
W Hz around carrier frequency f..
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Pass-band signal

@ ... with Re (wz) = Re (w) Re (z) — Im (w) Im (z) we get...
Xpa(t) = V2A)" Re(Cr) gre(t) + V2A Y Im (Cr) g (t)
=1 =1

@ with Inphase and Quadrature components
g1e(t) = 2Re (gap 1e(DE™™),  gpp () = 8t = Ty)
go,(t) = 2Im (gBB,Q,t’(t)eiznfct) , 8BBQ(f) = i%g(t - {Ts)

% factor is normalization for unit energy per dimension

"]
o ... if pulse g is real, then components simplify...
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QAM signal generation if pulses g real

g1e(t) = V2g(t — €T;) cos(2m f.t)

Re(Cz)

{Ce} —

[Re

=]

=]

Im(C)

go(t) = V2g(t - (T,) sin(2m f.t)

A Re(Co)g(t —LTy) ~ A Y, Re(Co)g(t — £Ts) cos(2m fet)

PAM ®

@ cos(2m fet)

rprB t)/2
& (t)/
o]
—sin(27 fet)
(X}
PAM T ¥, Im(Co)g(t —LT,) ——A ¥, Im(Ce)g(t — €T.) sin(2m fot)
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Further Comments

@ Orthonormal: Similarly to PAM consider pulses which are
orthonormal by time shifts of integer multiples of T;

Xpp(t) = V24 Z Re (Cr) Uy (t) + V2A Z Im (Ce) o e(t)
= =1

e Recovering via inner products (different realizations)

% (XpB, Y1,e) Im (Cy) = % <XPB/ I#Q,e)

@ Spectral efficiency: QAM with orthogonal W/2-bandwidth
pulses sinc(Wt) transmits 2W real symbols per second and
achieves spectral efficiency

Re (Cy) =

[real dimensions/sec] [complex dimensions/sec]

passband Hz B passband Hz
@ QAM constellations C: 4-QAM or QPSK, M-PSK, 16 QAM,...
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Some QAM constellations

4-QAM 16-QAM

8-PSK 32-QAM
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Outlook - Assignment

@ Energy, Power of PAM
@ Operational Power Spectrum Density
@ Passband Modulation: QAM

Complex random variables & processes; energy, power, and PSD of
QAM; univariate Gaussian distribution

@ Reading Assignment: Chap 17-19
@ Homework:

o Problems in textbook 14.1, 14.2, 14.3, 15.3, 15.6, 16.4, 16.5,
16.7, 16.10.
e Deadline: Nov 7
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