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Today: 
- Challengers with mobile 
    services  
 - Platforms 
 - Android 



What is a Mobile Service? 



Mobile devices 

Pico   Pocket  Palm   Pad   Lap   Desk 

Sensor Mobile PDA  E-reader Laptop PC 

Card  Smartphone  Net-book 

 Pulsmeter, Glasses, …   Tablet 

 



Smartphone vs Feature phone 

• Smartphone - “A handheld computer integrated within a mobile telephone” 

• Smartphones run complete operating system software providing a platform for 
application developers 

• Common features (italics: usually not on a feature phone) 
- Play media 
- Connect to internet 
- Touch screen 
- Hard/Soft keyboard 
- Run third party software (e.g. J2ME or “apps”) 
- Run third party software written in a native language 
- Additional devices like WiFi, GPS, accelerometer, …  
- Access to hardware 

 

 



Market 



Market 

Computer Sweden, februari 2012 



Some platforms 

• Symbian OS (derived from EPOC). API: C++. 
Open source, today maintained by Nokia (no new models after 2013) 

• Java Micro Edition: Cross platform; runs on a virtual machine on top of other OS. 
Designed for embedded systems. Down-scaled Java API. 

• iPhone and iPad running on iOS (derived from Mac OS X, Unix-like).  
Application programming: Objective C. 

• Android. Linux kernel + Dalvik Virtual Machine running applications.  
Application programming : Java dialect.  
Open source, maintained by Open Handset Alliance 

• Windows Phone - operating system with 3rd party and Microsoft services. 
Application programming : C#, C++, Visual Basic 
 



Smartphone platforms , 2013 

Source: http://www.millennialmedia.com/mobile-intelligence/mobile-mix/ 



Market; App Stores 

• Revolution in distribution of mobile applications. 

• Applications available for download “over the air” (June 2011) 
- App Store: 400 000 (from approximately 30 000 developers)  
[2012: over 1.1 million apps] 
- Google Play (former Android Market): 400 000  
[2012: 1.3 million apps, over 50 billion downloads] 
- Windows Phone Marketplace:  > 20 000 
[2012: 100 000 apps] 

• App Store 2009: 
Every app store user spends an average of €4.37 every month.  
There is over 58 million app store users. 

• Advertising… 



Typical Smartphone specs (as of Jan 2013) 

 

 

 

iPhone 5 Samsung 
Galaxy S III 

Typical PC 

Mass storage 16-64 GB 16-64 GB 
(microSD, up 
to 64 GB) 

1 TB 

RAM 
 

1 GB 1 GB 8-16 GB 

Processor Dual-core  
1.2 GHz 

Quad-core 
Cortex-A9 
1.4 GHz 

3-3.5 GHz* 

Battery Stand 
by/Talk 

300 hours/420 
minutes 

220 hours/480 
minutes 

- 



Expect this when developing software for limited 
devices (such as smartphones) 

• Limited memory capacity and processor speed 
Limited battery capacity 

• Network: High latency, low speeds, possibly interrupted 
Communication (might) be associated with a cost! 

• Small screens, of different sizes and different densities 

• Application might get interrupted at any time! 

• Hardware-imposed design considerations  
Fragmentation of platforms 

• Design with this in mind: 
 Be efficient and be responsive 



What’s consuming memory, processor resources 
and battery capacity? 

• Memory 
- Unnecessary allocation of objects 
- Inefficient data structures 
- Size of application code(!) 
- Multiple processes 

• Processor recources 
- Inefficient algorithms 
- Garbage Collection(!) 
- Multiple processes and threads 
- Rendering of GUI 
- Unnessecary polling 

• Battery  
- Processor working 
- Network communication, especially when using WiFi and Bluetooth 
 



Challenges with mobile data 

• Low bandwidth, Frequency vs. Bandwidth 

• GSM, GPRS, EDGE, 3G/4G, WLAN, LAN 

• Wireless connection using different networks 

• Datacom vs. Telecom - Best effort vs. Quality of Service 

• Cost and distance 

• Push vs. Pull 

• Question regarding benefit, design and standards  



Java Micro Edition 

• In the middle of the 90s OAK was developed (Java predecessor) 
1999 Palm included KVM (Kilobyte Virtual Machine) 

• Supposed to work on: 
- Feature phones and PDA 
- set-top boxes, TV  
 and other embedded  
devices 
- smart cards 

 



CLDC and CDC 

• Two different Java ME configurations: 

• CLDC (Connected Limited Device Configuration) Focus on the most limited 
devices 

• CDC (Connected Device Configuration) Devices that almost handle a 
complete Java environment 

• Why: 

• One common ground for similar devices 

• Keep “core” API’s between different devices 

• Define requirements on virtual machines 



Java Micro Edition 

• There are billions of Java ME enabled mobile phones and PDAs 

• Java ME might become an old technology, as it is not used on any of today's 
newest mobile platforms; 
e.g. iPhone, Android, Windows Phone 7, BlackBerry's new QNX 

• http://www.oracle.com/technetwork/java/javame/overview/index.html  

http://www.oracle.com/technetwork/java/javame/overview/index.html


At last… 

• Android is: A mobile device platform including  
an OS based on the Linux kernel, middleware  
and key applications 

• Designed to support many different hardware devices 

• Applications run on the Dalvik Virtual Machine 

• An extensive API, including most Java SE classes, for 3rd party application 
development 

• Available under a free software / open source license (no license cost) 
Standard maintained by Open Handset Alliance, a consortium including  
Texas Instruments, Google, HTC, Intel, Motorola, SonyEricsson, Samsung, ... 
 

 



The Android Software Stack 



The Dalvik VM 

• Every Android application runs in its own process, with its own instance of the Dalvik 
virtual machine.  

• Android launches a process when any of the application's code needs to be 
executed (if not already running).  

• And, yes, Dalvik is compact and efficient - a device can run multiple VMs in 
parallel. 

• By default no “exit application”. 
The process is shut down when it's no longer needed and system resources are 
required by other applications – unpredictable!  

• The Dalvik VM executes files in the Dalvik Executable (.dex) format which is 
optimized for minimal memory footprint 

• JIT, Just-In-Time compilation enhance performance (since Android 2.2) 

 



Android applications 

• Android applications don't have a single entry point (no main method) 
Instead: The application consists of one or more essential components which 
the system can instantiate and run as needed 

• Activities holding View components and references to the model; also entry point for 
user actions 

• Services doesn't have a visual user interface, but rather runs tasks in the 
background 

• Broadcast receivers receive and react to broadcast announcements, e.g. battery is 
low, e-mail received, … 

• Content providers makes a specific set of the application's data available to other 
applications 

 



Android applications, Activities 

• When the first of an application's components needs to be run, Android starts 
a Linux process for it with a single thread of execution.  
By default, all components of the application run in that process and thread.  

An activity has essentially three states: 

• active or running when it is in the foreground  

• paused if it has lost focus but is still visible to the user  

• stopped if it is completely obscured by another activity 



Android applications, Activities 

• A paused or stopped activity retains all state and member information, 
however… 

• …the system may kill the process running the activity from memory when 
memory is needed elsewhere 

• As an activity transitions from state to state, it is notified of the change by calls 
to the following protected methods:  

• void onCreate(Bundle savedInstanceState)  
void onStart()  
void onRestart()  
void onResume()  
void onPause()  
void onStop()  
void onDestroy() 

 



Activity lifecycle 

process is ”killable” 



Saving Activity (UI) state 



Android applications, Activities 

package se.kth.anderslm.hello; 
 
import android.app.Activity; 
import . . .; 
 
public class HelloAndroid  
   extends ActionBarActivity { 
    // Called when the activity is first created 
    @Override 
    public void onCreate( 
   Bundle savedInstanceState) { 
        super.onCreate(savedInstanceState); 
        TextView tv = new TextView(this); 
        tv.setText("Hello, Android!"); 
        setContentView(tv); 
    } 
    . . . 
} 



Preferable: Layout defined in res/layout/activity_main.xml 

<RelativeLayout 
xmlns:android="http://schemas.android.com/apk/res/android" 
    xmlns:tools="http://schemas.android.com/tools" 
    android:layout_width="match_parent" 
    android:layout_height="match_parent" 
    android:paddingBottom="@dimen/activity_vertical_margin" 
    android:paddingLeft= . . . 
    . . . 
    tools:context="se.kth.anderslm.hello.MainActivity" > 
 
    <TextView 
        android:layout_width="wrap_content" 
        android:layout_height="wrap_content" 
        android:text="@string/hello_world" /> 
 
</RelativeLayout> 



Cont: Load/inflate layout in Actvivity.onCreate 

package se.kth.anderslm.hello; 
 
import . . .; 
 
public class MainActivity  
   extends ActionBarActivity { 
 
   @Override 
   protected void onCreate( 
   Bundle savedInstanceState) { 
      super.onCreate(savedInstanceState); 
      this.setContentView(R.layout.activity_main); 
   } 
   . . . 
} 



Android from the perspective of the developer 

• High level Java APIs for accessing hardware such as camera, GPS, 
accelerometer – same interface for different devices 

• Native and 3rd party applications are treated equal. You may 
- replace native applications  
- access the same underlying data and hardware 
- use components of native applications 

• Reuse of application components (Activities) in other applications possible 

• Support for background services 

• WebKit, persistent storage using SQLite, OpenGL, …  

 



Android from the perspective of the developer 

APIs including 

• WiFi hardware access. GSM and 3G for telephony or data transfer 

• GPS 

• Bluetooth 

• HTML 5 WebKit-based browser  

• Hardware accelerated graphics (if possible) including OpenGL 

• And more… 

 



Some ”Designing For Performance” guide lines 

• Memory management 
- Avoid creating unnessecary objects 
- When concatenating text in a loop – use a StringBuffer instead of Strings 

• Minimize (virtual) method calls 
- Avoid internal use of getters and setters  
- Declare methods that don’t access member fields as ”static” 

• Use the ”for-each” loop except for arrays and ArrayLists 

• Know and use the API-libraries – they are probably more efficient than your 
custom code (e.g. animations) 

• Use events +callbacks methods instead of polling for data 



Android – where to go from here? 

• This is where you find it all: 
http://developer.android.com/index.html 

• Introduction to Android the Android platform “Androidology” part 1, 2 and 3 on 
Youtube 

• More on developing for performance: 
Meier, pp 38-47 
http://developer.android.com/guide/practices/design/performance.html  

http://developer.android.com/index.html
http://developer.android.com/guide/practices/design/performance.html
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