Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Tutorial - Creating your own program in Atmel Studio 6

Step 1 - Create a new project

The easiest way to create a new project is to choose File->New->Project. There is also the possibility
to create a new example project form ASF (Atmel Software Framework), as described in Tutorial —
Setting up the HW and SW, if you want to explore new functionality of the EVK1100.

New Project

Recent Templates Sortby: | Default =) B
Installed Templates
T : CfC++
clc++ GCC C ASF Board Project C/C++ vpe: CH
Creates an project for Atmel or User boards
Assembler using ASF
Atmel Studio Solution GCC C Executable Project CiC++
GCC C Static Library Project CjC++
GCC C++ Executable Project C/C++
GCC C++ Static Library Project c/c++
Name: | Goodame |
Location: | C:\Pocuments and Settings'es llabasse My Documents'\Atmel Studiols. 2 ~ ‘ Browse. ..
Solution name: | GoodName \ [“Icreate directory for solution

Choose a Project Name and an appropriate Location for your project files. Then select “GCC C ASF
Board Project” and click OK.

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Board Selection E|
(_iselect By Device () Select By Board Extensions !Atmel ASF(3.17.0] » Device Board
BoardTypes iA” v| Search for Baard IS Device Name: ATmegad
= 2 App. /Boot Memory (Kbytes): 8
s A Data Memory (bytes): 1024
EVK1105 - AT32UC3A0512 —
™ EEPROM (bytes): 512
STKG00 - AT32UC3A0512
™ Speed: 1]
] RZ600 - AT32UC3A32565
. Ve 2,7/5,5
] EVK1104 - AT32UC3A3258
= Family: megaAvR
g EVK11045 - AT32UC3A32585
) UC3-A3 Xplained - AT32UC3A3256 T_q Datasheets
F'.“j EVK1101 - AT32UC3B0258
B Supported Tools
STKB00 - AT32UC3B0258
i} . AtmelICE
e STKB00 - AT320C3C0512C -
l;ﬂ UC3CEK - AT32UC3C0512C Fo % AVR Dragon
: —|
Name App. /[Boot Memory (kKbytes) Data Memory (bytes) EEPROM (bytes) ¥ AVRISE mki
AT32UC3A0512 512 55536 MNfA ¢ AVR ONE!
= JTAGICE3
B JTAGICE mkil
& Simulator
¥ STK500
= STKE00

Choose “Select by board” and choose the EVK1100.

Step 2 - Program and run
Now you have setup your project and can start programming.

To be able to browse and edit the source code files, use the “src” folder in the Solution Explorer. (the
rightmost window)

In this tutorial we are starting with writing a program that is blinking one led. To be able to really get
to know the EVK1100 board we are going to do this in four different ways, first by writing to the MCU
registers and then by using the built-in drivers from the software framework.

Step 2a: Blinking LEDs - GPIO with registers (no drivers)
Copy the code below into the main.c-file.

Run the program and make sure that it performs as expected (select Run on the taskbar). With this
operation, the code is downloaded to the microcontroller and immediately executed.

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

/* This program is using LED1 and button PB@ on the EVK1100 board.
* From the beginning LED1 is on and when the user is holding

* button PBO down, LED1 is turned off.

*/

#tinclude <asf.h>

int main (void)
{

board_init();

/*

If you want to control a certain pin you have to use the formula
described in the AT32UC3A@512 datasheet (page 175) which can be found on
the homepage.

GPIO port = floor((GPIO number) / 32), example: floor((36)/32) =1

GPIO pin = GPIO number mod 32, example: 36 mod 32 = 4

A look at the EVK1100 schematics tells us that the first button PBO
is connected to PX16 on the MCU. In the GPIO Controller Function
Multiplexing table in the datasheet (page 47) we can see that the GPIO
number for that button is 88.

If we use the fomula above we get that;
gpio port 2 (88/32=>2), bit 24 (88%32=24). That is why we get port 2 and
bit 24.

We now set the GPIO enable register to get GPIO module control.

*/

AVR32_GPIO.port[2].gpers = 1 <<24;

/*GPIO Enable Register Set. Here we do the same calculation as above.
PB27 (LED1)-> GPIO 59-> floor 59/32=1->port 1. 59%32=27 -> bit 27.

The GPIO module now controls that pin.

*/

AVR32_GPIO.port[1].gpers = 1 <<27; //enable GPIO control

AVR32_GPIO.port[1l].oders = 1 <<27; //enable output driver

AVR32_GPIO.port[1l].ovrs = 1 <<27; //set pin

while(1)
{
/*The value of button PB@ is checked (polling) with the port
value register.*/
int i=(AVR32_GPIO.port[2].pvr >> 24) & 0x01;

if (i==1)
{
// The pin is cleared.
AVR32_GPIO.port[1l].ovrc = 1 << 27;
}
else if (i==0)
{
// The pin is set
AVR32_GPIO.port[1l].ovrs = 1 << 27;
}
}
return 0;

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Step 2b: Blinking LEDs - GPIO with low-level drivers
Here we are going to use the built-in software framework. When creating a new project in Atmel
Studio 6, the GPIO drivers should be included automatically. Verify this by checking that gpio.h is

included in the asf.h file in the Solution Explorer. If this is not the case, go to the menu ASF -> ASF
Wizard. Here you can select what drivers to include in your project. Select the wanted driver in the

left window then click Add followed by Apply. Now the driver should appear in the asf.h file.

Device: AT32UC3A0512 Project: | USER_APPLICATIONZ ~ E
Extensions Version
Available Modules Selected Modules
Extensions: | Atmel ASF(3.7.2) ~ Show: | All - saveh for module B GPIO - General-Purpose Input/Output (driver)

- = B Generic board support (driver)
1 B EIC - External Interrupt Controller (driver)
1+ I FLASHC - Flash Controller (driver)

1 B MACB - Ethemnet MAC (driver)

1 B PDCA - Peripheral DMA Controller (driver)

1 B PM - Power Manager (driver)

1 B PWM - Pulse with Modulation (driver)

i BIRTC - Real Time Counter (driver)

1 B SPI - Serial Peripheral Interface (driver)

1 Wl S5C - Sunchronous Serial Controller (125) (driver)

Info Actions Details
INTC - Interrupt Controller

This driver interfaces the INTC module which collects interrupt requests from the peripherals, prioritizes them, and delivers an interrupt request and an autovector to the CPU.

Add >> Appl Revert << Remove Summary

Copy and paste the code below into the main.c file and run the program again.

/* This program is using LED1 and button PB@ on the EVK1100 board.
* From the beginning LED1 is on and when the user holds down button PBO,
* the led turns off.
*/

#include <asf.h>

#tdefine LED1 59 //LED1 connected to PB27, i.e. GPIO nr 59
#define Switchl 88 //Switch PB@ connected to PX16, i.e. GPIO nr 88

int main (void)
{

board_init();

gpio_enable_gpio pin(Switchl);
gpio_enable_gpio pin(LED1);

while(1)

{
int i=gpio_get pin_value(Switchl);
if (i==0)
{

gpio_set_gpio_pin(LED1);

else if (i!=0)

{
gpio_clr_gpio_pin(LED1);
}
}
return 0;

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Step 2c: Blinking LEDs - higher level drivers
Note that other drivers are available as well. These can be found in the Atmel Software Framework.

Step 2d: Blinking LEDs - using interrupt

This section show how to blink LEDs using interrupts instead of polling the value of the pushbutton.
Please note that the drivers for interrupts (INTC — Interrupt Controller (driver)) must now be added,
same way as the GPIO-drivers in section 2b.

// This program turns on and off LED1 on the EVK1100 board.
// The program uses interrupt on falling edge on pushbutton © (PB9).

#include <asf.h>
#define Switchl 88 //Switch PB@ connected to PX16, i.e. GPIO nr 88
volatile int x=1;

__attribute_ ((__interrupt__)) static void interrupt(void)

{
if (x==1)
{
LED_On(LED®);
X=2;
}
else if (x==2)
{
LED_Off(LED®);
x=1;
}
// Clears the interrupt flag
gpio_clear_pin_interrupt_flag(Switchl);
}

int main(void) {
board_init();
// Here are the interrupts enabled
INTC_init_interrupts();
/*interrupt stands for the interrupt function after _attribute_,
AVR32_GPIO_IRQ_©+88/8 stands for the interrupt line (88 = pin number) and
AVR32_INTC_INTO for the interrupt level*/
INTC_register_interrupt(&interrupt, (AVR32_GPIO_IRQ_0+88/8),AVR32_INTC_INTO);
// Enables gpio control for the pin
gpio_enable_gpio_pin(Switchl);
// Sets a specific respons time for the interrupt
gpio_enable_pin_glitch_filter(Switchl);
// Enables a certain pin and set how it should react
gpio_enable_pin_interrupt(Switchl,GPIO_FALLING_EDGE);
// Enables global interrupts
Enable_global_interrupt();

while (1){}
return 0;

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Step 3 - Debug the program
Debugging is a very powerful tool if you want to have a deeper look into your program. You can look

at both variables and register values and check they are correct. In this video you can learn about
debugging in Atmel Studio 6.

http://www.youtube.com/watch?v=aAw-7Lg-3tl

Embedded Systems for Mechatronics 1, MF2042
Tutorial — Creating your own program
version 2014-20-10

Note 1 - Making sure the correct program is being programmed

If you want to make sure that the right program is being programmed to the MCU, go to the menu
Tools -> Device Programming. Make sure the settings for Tool, Device and Interface are the same as
in the picture below and then click Apply. Select Memories -> Flash, and verify that the .elf file for the

project you want to program is chosen.

Tool Device Interface Device signature Target Voltage
JTAGICE mkil ~ | AT32UC3A0512 v | JTAG ~ | Apply| |- [Read] = - [Read] @
Interface settings Device

Tool information Erase Chip ~ |

Device information Flash (512KB)
Memories hared Folders\Desktop\YOUR_PROGRAM\YOUR_PROGRAM\Debug\YOCUR_PROGRAM .eiﬂ ~ E

Fuses | Erase Flash before programming
Seciily Verify Flash after programming

Program II Verify |I Read... |

User Page (512bytes)

| Erase User Page before programming
Verify User Page after programming

Program _ Verify
Note 2 - Adding additional c and h files
If you want to add you own source files and header files to a project, perform the following steps.

Step 1:
Right click on the “src” folder in the Solution Explorer and chose Add -> New Folder.

Step 2:
Create a new source file and/or a new header file inside this folder.

Step 3:

For the compiler to be able to find the new files we need to add a link to the newly created folder. Go
to Project -> YOUR_PROGRAM properties. Under Toolchain, click “AVR 32/GNU C Compiler” and then
“Directories”. Click on “Add item” and then chose the folder that you have just created. Make sure
the folder path is relative or else it won’t work on another computer. Now everything should work!

TEsT" x
Build
Configuatian: | Active [Debug) v Platform: | Active (AVR) v
Build Events
i Configuation Manages,
Device [« .'ji:’aamnu Commen [AVRIZIGNU C Compiler = Directories
o Gerersl = ——
Tool O Cutputfies Include Paths (-1} L3 N
4 [H AVR3Z/GNU € Compiler Lol b
Advanced T Preprocessor e
& symbols Serc/ASF s 32 bosrds
?}D’fﬂ”*“ JerciASF/sw32boards/evk1100
:,Q"D "'";‘m‘;" Jsre/ASF/sw32idriversigpia
& Warnings Jsrci ASF/pwe3 2/ chrivers/intc
T Miscelaneous Sure/ ASF a3 iutits
‘ '—‘T-g,";-"ﬁ”:i Linkces Jarc/ASF/a32iutils/prepeocessor
enersi
T Uoranes JercihSFicommoniboards
O Optimcation JereinSFicommoniutits Add ltem

o Miscellaneous Ssrciconfig
- [g‘:”m‘“ Assembler JSrc/ASF/avZicompanents/display/dipa04
evens . .
3 Deboging JorASH a2 diverslcpulcycle sounter
4 [avr3ziGNU s
o Genensl Serc/ASF/sued2icriver/epi
JSorc/ASF[awe32deivers/pm

