
Mobila applikationer och
trådlösa nät,
HI1033,
HT 2014

Today:
- Challengers with mobile
 services
 - Platforms
 - Android

What is a Mobile Service?

Mobile devices

Pico Pocket Palm Pad Lap Desk

Sensor Mobile PDA E-reader Laptop PC

Card Smartphone Net-book

 Pulsmeter, Glasses, … Tablet

Smartphone vs Feature phone

• Smartphone - “A handheld computer integrated within a mobile telephone”

• Smartphones run complete operating system software providing a platform for
application developers

• Common features (italics: usually not on a feature phone)
- Play media
- Connect to internet
- Touch screen
- Hard/Soft keyboard
- Run third party software (e.g. J2ME or “apps”)
- Run third party software written in a native language
- Additional devices like WiFi, GPS, accelerometer, …
- Access to hardware

Market

Market

Computer Sweden, februari 2012

Some platforms

• Symbian OS (derived from EPOC). API: C++.
Open source, today maintained by Nokia (no new models after 2013)

• Java Micro Edition: Cross platform; runs on a virtual machine on top of other OS.
Designed for embedded systems. Down-scaled Java API.

• iPhone and iPad running on iOS (derived from Mac OS X, Unix-like).
Application programming: Objective C.

• Android. Linux kernel + Dalvik Virtual Machine running applications.
Application programming : Java dialect.
Open source, maintained by Open Handset Alliance

• Windows Phone - operating system with 3rd party and Microsoft services.
Application programming : C#, C++, Visual Basic

Smartphone platforms , 2013

Source: http://www.millennialmedia.com/mobile-intelligence/mobile-mix/

Market; App Stores

• Revolution in distribution of mobile applications.

• Applications available for download “over the air” (June 2011)
- App Store: 400 000 (from approximately 30 000 developers)
[2012: over 1.1 million apps]
- Google Play (former Android Market): 400 000
[2012: 1.3 million apps, over 50 billion downloads]
- Windows Phone Marketplace: > 20 000
[2012: 100 000 apps]

• App Store 2009:
Every app store user spends an average of €4.37 every month.
There is over 58 million app store users.

• Advertising…

Typical Smartphone specs (as of Jan 2013)

iPhone 5 Samsung
Galaxy S III

Typical PC

Mass storage 16-64 GB 16-64 GB
(microSD, up
to 64 GB)

1 TB

RAM

1 GB 1 GB 8-16 GB

Processor Dual-core
1.2 GHz

Quad-core
Cortex-A9
1.4 GHz

3-3.5 GHz*

Battery Stand
by/Talk

300 hours/420
minutes

220 hours/480
minutes

-

Expect this when developing software for limited
devices (such as smartphones)

• Limited memory capacity and processor speed
Limited battery capacity

• Network: High latency, low speeds, possibly interrupted
Communication (might) be associated with a cost!

• Small screens, of different sizes and different densities

• Application might get interrupted at any time!

• Hardware-imposed design considerations
Fragmentation of platforms

• Design with this in mind:
 Be efficient and be responsive

What’s consuming memory, processor resources
and battery capacity?

• Memory
- Unnecessary allocation of objects
- Inefficient data structures
- Size of application code(!)
- Multiple processes

• Processor recources
- Inefficient algorithms
- Garbage Collection(!)
- Multiple processes and threads
- Rendering of GUI
- Unnessecary polling

• Battery
- Processor working
- Network communication, especially when using WiFi and Bluetooth

Challenges with mobile data

• Low bandwidth, Frequency vs. Bandwidth

• GSM, GPRS, EDGE, 3G/4G, WLAN, LAN

• Wireless connection using different networks

• Datacom vs. Telecom - Best effort vs. Quality of Service

• Cost and distance

• Push vs. Pull

• Question regarding benefit, design and standards

Java Micro Edition

• In the middle of the 90s OAK was developed (Java predecessor)
1999 Palm included KVM (Kilobyte Virtual Machine)

• Supposed to work on:
- Feature phones and PDA
- set-top boxes, TV
 and other embedded
devices
- smart cards

CLDC and CDC

• Two different Java ME configurations:

• CLDC (Connected Limited Device Configuration) Focus on the most limited
devices

• CDC (Connected Device Configuration) Devices that almost handle a
complete Java environment

• Why:

• One common ground for similar devices

• Keep “core” API’s between different devices

• Define requirements on virtual machines

Java Micro Edition

• There are billions of Java ME enabled mobile phones and PDAs

• Java ME might become an old technology, as it is not used on any of today's
newest mobile platforms;
e.g. iPhone, Android, Windows Phone 7, BlackBerry's new QNX

• http://www.oracle.com/technetwork/java/javame/overview/index.html

http://www.oracle.com/technetwork/java/javame/overview/index.html

At last…

• Android is: A mobile device platform including
an OS based on the Linux kernel, middleware
and key applications

• Designed to support many different hardware devices

• Applications run on the Dalvik Virtual Machine

• An extensive API, including most Java SE classes, for 3rd party application
development

• Available under a free software / open source license (no license cost)
Standard maintained by Open Handset Alliance, a consortium including
Texas Instruments, Google, HTC, Intel, Motorola, SonyEricsson, Samsung, ...

The Android Software Stack

The Dalvik VM

• Every Android application runs in its own process, with its own instance of the Dalvik
virtual machine.

• Android launches a process when any of the application's code needs to be
executed (if not already running).

• And, yes, Dalvik is compact and efficient - a device can run multiple VMs in
parallel.

• By default no “exit application”.
The process is shut down when it's no longer needed and system resources are
required by other applications – unpredictable!

• The Dalvik VM executes files in the Dalvik Executable (.dex) format which is
optimized for minimal memory footprint

• JIT, Just-In-Time compilation enhance performance (since Android 2.2)

Android applications

• Android applications don't have a single entry point (no main method)
Instead: The application consists of one or more essential components which
the system can instantiate and run as needed

• Activities holding View components and references to the model; also entry point for
user actions

• Services doesn't have a visual user interface, but rather runs tasks in the
background

• Broadcast receivers receive and react to broadcast announcements, e.g. battery is
low, e-mail received, …

• Content providers makes a specific set of the application's data available to other
applications

Android applications, Activities

• When the first of an application's components needs to be run, Android starts
a Linux process for it with a single thread of execution.
By default, all components of the application run in that process and thread.

An activity has essentially three states:

• active or running when it is in the foreground

• paused if it has lost focus but is still visible to the user

• stopped if it is completely obscured by another activity

Android applications, Activities

• A paused or stopped activity retains all state and member information,
however…

• …the system may kill the process running the activity from memory when
memory is needed elsewhere

• As an activity transitions from state to state, it is notified of the change by calls
to the following protected methods:

• void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Activity lifecycle

process is ”killable”

Saving Activity (UI) state

Android applications, Activities

package se.kth.anderslm.hello;

import android.app.Activity;
import . . .;

public class HelloAndroid
 extends ActionBarActivity {
 // Called when the activity is first created
 @Override
 public void onCreate(
 Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 TextView tv = new TextView(this);
 tv.setText("Hello, Android!");
 setContentView(tv);
 }
 . . .
}

Preferable: Layout defined in res/layout/activity_main.xml

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft= . . .
 . . .
 tools:context="se.kth.anderslm.hello.MainActivity" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/hello_world" />

</RelativeLayout>

Cont: Load/inflate layout in Actvivity.onCreate

package se.kth.anderslm.hello;

import . . .;

public class MainActivity
 extends ActionBarActivity {

 @Override
 protected void onCreate(
 Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 this.setContentView(R.layout.activity_main);
 }
 . . .
}

Android from the perspective of the developer

• High level Java APIs for accessing hardware such as camera, GPS,
accelerometer – same interface for different devices

• Native and 3rd party applications are treated equal. You may
- replace native applications
- access the same underlying data and hardware
- use components of native applications

• Reuse of application components (Activities) in other applications possible

• Support for background services

• WebKit, persistent storage using SQLite, OpenGL, …

Android from the perspective of the developer

APIs including

• WiFi hardware access. GSM and 3G for telephony or data transfer

• GPS

• Bluetooth

• HTML 5 WebKit-based browser

• Hardware accelerated graphics (if possible) including OpenGL

• And more…

Some ”Designing For Performance” guide lines

• Memory management
- Avoid creating unnessecary objects
- When concatenating text in a loop – use a StringBuffer instead of Strings

• Minimize (virtual) method calls
- Avoid internal use of getters and setters
- Declare methods that don’t access member fields as ”static”

• Use the ”for-each” loop except for arrays and ArrayLists

• Know and use the API-libraries – they are probably more efficient than your
custom code (e.g. animations)

• Use events +callbacks methods instead of polling for data

Android – where to go from here?

• This is where you find it all:
http://developer.android.com/index.html

• Introduction to Android the Android platform “Androidology” part 1, 2 and 3 on
Youtube

• More on developing for performance:
Meier, pp 38-47
http://developer.android.com/guide/practices/design/performance.html

http://developer.android.com/index.html
http://developer.android.com/guide/practices/design/performance.html

	Mobila applikationer och trådlösa nät, �HI1033, �HT 2014��
	What is a Mobile Service?
	Mobile devices
	Smartphone vs Feature phone
	Market
	Market
	Some platforms
	Smartphone platforms , 2013
	Market; App Stores
	Typical Smartphone specs (as of Jan 2013)
	Expect this when developing software for limited devices (such as smartphones)
	What’s consuming memory, processor resources and battery capacity?
	Challenges with mobile data
	Java Micro Edition
	CLDC and CDC
	Java Micro Edition
	At last…
	The Android Software Stack
	The Dalvik VM
	Android applications
	Android applications, Activities
	Android applications, Activities
	Activity lifecycle
	Saving Activity (UI) state
	Android applications, Activities
	Preferable: Layout defined in res/layout/activity_main.xml
	Cont: Load/inflate layout in Actvivity.onCreate
	Android from the perspective of the developer
	Android from the perspective of the developer
	Some ”Designing For Performance” guide lines
	Android – where to go from here?

