
Applied Programming and Computer Science,
DD2325/appcs14

PODF, Programmering och datalogi för fysiker,
DA7011

Autumn 2014

A. Maki, C. Edlund
atsuto@kth.se

Course Information

https://www.kth.se/social/course/DD2325/

Goal

– To improve the programming technique, and
– To gain basic knowledge about program and data structures.

Who are teaching?

Atsuto Maki, CSC/KTH

Niyazi Cem Degirmenci, Teaching Assistant, CSC/KTH

Alex Loiko, Teaching Assistant, CSC/KTH

Fredrika Agestam, Teaching Assistant, CSC/KTH

Carina Edlund, Administration Assistant, CSC/KTH

The course contents are given through:

Lectures

Exercises/Labs (Primary contact: ncde@kth.se )

NB! Do register to the course, and to the exam.

After completing the course the student should be able to

write structured programs in Matlab and small programs C

do systematic error search in programs

describe and use different data types

use abstraction as a tool to simplify programming

compare algorithms with respect to time and memory needs,
complexity

describe algorithms for searching and sorting

formulate and implement recursive algorithms

implement and use stacks, queues, trees, hash tables and hash
functions

describe fundamental algorithms for compression

Examination

The examination in this course consists of two parts:

1 written exam in January (TEN1; 3 cr)
Grade A,B,C,D,E,FX,F.

2 computer assignments (LAB1; 4.5 cr).
Mandatory. Grade P/F.

Computer assignments include:

1 Evaluation Using Reverse Polish Notation

2 Debugging in MATLAB and A Quicksort Implementation

3 Newton-Raphson’s method

4 Numerical solution of the heat equation

5 Sparse Vector Arithmetic

Demonstrations will be done during lab hours.



Matlab function syntax

function [y1,...,yN] = myfun(x1,...,xM)

declares a function named myfun that accepts inputs x1,...,xM
and returns outputs y1,...,yN. This declaration statement must be
the first executable line of the function.

Save the function code in a text file with a .m extension. The name
of the file should match the name of the first function in the file.

Valid function names begin with an alphabetic character, and can
contain letters, numbers, or underscores.

Files can include multiple local functions or nested functions.

(http://www.mathworks.se/help/matlab/ref/)

Matlab function syntax (cont.)

Use the end keyword to indicate the end of each function in a file
if:

– Any function in the file contains a nested function
– Any local function in the file uses the end keyword

Otherwise, the end keyword is optional.

(http://www.mathworks.se/help/matlab/ref/)

Recursion

f (n) =

{
1 n = 1

n × f (n − 1) n > 1

In Matlab:

function res = fac1(n)

if n==1

res = 1;

else

res = n*fac1(n-1);

end % if

end % fac1

Iteration

f (n) =

{
1 n = 1

n × f (n − 1) n > 1

In Matlab:

function res = fac3(n)

res = 1;

while n>1

res = res *n;

n = n-1;

end % while

end % fac3



Stack operations

createStack: to create a stack

precond: None
postcond: A stack has been created and initialized to be
empty. The stack is returned.

emptyStack: to check if the stack is empty

precond: The stack has been created.
postcond: The function returns true (= ’1’) if it is empty,
otherwise false.

createStack and emptyStack

function s = createStack;

s = [];

end % createStack

function res = emptyStack(s);

res = (length(s) == 0);

end % emptyStack

Stack operations (cont.)

push

precond: The stack has been created and is not full.
postcond: The element has been stored as the stack’s top
element. The updated stack is returned.

pop

precond: The stack has been created and is not empty.
postcond: The top element of the stack has been removed and
is returned. The updated stack is returned as well.

top

precond: The stack has been created and is not empty.
postcond: A copy of the top element of the stack is returned.

push and pop

function s = push(el, s);

s = [el s];

end % push

function [el, s] = pop(s);

if emptyStack(s)

el = []; disp(’error’)

elseif length(s) == 1

el = s(1);

s = createStack;

else

el = s(1);

s = s(2:end);

end % if

end % pop



Structure and structure array: example

vip.name = ’alice’;

vip.day = 3;

vip.month = 4;

vip.year = 1900;

vip(2).name = ’bo’;

vip(2).day = 1;

vip(2).month = 12;

vip(2).year = 1950;

Manipulate structure array

Store data

register(index).field = value

is the same as

register = setfield(register, {index}, field, value)

Retrieve data

register(index).field

is the same as

getfield(register, {index}, field)

Search, sequential

function data = searchStruct(register, element)

found = 0; index = 1;

len = length(register);

data = [];

while (~found) && (index <= len)

if element == register(index).day

found = 1

data = register(index); %% THIS GOES TO THE OUTPUT

else

index = index + 1

end % if

end % while

end % searchStruct

search, seq. cont.

function data = searchStruct(register, field, element)

found = 0; index = 1;

len = length(register);

data = [];

while (~found) && (index <= len)

if element == getfield(register, {index}, field)

found = 1

data = register(index); %% THIS GOES TO THE OUTPUT

else

index = index + 1

end % if

end % while

end % searchStruct



Binary search

The algorithm finds the position of a specified input value within
an array sorted by key value.

In each step, it compares the search key value with the key value
of the middle element of the array.

function data = searchBinStruct(register, field, element)

found = 0;

data = [];

left = 1;

right = length(register);

while (~found) && (left <= right)

mid = floor((left + right)/2);

current = getfield(register, {mid}, field);

if element < current

right = mid - 1;

elseif element > current

left = mid + 1;

else

found = 1;

data = register(mid); %% THIS GOES TO THE OUTPUT

end % if

end % while

end % searchBinStruct

NB. floor(x) = bxc is the largest integer not greater than x


