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Summary:!
!
Recent!technological!breakthroughs!in!optics!and!nanomaterials!have!enabled!the!study!of!biological!
systems!with!unprecedented!detail,!but!the!ease!of!use!and!the!costs!of!such!instruments!can!be!a!
barrier!to!biologists!and!biomedical!researchers.!Our!group!has!pioneered!a!new!class!of!tools!based!
on!our!nanopipette!technology.!We!see!nanopipette!as!the!“biologist’s!voltmeter.”!Just!as!a!
voltmeter!is!a!simple!tool!for!studying!different!aspects!of!an!electrical!system.!Nanopipette!can!be!
used!to!interrogate!biological!systems!at!the!nanoscale,!from!individual!proteins!to!living!cells.!
During!my!talk,!I!will!discuss!our!approach!targeting!a!number!of!applications!using!the!functionalized!
nanopipette,!a!glass!nanopore!that!can!be!modified!with!chemical/biological!receptors.!In!addition,!
electrically!controlled!positioning!of!the!needle;like!nanopipette!enables!the!nondestructive!injection,!
aspiration,!and!manipulation!of!individual!living!cells.!While!the!nanopipette!itself!is!a!simple!device,!
developing!it!into!an!affordable,!versatile!system!that!can!be!used!by!researchers!of!different!
disciplines!!
!

!

! ! ! ! !
WELCOME!!!
!
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Figure 1: Also cited in articleReconciliations. (A) A gene tree reconciled to a
species tree with GL, GD and LGT events. The same gene tree can be reconciled
with (B) only GD and GL events, and (C) only LGT events. (D) Illustration
of constraints implied by SE and a relaxed molecular clock rate model. The edge
lengths induced by sequence divergence imply, under this model, a probability
distribution for the divergence time of vertex v and assist in discriminating
between di↵erent scenarios. During an MCMC iteration, the contributions from
all possible reconciliations and realizations thereof are summed together.
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RATES SEQUENCES

ACTA…GA 
   :          : 
   :          :  
AGTA…GT

δ,µ,…

REALIZATION 

Probabilistic model

SPECIES TREE 
WITH TIME ! GENE TREE

Sequence evolution
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Figure 3: Reconciliations and realizations. Two di↵erent reconciliations of the
same gene tree, each of which is illustrated with two realizations.

Figure 4: Discretization of the species tree. White points illustrate discretization
points, horizontal lines the intervals corresponding to the points. In particular,
the grey horizontal lines represent the introduced additional vertices contampo-
raneous to a speciation.
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DLRS (DELIRIOUS)

THE TEXT 
BOOK

★ New  

★ Key machine learning 
researcher 

★ Comprehensive



★ Exercises – not graded 

★ Homework (3) – Individual, handed in and graded 

★ out – nov 14, nov 28, dec 12 

★ Project (1) – Individual, handed in and graded 

★ out – dec 12

ADMINISTRATION - 
EXAMINATION

or

KRISTOFFER'S 
COMMENTS

1. Use latex, you will have to use it later anyway (this is a 
recommendation) 

2. Always include your name in the file with the solutions 

3. Make each step in a derivation explicit

INTERACTION

Lectures 

Solutions: mail, Scilife, or lectures 

KTH social www.kth.se/social/
course/DD2447/ 

WHY MACHINE 
LEARNING?

★ The era of big data 

★ Transaction data for large corporations 

★ Walmart has 2.5 petabytes (2.5*1015) and handle 
1M/hour 

★ A human genome is 6 Gb 

★ Meta-genomics  

★ Baltic sea, hot-springs, your gut 

★  A coke can can contain more microbes than there 
are north-americans



STATISTICS, ML, DATA 
MINING?

★Statistics — closed formulas 

★Statistical ML  — computational methods 

★ they share models, probability 

★We will often apply a Bayesian approach 

★Data mining — less mathematical

SOME STUFF I EXPECT 
YOU TO KNOW

★ Supervised learning 

★ Unsupervised learning 

★ Training & testing

We have the answer            means yes otherwise no 

SUPERVISED LEARNING

UNSUPERVISED 
LEARNING

★ We do not have any correct 
answer 

★ Find classes or groups



SOME STUFF I EXPECT 
YOU TO KNOW
★ Supervised learning 

★ D={(xi,yi)} 

★ y_i response variable 
(output variable) 

★ x_i features (input 
variables) 

★ classification & 
regression 

★ Unsupervised learning 

★ find the right yi’s, or  

★ find the right 
dependencies between 
the variables of xi

We have the answer            means yes otherwise no 

BINARY CLASSIFICATION

★       means apple,         means pear, otherwise other

CATEGORICAL 
CLASSIFICATION

CLASSIFICATION

y = y =

x’s



PROBABILISTIC PREDICTION

p( yes | blue moon,D)

0 10

1

recall

pr
ec
is
io
n

AB

The probability of an answer

TRAINING – 
TEST   

Split data D into  

training D1 

test D2 

Use misclassification rate 

Problem: overfitting

D

D1 D2

CROSS-
VALIDATION
Leave-one-out 

let  Di = D\ xi 

test on xi 

Use misclassification rate 

Redundancy, overlap

D1 Dk

D

D2

…

…
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REGRESSION

★ Size 
★ Floor 
★ Location



REAL WORLD 
APPLICATIONS 

★ Googles smartass (ad selection system)  
★ personalisation  

★ Mail filter 
★ Handwriting recognition 

★ MNIST a dataset with 60000 training and 6.000 test images 
(of digits 0,.., 9) 

★ Face recognition 
★ Differentiate between setosa, versicolor, and virginica ???

SETOSA, VERSICOLOR, AND 
VIRGINICA

HIGH SCHOOL  
BIOLOGY

★ Petal – attracting insects 
and pollinators 

★ Sepal – formerly protected 
the bud

se
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sepal length
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sepal width petal length petal width

SETOSA, VERSICOLOR, AND 
VIRGINICA 	 ★	 sepal length, sepal width, petal 

length, and petal width.




UNSUPERVISED 
LEARNING

★ We do not have any correct 
answer 

★ Find classes or groups
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K=2

CLUSTERING
★ Each  subset should contain similar points 

★  Pairs of subsets should have dissimilar points.

HIERARCHICAL CLUSTERING

Molecular breast cancer data
5 subtypes

COLLECTIVE FILTERING



lambda=7.00, nedges=18

DISCOVERING GRAPH 
STRUCTURE

DIRECTED GRAPHICAL 
MODELS

PARAMETRIC VS NON-
PARAMETRIC

★ Constant # parameters – parametric model (any 
distribution) 

★ Representation grows with data – non-parametric model

K-NEAREST NEIGHBOUR  
(K-NN)

1-NN3-NN

K-NN p(y = c|x,D,K) =
1
K

�

n�NK(x,D)

I(yn = c)



K-NEAREST NEIGHBOUR

p(y=1|data,K=10)
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THE CURSE 

s

1

1

0

Assume small 
Euklidean  is 
necessary 

Fraction of 
cube with side, 
say, 1/2 is 
(1/2)D 

So is expected 
fraction of 
points in the 
smaller cube
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REGRESSION

★ Size 
★ Floor 
★ Location

LINEAR REGRESSION 
★ Fit line to data, i.e., find w and use 

★ w – model weight vector,   𝛽 in statistiks  

★ ε – residual error 

y(x) = wT x + � =
D�

d=1

wdxd + �

� � N (µ,�2)
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OVERFITTING

BAYESIAN
Fair (F) Biased/loaded (B)

★ A is the event 6,6,6 

★ Bayesian  

★ We get 

P (6|B) =
1
2

P (6|B) =
1
10

,�i � [5]

P (i|F ) =
1
6

P (M |A) =
P (A|M)P (M)

P (A)
The same for F & B

Used 1%

Used 99%

P (A|B)P (B) =
1
2

3

� 0.01 P (A|F )P (F ) =
1
6

3

� 0.99<

★ All models are wrong, but some are useful. 

★ Models are what we call the lies we are used to 

★ There are no model free approaches! 

★ use the term assumption instead 

★ Using models is a way to make assumptions explicit. 

★ Bayesian is a non-deterministic logic.

SOME THOUGHTS ON 
MODELING K-MEANS

★ Data vectors D={x1,…,xN} 

★ Randomly selected classes z1,…,zN 

★ Iteratively do 

★ One step O(NKD), can be improved

µc =
1

Nc

�

n:zn=c

xn, where Nc = |{n : zn = c}|

zn = argminc||xn � µc||2



EXAMPLE
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Expected complete: notation
log p(xn|��)

= log
�

zn

p(xn,zn|��)

= log
�

zn

p(zn|xn,�)
p(xn,zn|��)
p(zn|xn,�)

= log Ezn

�
p(xn,zn|��)
p(zn|xn,�)

| xn,�

�

�Jensen Ezn

�
log
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=
�

zn

p(zn|xn,�) log
p(xn,zn|��)
p(zn|xn,�)

=
�

zn

p(zn|xn,�) log p(xn,zn|��)�
�

zn

p(zn|xn,�) log p(zn|xn,�)

= Qn(��;�)�Rn(�;�)

COMBINING INFO FROM 
VARIOUS SENSORS

Sensor fusion in dynamical systems
Thomas Schön, users.isy.liu.se/rt/schon

The University of British Columbia
Vancouver, Canada

The sensor fusion problem

• Inertial sensors
• Camera
• Barometer

• Inertial sensors
• Radar
• Barometer
• Map

• Inertial sensors
• Cameras
• Radars
•Wheel speed sensors
• Steering wheel sensor

• Inertial 
sensors
• Ultra-

wideband

How do we  combine the information from the different sensors?

Might all seem to be very different problems at first sight. However, the same 
strategies can be used in dealing with all of these applications (and many more).

Aim: Motion capture, find the motion (position, orientation, velocity and 
acceleration) of a person (or object) over time.

10 12 14 16 18 20 22

4

6

8

10

12

14

 

 

observed

truth

0 1 2 3
-
-
-
-
0
0
0
0

4
0
0
0
0
0
0
0

0
0
3
0
6
0
1
0

0
4
0
0
0
0
0
0

4
1
0

3
1
0

2
0
1

4
0
0

0
0
0

0
0
0 4

2
1

0
0
0

-
-
-

A
C
G
T
A
C
G
T
M-M
M-D
M-I
I-M
I-D
I-I
D-M
D-D
D-I

0
1
0

0
0
2

1
0
0

match
emissions

insert
emissions

state
transitions

M

(b) Profile-HMM architecture:

0

x x . . . x
(a) Multiple alignment:

A G - - - C
A - A G - C
A G - A A -
- - A A A C
A G - - - C

bat
rat
cat
gnat
goat

2 . . .1 3

model position
(c) Observed emission/transition counts

M EndBegin M M M

I I I I

D D D

10 2 3 4

HMMS ANS SSM



x

uMq(x  )

Accept region Reject region

x  ~ q(x)(i)

(i)

(i)

(i)

p(x  )

Mq(x  )

REJECTION 
SAMPLING

Algorithm 

★ sample x~q(x) 

★ sample u~U(0,1) 

★ if uMq(x) ≤ p(x), accept 
(and output x)

~

MARKOV CHAINS 
(DISCRETE)

p1

p2

Probabilities on outgoing edges sum to one 

pd

∑i∈[d] pi =1

importans sampling

kalman filter

particel filter 

gibbs sampling

IS THE CHIMP OUR 
CLOSEST RELATIVE?

PHYLOGENY
Input: species  
Output: tree where proximity correlates with similarity
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MrBayes 3: Bayesian phylogenetic inference
under mixed models
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ABSTRACT
Summary: MrBayes 3 performs Bayesian phylogenetic
analysis combining information from different data par-
titions or subsets evolving under different stochastic
evolutionary models. This allows the user to analyze
heterogeneous data sets consisting of different data
types—e.g. morphological, nucleotide, and protein—
and to explore a wide variety of structured models mixing
partition-unique and shared parameters. The program em-
ploys MPI to parallelize Metropolis coupling on Macintosh
or UNIX clusters.
Availability: http://morphbank.ebc.uu.se/mrbayes.
Contact: fredrik.ronquist@ebc.uu.se

Computational complexity has long been a major ob-
stacle in the development of statistical approaches to
phylogenetic inference. Even moderate-sized empirical
problems have posed serious challenges to computational
biologists, forcing compromises in analytical accuracy.
However, the recent introduction of Bayesian inference
and Markov chain Monte Carlo (MCMC) techniques to
phylogenetics has changed this situation. Early Bayesian
phylogenetics papers showed that Markov chains based on
the Metropolis–Hastings algorithm were computationally
more efficient than the standard Maximum Likelihood
(ML) bootstrapping approach (Larget and Simon, 1999).
It is now known that problems with more than 350
sequences (taxa) can be analyzed successfully with mod-
erate computational effort using Bayesian inference and
an MCMC convergence acceleration technique known
as Metropolis coupling (Huelsenbeck et al., 2001). Such
problems are set on tree spaces many orders of magnitude
larger than those amenable to ML bootstrapping.
The increase in computational efficiency associated

with the Bayesian MCMC approach makes it possible to
analyze more complex and realistic evolutionary models
than previously. Currently, an important but commonly

∗To whom correspondence should be addressed.

invoked constraint on model complexity is the assumption
of data homogeneity. Many phylogenetic data sets now
include evidence from several different sources: morphol-
ogy and molecules, amino acid and nucleotide data, or
sequences from the mitochondrial, plastid and nuclear
genomes. However, the available software commonly
forces the investigator to either: (1) model the evolution
of such data using a single stochastic model; (2) analyze
the different data partitions or subsets separately and use
ad hoc methods to obtain a summary result; or (3) resort
to simple search algorithms or non-statistical methods.
None of these alternatives is particularly attractive.
MrBayes 3 is a completely rewritten and restructured

version of MrBayes, a command-driven program for
Bayesian phylogenetic inference (Huelsenbeck and
Ronquist, 2001). The hallmark of the new program is a
powerful framework for phylogenetic inference under
mixed models accommodating data heterogeneity. This
framework will help the user to specify mixed models and
exploit the computational efficiency of Bayesian MCMC
analysis in dealing with composite data sets.
Bayesian phylogenetic inference is based on Bayes’s

rule. Applied to the phylogeny problem, the rule can be
expressed as follows

f (τ, v, θ |X) = f (τ, v, θ) f (X |τ, v, θ)

f (X)

where X is the data matrix, τ is the topology of the tree, v
is a vector of branch (or edge) lengths on the tree, and θ is
a vector of substitution model parameters. The distribution
f (τ, v, θ) is referred to as the prior, and specifies the prior
probability of different parameter values; f (X |τ, v, θ) is
the likelihood function, describing the probability of the
data under different parameter values; and f (X) is the
total probability of the data summed and integrated over
the parameter space. Bayesian inference is based on the
so-called posterior distribution f (τ, v, θ |X).
Typically, it is not possible to calculate the posterior

probability distribution analytically; instead, MCMC tech-

1572 Bioinformatics 19(12) c⃝ Oxford University Press 2003; all rights reserved.
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OUR ORIGIN

MCMC

★ In order to sample from p, set up a MC M 
★ select transition probabilities so that p = stationary distribution 
★ sample from M

p
q

CONTENT
★ Chapter 1: Introduction. 

★ Chapter 2: Probability. 

★ Chapter 3: Generative models for 
discrete data. 

★ Chapter 4: Gaussian models.  

★ Chapter 5: Bayesian statistics. 

★ Chapter 10: Directed graphical 
models. Probably deeper. 

★ Chapter 18: SSM (HMMs) 

★ (Chapter 19. Undirected graphical 
models.) 

★ Chapter 20 Exact inference for 
graphical models.  

★ Chapter 23: Monte Carlo inference. 

★ Chapter 24: Markov Chain Monte 
Carlo.  

★ Chapter 25: Clustering 

★ Chapter 26: Graphical Model 
Structure Learning 

★ Particle MCMC


