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Preface

Recent technological advances led to the development of very small and
low-cost sensor devices with computational, processing, data storage and
communicational capabilities. These devices, called wireless sensor nodes,
when deployed in an area (indoors or outdoors) form a Wireless Sensor Net-
work (WSN). The initial development of WSN was motivated by military
applications such as enemy detection, battlefield surveillance, etc. As years
went by, considerable amounts of research efforts have enabled the actual
implementation and deployment of sensor networks tailored to the unique re-
quirements of certain sensing and monitoring applications. Nowadays WSNs
are a very promising tool of monitoring events and are used in many other
fields, such as agriculture, environmental monitoring of air-water pollution,
greenhouse, health monitoring, structural monitoring and more. Given the
benefits offered by WSNs compared to wired networks, such as, simple de-
ployment, low installation cost, lack of cabling, and high mobility, WSNs
present an appealing technology as a smart infrastructure for building and
factory automation, and process control applications.

The book is intended as a textbook for senior undergraduate or graduate-
level students with the goal of helping them to gain an understanding of
the challenges and promises of this exciting field. It is also targeted at
academic and industrial researchers working in the field, and also at engineers
developing actual solutions for WSNs. Each chapter ends with a number of
exercises that will allow students to practice the described concepts and
techniques.

This book covers fundamental topics to design, understand, and performa
a performance analysis of WSNs. The structure is organized as follows:

• Chapter 1 provides an introduction to the basic characteristics and the
architecture of a WSN. Moreover, a brief description of the main WSN
applications is given;

• Chapter 2 deals with the wireless channel in WSNs. Emphasis is given
on the fading models and their effects on the signals that carry the
communication messages;

• Chapter 3 presents the physical layer in WSNs. In particular, basic

11



Contents 12

elements of modulation theory are provided while the probability of
error in various channels is studied;

• Chapter 4 covers the medium access control mechanisms in WSNs and
the way nodes access the channel is examined. The chapter focuses
also on the IEEE 802.15.4 standard;

• Chapter 5 is dedicated to routing in WSNs. Routing protocols are
classified, the basic optimization theory for routing is introduced, and
an iterative solution for the shortest path optimization problem is pre-
sented;

• Chapter 6 presents the fundamental theoretical results for the topology
control of WSNs. Emphasis is put on the NP hardness of connectivity
and coverage control problems; This is a fairly advanced theoretical
chapter.

• Chapter 7 provides an introduction to the basics of detection theory.
How events are detected out of uncertain (noisy) measurements from
one/multiple sensors is studied;

• Chapter 8 presents the fundamental aspects of distributed estimation
over WNSs. Star and ad-hoc networks are studied. Estimation in the
presence of limited communication resources is also mentioned. This
is a fairly advanced theoretical chapter.

• Chapter 9 introduces the fundamentals of distributed learning over
WNSs. After a review of the basics of learning theory, the specific
application to WSNs is presented. This is a fairly advanced theoretical
chapter.

• Chapter 10 presents the basic of positioning and localization in WSNs.
Node positioning methods require the combination of common mea-
surements (e.g. time, range, and angle) together with estimation tech-
niques in order to locate the nodes; This chapter is an application of
the results of Chapter 6;

• Chapter 11 introduces the concept of time synchronization and pro-
vides an overview of several synchronization strategies; This chapter is
an application of the results of Chapter 6;

• Chapter 12 provides an overview of control over WSNs. The basics of
automatic control theory are reviewed. Condition ensuring the stability
of closed loop control over WSNs are studied, both in the presence of
delays and message losses. The effects of WSNs networking protocol
is characterized;



Contents 13

• Appendix 1 provides a basic mathematical background for random
variables and probability distribution functions;

• Appendix 2 provides a basic mathematical background for sampling
theory;

• Appendix 3 gives some basic useful concepts regarding optimization
theory;

• Appendix 4 gives one useful result of Matrix Algebra;

• Appendix 5 gives fundamental definitions of Graph Theory;

• Appendix 6 contains an introduction to sensor network programming
accompanied with explanatory examples written in NesC, the program-
ming language for WSNs.

This draft book results from the material that has been taught at the
2012 and 2013 editions of the course "Principles of Wireless Sensor
Networks" at KTH Royal Institute of Technology, Stockholm, Sweden.
The work so far employed to put together this book corresponds to 1.5
years of full time work of one researcher. I acknowledge the work Eric
Ahlqvist (Topology Control), Piergiuseppe Di Marco (IEEE 802.15.4
MAC), Charalampos Kalalas (all the chapters, excluded Topology Con-
trol and Distributed Learning), Fredrik Isaksson (Distributed Estima-
tion), Gustav Zickert (WSN-Control Systems), Ahsan Mahmood (all
the chapters, excluded Topology Control and Distributed Learning),
Rasmus Nilsson (Distributed Learning), Yuzhe Xu (Distributed Esti-
mation).





Chapter 1

Introduction to WSNs

Sensor nodes offer a powerful combination of distributed sensing, com-
puting and communication. The ever-increasing capabilities of these tiny
sensor nodes, which include sensing, data processing, and communicating,
enable the realization of WSNs based on the collaborative effort of a number
of other sensor nodes. They enable a wide range of applications and, at the
same time, offer numerous challenges due to their peculiarities, primarily the
stringent energy constraints to which sensing nodes are typically subjected.
As illustrated in Figure 1.1, WSNs incorporate knowledge and technolo-
gies from three different fields; Wireless communications, Networking and
Systems and Control theory. In order to realize the existing and potential
applications for WSNs, sophisticated and extremely efficient communication
protocols are required. This chapter provides a first introduction to the
WSNs, including architecture, specific characteristics and applications.

1.1 WSN Architecture and Protocol Stack

WSNs, as shown in Figure 1.2, are composed of a number of sensor nodes,
which are densely deployed either inside a physical phenomenon or very close
to it.

The sensor nodes are transceivers usually scattered in a sensor field where
each of them has the capability to collect data and route data back to the
sink/gateway and the end-users by a multi-hop infrastructureless architec-
ture through the sink. They use their processing capabilities to locally carry
out simple computations and transmit only the required and partially pro-
cessed data. The sink may communicate with the task manager/end-user via
the Internet or satellite or any type of wireless network (like WiFi, mesh net-
works, cellular systems, WiMAX, etc.), making Internet of Things possible.
However, in many cases the sink can be directly connected to the end-users.
Note that there may be multiple sinks/gateways and multiple end-users in
the architecture.

15
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Figure 1.1 Areas of study that concur to the definition of WSNs

Figure 1.2 A WSN connected to the Internet via a sink node.

As illustrated in Figure 1.3, each sensor node is consisting of five main
components; a microcontroller unit, a transceiver unit, a memory unit, a
power unit and a sensor unit. Each one of these components is determinant
in designing a WSN for deployment.

The microcontroller unit is in charge of the different tasks, data process-
ing and the control of the other components in the node. It is the main
controller of the wireless sensor node, through which every other component
is managed. The controller unit may consist of an on-board memory or may
be associated with a small storage unit integrated into the embedded board.
It manages the procedures that enable the sensor node to perform sensing
operations, run associated algorithms, and collaborate with the other nodes
through wireless communication.

Through the transceiver unit a sensor node performs its communication
with other nodes and other parts of the WSN. It is the most power consump-
tion unit.

The memory unit is for temporal storage of the sensed data and can
be RAM, ROM and their other memory types (SDRAM, SRAM, EPROM,
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Figure 1.3 Components of a node of a WSN.

etc.), flash or even external storage devices such as USB.
The power unit, which is one of the critical components, is for node energy

supply. Power can be stored in batteries (most common) rechargeable or not
or in capacitors. For extra power supply and recharge, there can be used
natural sources such as solar power in forms of photovoltaic panels and cells,
wind power with turbines, kinetic energy from water, etc.

Last but not least is the sensor unit, which is the main component of a
wireless sensor node that distinguishes it from any other embedded system
with communication capabilities. It may generally include several sensor
units, which provide information gathering capabilities from the physical
world. Each sensor unit is responsible for gathering information of a certain
type, such as temperature, humidity, or light, and is usually composed of
two subunits: a sensor and an analog-to-digital converter (ADC). The ana-
log signals produced by the sensor based on the observed phenomenon are
converted to digital signals by the ADC, and then fed into the processing
unit.

In WSNs, the sensor nodes have the dual functionality of being both
data originators and data routers. Hence, communication is performed for
two reasons:

• Source function: Each sensor node’s primary role is to gather data
from the environment through the various sensors. The data generated
from sensing the environment need to be processed and transmitted to
nearby sensor nodes for multi-hop delivery to the sink.

• Router function: In addition to originating data, each sensor node is
responsible for relaying the information transmitted by its neighbors.
The low-power communication techniques in WSNs limit the commu-
nication range of a node. In a large network, multi-hop communication
is required so that nodes relay the information sent by their neighbors
to the data collector, i.e., the sink. Accordingly, the sensor node is
responsible for receiving the data sent by its neighbors and forwarding
these data to one of its neighbors according to the routing decisions.

Except for their transmit/receive operation state, transceivers can be put
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Figure 1.4 Power consumption of a node to receive or transmit messages.

Figure 1.5 WSN having a star topology.

into an idle state (ready to receive, but not doing so) where some functions in
hardware can be switched off, reducing energy consumption. The breakdown
of the transceiver power consumption in Figure 1.4 shows that a transceiver
expends a similar amount of energy for transmitting and receiving, as well
as when it is idle. Moreover, a significant amount of energy can be saved by
turning off the transceiver to a sleep state whenever the sensor node does
not need to transmit or receive any data. In this state, significant parts of
the transceiver are switched off and the nodes are not able to immediately
receive something. Thus, recovery time and startup energy to leave sleep
state can be significant design parameters.

When the transmission ranges of the radios of all sensor nodes are large
enough and the sensors can transmit their data directly to the centralized
base station, they can form a star topology as shown in Figure 1.5. In this
topology, each sensor node communicates directly with the base station using
a single hop.

However, sensor networks often cover large geographic areas and radio
transmission power should be kept at a minimum in order to conserve energy;
consequently, multi-hop communication is the more common case for sensor
networks (shown in Figure 1.6). In this mesh topology, sensor nodes must
not only capture and disseminate their own data, but also serve as relays
for other sensor nodes, that is, they must collaborate to propagate sensor
data towards the base station. This routing problem, that is, the task of



Chapter 1. Introduction to WSNs 19

Figure 1.6 WSN having with multihop communication.

finding a multi-hop path from a sensor node to the base station, is one of the
most important challenges and has received large attention from the research
community. When a node serves as a relay for multiple routes, it often has
the opportunity to analyze and pre-process sensor data in the network, which
can lead to the elimination of redundant information or aggregation of data
that may be smaller than the original data. Routing is examined in detail
in chapter 5.

The reduced ISO-OSI protocol stack used by the sink and all sensor
nodes is given in Figure 1.7. This protocol stack combines power and routing
awareness, integrates data with networking protocols, communicates power
efficiently through the wireless medium, and promotes cooperative efforts
of sensor nodes. The protocol stack consists of the physical layer, medium
access control layer, routing layer and application layer. The physical layer
addresses the needs of simple but robust modulation, transmission, and re-
ceiving techniques. Since the environment is noisy and sensor nodes can be
mobile, the medium access control layer is responsible for ensuring reliable
communication through error control techniques and manage channel access
to minimize collision with neighbors’ broadcasts. The routing layer takes
care of routing the data and depending on the sensing tasks, different types
of application software can be built and used on the application layer. The
above mentioned layers are thoroughly examined in the following chapters.

1.2 Challenges and Constraints

While WSNs share many similarities with other distributed systems, they
are subject to a variety of unique challenges and constraints. These con-
straints impact the design of a WSN, leading to protocols and algorithms
that differ from their counterparts in other distributed systems.
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Figure 1.7 ISO-OSI protocol stack for WSNs.

Energy

The intrinsic properties of individual sensor nodes pose additional chal-
lenges to the communication protocols primarily in terms of energy con-
sumption. As will be explained in the following chapters, WSN applications
and communication protocols are mainly tailored to provide high energy
efficiency. Sensor nodes carry limited power sources. Typically, they are
powered through batteries, which must be either replaced or recharged (e.g.,
using solar power) when depleted. For some nodes, neither option is ap-
propriate, that is, they will simply be discarded once their energy source is
depleted. Whether the battery can be recharged or not significantly affects
the strategy applied to energy consumption. Therefore, while traditional
networks are designed to improve performance metrics such as throughput
and delay, WSN protocols focus primarily on power conservation.

Node Deployment

The deployment of WSNs is another factor that is considered in de-
veloping WSN protocols. The position of the sensor nodes need not be
engineered or predetermined. This allows random deployment in inacces-
sible terrains or disaster relief operations. On the other hand, this ran-
dom deployment requires the development of self-organizing protocols for
the communication protocol stack. In particular, sensor nodes must be self-
managing in that they configure themselves, operate and collaborate with
other nodes, and adapt to failures, changes in the environment, and changes
in the environmental stimuli without human intervention. Moreover, many
sensor networks, once deployed, must operate unattended, that is, adapta-
tion, maintenance, and repair must be performed in an autonomous fashion.
In energy-constrained sensor networks, all these self-management features
must be designed and implemented such that they do not incur excessive
energy overheads.
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Wireless Medium

The reliance on wireless networks and communications poses a number of
challenges to a sensor network designer. Large and small-scale fading limit
the range of radio signals, that is, a radio frequency (RF) signal attenuates
while it propagates through a wireless medium. The received power is pro-
portional to the inverse of the square of the distance from the source of the
signal. As a consequence, an increasing distance between a sensor node and a
base station rapidly increases the required transmission power. Therefore, it
is more energy-efficient to split a large distance into several shorter distances,
leading to the challenge of supporting multi-hop communications and rout-
ing. Multi-hop communication requires that nodes in a network cooperate
with each other to identify efficient routes and to serve as relays.

Hardware Constraints

While the capabilities of traditional computing systems continue to in-
crease rapidly, the primary goal of wireless sensor design is to create smaller,
cheaper, and more efficient devices. The five node components described
before should also fit into a matchbox-sized embedded system. A sensor’s
hardware constraints also affect the design of many protocols and algorithms
executed in a WSN. For example, routing tables that contain entries for each
potential destination in a network may be too large to fit into a sensor’s mem-
ory. Instead, only a small amount of data (such as a list of neighbors) can be
stored in a sensor node’s memory. Further, while in-network processing can
be employed to eliminate redundant information, some sensor fusion and
aggregation algorithms may require more computational power and stor-
age capacities than can be provided by low-cost sensor nodes. Therefore,
many software architectures and solutions (operating system, middleware,
network protocols) must be designed to operate efficiently on very resource-
constrained hardware.

Security

Many wireless sensor networks collect sensitive information. The remote
and unattended operation of sensor nodes increases their exposure to ma-
licious intrusions and attacks. Further, the wireless shared medium makes
the sensor transmissions insecure. The consequences of a possible intrusion
can be severe and depend on the type of sensor network application. Sensor
readings must be sent to the sink of the network with a given probability
of success, because missing sensor readings could prevent the correct exe-
cution of control actions or decisions. However, maximizing the reliability
may increase the network energy consumption substantially. While there
are numerous techniques and solutions for distributed systems that prevent
attacks or contain the extent and damage of such attacks, many of these
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incur significant computational, communication, and storage requirements,
which often cannot be satisfied by resource-constrained sensor nodes. Hence,
the network designers need to consider the tradeoff between reliability and
energy consumption and propose new solutions for key establishment and
distribution, node authentication, and secrecy.

1.3 WSN Applications

The emergence of the WSN paradigm has triggered extensive research
on many aspects of it. The applicability of sensor networks has long been
discussed with emphasis on potential applications that can be realized using
WSNs. In this section, an overview of certain applications developed for
WSNs is provided.

Military or Border Surveillance Applications

WSNs are becoming an integral part of military command, control, com-
munication and intelligence systems. The need of rapid deployment and self-
organization characteristics of sensor networks make them a very promising
sensing technique for military applications. Since sensor networks are based
on the dense deployment of disposable and low-cost sensor nodes, which
makes the sensor network concept a better approach for battlefields. Sen-
sors can be deployed in a battle field to monitor the presence of forces and
vehicles, and track their movements, enabling close surveillance of opposing
forces.

Environmental Applications

The autonomous coordination capabilities of WSNs are utilized in the
realization of a wide variety of environmental applications. Some environ-
mental applications of WSNs include tracking the movements of birds, small
animals, and insects; monitoring environmental conditions that affect crops
and livestock; temperature, humidity and lighting in office buildings; irriga-
tion; large-scale earth monitoring and planetary exploration. These moni-
toring modules could even be combined with actuator modules which can
control, for example, the amount of fertilizer in the soil, or the amount of
cooling or heating in a building, based on distributed sensor measurements.

Health Care Applications

Wireless sensor networks can be used to monitor and track elders and
patients for health care purposes, which can significantly relieve the severe
shortage of health care personnel and reduce the health care expenditures
in the current health care systems. For example sensors can be deployed in
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a patientâĂŹs home to monitor the behaviors of the patient. It can alert
doctors when the patient falls and requires immediate medical attention. In
addition, the developments in implanted biomedical devices and smart inte-
grated sensors make the usage of sensor networks for biomedical applications
possible.

Home Intelligence

Wireless sensor networks can be used to provide more convenient and
intelligent living environments for human beings. For example, wireless sen-
sors can be used to remotely read utility meters in a home like water, gas,
electricity and then send the readings to a remote centre through wireless
communication. Moreover, smart sensor nodes and actuators can be buried
in appliances such as vacuum cleaners, microwave ovens, refrigerators, and
DVD players. These sensor nodes inside domestic devices can interact with
each other and with the external network via the Internet or satellite. They
allow end-users to more easily manage home devices both locally and re-
motely. Accordingly, WSNs enable the interconnection of various devices at
residential places with convenient control of various applications at home.

Industrial Process Control

Networks of wired sensors have long been used in industrial fields such as
industrial sensing and control applications, building automation, and access
control. However, the cost associated with the deployment and the main-
tenance of wired sensors limits the applicability of these systems. While
sensor-based systems incur high deployment costs, manual systems have
limited accuracy and require personnel. Instead, WSNs are a promising
alternative solution for these systems due to their ease of deployment, high
granularity, and high accuracy provided through battery-powered wireless
communication units. Some of the commercial applications are monitor-
ing material fatigue; monitoring product quality; constructing smart office
spaces; environmental control of office buildings; robot control and guidance
in automatic manufacturing environments; monitoring disaster areas; smart
structures with embedded sensor nodes.

Agriculture

Using wireless sensor networks within the agricultural industry is increas-
ingly common; using a wireless network frees the farmer from the mainte-
nance of wiring in a difficult environment. Gravity feed water systems can be
monitored using pressure transmitters to monitor water tank levels, pumps
can be controlled using wireless I/O devices and water use can be measured
and wirelessly transmitted back to a central control center for billing. Irri-
gation automation enables more efficient water use and reduces waste.
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1.4 WSN Integration with the Internet

The evolution of wireless technology has enabled the realization of var-
ious network architectures for different applications such as cognitive radio
networks, mesh networks, and WSNs. In order to extend the applicability of
these architectures their integration with the Internet is very important. So
far, research has progressed in each of these areas separately, but realization
of these networks will require tight integration and interoperability. In this
respect, it is crucial to develop location- and spectrum-aware cross-layer com-
munication protocols as well as heterogeneous network management tools for
the integration of WSNs, cognitive radio networks, mesh networks, and the
Internet. In this direction, the 6LoWPAN standard has been developed to
integrate the IPv6 standard with low-power sensor nodes. Accordingly, the
IPv6 packet header is compressed to sizes that are suitable for sensor motes.
This provides efficient integration for communication between an IPv6-based
device and a sensor mote. However, significant challenges in seamless inte-
gration between WSNs and the Internet still exist at the higher layers of
the protocol stack. The coexistence of WLANs and WSNs is a major chal-
lenge at the MAC layer since they both operate in the same spectrum range.
End-to-end routing between a sensor node and an Internet device is not fea-
sible using existing solutions. Similarly, existing transport layer solutions
for WSNs are not compatible with the TCP and UDP protocols, which are
extensively used in the Internet. In most sensor deployment scenarios, the
sink is usually assumed to reside within or very near to the sensor field,
which makes it part of the multi-hop communication in receiving the sensor
readings. However, it would be desirable to be able to reach the sensor net-
work from a distant monitoring or management node residing in the wireless
Internet. Therefore, new adaptive transport protocols must be developed
to provide the seamless reliable transport of event features throughout the
WSN and next-generation wireless Internet. Moreover, Internet protocols
are generally prone to energy and memory inefficiency since these perfor-
mance metrics are not of interest. Instead, WSN protocols are tailored to
provide high energy and memory efficiency. The fundamental differences be-
tween the design principles for each domain may necessitate novel solutions
that require significant modifications in each network to provide seamless
operation.

Problems

Problem 1.1 Gaussian Q function

(a) Consider a random variable X having a Gaussian distribution with zero mean
and unit variance. The probability that X is larger than x, or distribution
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function, is

P(X > x) = Q(x) =

∫ ∞
x

1√
2π
e−t

2/2dt ,

where Q(·) is called the Q function. Plot the distribution function in the
variable x. Recalling that a function is convex when the second derivative is
strictly positive, find a region of x in which the function is convex.

(b) Consider a Gaussian random variable X ∼ N (µ, σ) of average µ and standard
deviation σ. Such a random variable has a distribution function given by a
translated and reshaped Q function:

Q

(
x− µ
σ

)
.

Discuss about convexity region of this function.

(c) A function f is log-concave if f(x) > 0 and for all x in its domain −log f(x) is
convex. Show that the twice differentiable function Q is log-concave.

Problem 1.2 Binary hypothesis testing: application of the Q function
Assume a couple of sensor nodes are randomly deployed in a region of interest and
are connected to a sink. The task of each sensor is to detect if an event happened
or not, namely taking a binary decision. Each sensor measures noisy signals from
the environment and whenever the measured signal is strong enough the sensor will
decide that an event has occurred. We assume that the measurement noises at
sensor i are identically and independently distributed (i.i.d) and follows a Gaussian
distribution ni ∼ N (0, 1). The binary hypothesis testing problem for sensor i is as
follows:

H1 : si = ai + ni

H0 : si = ni ,

where si is the measured signal at sensor i, and ai ∈ R+ is the signal amplitude
associated to the event. Assume that all sensors use a common threshold τ to detect
the event, i.e., if the measured signal at sensor i is larger than τ , then the sensor
will decide that the event happened and will report this decision to the sink.

(a) Characterize the probability of false alarm pf , namely the probability that a
local sensor decides that there was an event while there was not one.

(b) Characterize the probability of detecting an event pd, namely the probability
that an event occurs and the sensor detects it correctly.

Problem 1.3 Miscellanea of discrete random variables (Ex. 3.24 in (Boyd and
Vandenberghe, 2004))
Let X be a real-valued random variable that takes discrete values in {a1, a2. . . . , an}
where a1 < a2 < · · · < an, with probability P(X = ai) = pi, ∀i = 1, 2, . . . , n.
Characterize each of following functions of p = [pi] {p ∈ Rn+|1Tp = 1} (where 1 is
the all ones vector) and determine wether the function is convex or concave.
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(a) Expectation: EX.

(b) Distribution function: P(X ≥ α).

(c) Probability of interval: P(α ≤ X ≤ β).

(d) Negative entropy distribution:
∑n
i=1 pilog pi.

(e) Variance: varX = E(X −EX)2.

(f) Quartile: quartile(X) = inf{β |P(X ≤ β) ≥ 0.5}.

Problem 1.4 Amplitude quantization

Figure 1.8 (a)A three-bit Analog to Digital (A/D) converter assigns voltage
in the range [−1, 1] to one of eight integers between 0 and 7. For example,
all inputs having values lying between 0.5 and 0.75 are assigned the integer
value six and, upon conversion back to an analog value, they all become
0.625. The width of a single quantization interval ∆ is 2/2B.

The analog-to-digital (A/D) conversion is a standard operation performed in sensors
and many electronic devices. Itworks as follows: Consider a sensor that samples
a bandlimited continuos time signal s(t). According to sampling theory, if the
sensor samples the signal fast enough at time nTs, where n is the sample number
and Ts is the sampling time, it can be recovered without error from its samples
s(nTs), n ∈ {. . . ,−1, 0, 1, . . . }. The processing of the data further requires that the
sensor samples be quantized: analog values are converted into digital form. The
computational round-off prevents signal amplitudes from being converted with no
errors into a binary number representation.

In general, in A/D conversion, the signal is assumed to lie within a predefined
range. Assuming we can scale the signal without affecting the information it ex-
presses, we will define this range to be [−1, 1]. Furthermore, the A/D converter
assigns amplitude values in this range to a set of integers. A B-bit converter pro-
duces one of the integers {0, 1, . . . , 2B−1} for each sampled input. Figure 1.8 shows
how a three-bit A/D converter assigns input values to the integers. We define a
quantization interval to be the range of values assigned to the same integer. Thus,
for our example three-bit A/D converter, the quantization interval ∆ is 0.25; in
general, it is 2/2B .
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Since values lying anywhere within a quantization interval are assigned the same
value for processing, the original amplitude value is recovered with errors. The
D/A converter, which is the device that converts integers to amplitudes, assigns
an amplitude equal to the value lying halfway in the quantization interval. The
integer 6 would be assigned to the amplitude 0.625 in this scheme. The error
introduced by converting a signal from analog to digital form by sampling and
amplitude quantization then back again would be half the quantization interval for
each amplitude value. Thus, the so-called A/D error equals half the width of a
quantization interval: 1/2B . As we have fixed the input-amplitude range, the more
bits available in the A/D converter, the smaller the quantization error.

(a) (b)

Figure 1.9 (a) Shows a signal going through the analog-to-digital, where
B is the number of bits used in the A/D conversion process (3 in the case
depicted here). First it is sampled (b), then amplitude-quantized to three
bits. Note how the sampled signal waveform becomes distorted after am-
plitude quantization. For example the two signal values between 0.5 and
0.75 become 0.625. This distortion is irreversible; it can be reduced (but not
eliminated) by using more bits in the A/D converter.

To analyze the amplitude quantization error more deeply, we need to compute
the signal-to-noise ratio, which is the ratio of the signal power and the quantization
error power. Assuming the signal is a sinusoid, the signal power is the square of the
root mean square (rms) amplitude: power(s) = (1/

√
2)2 = 1/2. Figure 1.9 shows

the details of a single quantization interval.
Its width is ∆ and the quantization error is denoted by ε. To find the power

in the quantization error, we note that no matter into which quantization interval
the signal’s value falls, the error will have the same characteristics. To calculate
the rms value, we must square the error and average it over the interval.

rms(ε) =

√√√√ 1

∆

∫ ∆
2

−∆
2

ε2 dε =

(
∆2

12

)1/2

Since the quantization interval width for a B-bit converter equals 2/2B = 21−B ,
we find that the signal-to-noise ratio for the analog-to-digital conversion process
equals

SNR =
1
2

22(1−B)

12

=
3

2
22B = 6B + 10 log 1.5dB
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Thus, every bit increase in the A/D converter yields a 6 dB increase in the signal-
to-noise ratio. The constant term 10 log 1.5 equals 1.76.

(a) This derivation assumed the signal’s amplitude lay in the range [−1, 1]. What
would the amplitude quantization signal-to-noise ratio be if it lay in the range
[−A,A]?

(b) How many bits would be required in the A/D converter to ensure that the
maximum amplitude quantization error was less than 60 db smaller than the
signal’s peak value?

(c) Music on a CD is stored to 16-bit accuracy. To what signal-to-noise ratio does
this correspond?

Problem 1.5 Accelerometer system design and system scale estimate (Ex.4.1 in
(Pottie and Kaiser, 2005))
An accelerometer is a sensor that measures acceleration. Consider the design of an
accelerometer that is intended to meet specific acceleration sensitivity goals over
a specific bandwidth given a position sensor sensitivity. The designer may adjust
mass, spring constant, proof mass value, and resonance quality factor to achieve
these goals.

(a) Consider an accelerometer with an electronic displacement sensor having a
position sensitivity of 1pm/(Hz)1/2. For a target acceleration sensitivity of
10−5 m/s2/(Hz)1/2 in the bandwidth from 0.001 to 100 Hz, find the largest
sensor resonance frequency that may meet this objective while ignoring the
effect of thermal noise.

(b) Now, include the effect of thermal noise and compute the required proof mass
value for this accelerometer for Q values of 1, 100, and 104 (consider parameters
Kb = 1.38× 10−23 and T = 300).

(c) If this mass were to be composed of a planar Si structure, of thickness 1µ, what
would be the required area of this structure.

Problem 1.6 Signal dependent temperature coefficients (Ex.4.4 in (Pottie and
Kaiser, 2005))
A silicon pressure microsensor system employs a piezoresistive strain sensor for
diaphragm deflection having a sensitivity to displacement of α = 1V/µ (at T =
300K). Further, this displacement is related to pressure with a pressure-dependent
deflection of K = 0.01µ/N/m2 . This is followed by an amplifier having a gain
G = 10 (at T = 300K). This amplifier further shows an input-referred offset
potential, Voffset = 0 at 300K. Each of these characteristics include temperature
coefficients. These temperature coefficients are listed here:

α 10−2/K
K 10−4/K
G −10−3/K
Voffset −10µV/K
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(a) Consider that the pressure sensor is exposed to no pressure difference. Find
an expression for its output signal for temperature. Compute the temperature
coefficient that describes the operation.

(b) Consider that the pressure sensor is exposed to a pressure difference signal of
0.1 N/m2. Find an expression for its output signal for temperature and plot
this. Estimate the temperature coefficient that describes its operation at the
specific temperatures in the neighborhood of 250K and 350K.

(c) Consider that the pressure sensor is exposed to a pressure difference signal of
10 N/m2. Find an expression for its output signal for temperature and plot
this. Estimate the temperature coefficient that describes its operation at the
specific temperatures in the neighborhood of 250K and 350K.





Chapter 2

Wireless Channel

The wireless channel introduces important restrictions to the perfor-
mance of WSNs. Simply speaking, the wireless channel has an important
role in determining the distance to which a message can be transmitted from
a sensor node, and the probability of receiving successfully the message at
some receiver node.

The transmission of messages is performed by an electromagnetic wave
transmitted by the antenna of the sender node. The power of the electro-
magnetic waves are received at the antenna of the receiver node distorted
and attenuated due to the wireless propagation that is subject to several
external factors. The result is that the power of the waves may be so at-
tenuated that the wave signal cannot be correctly detected at the receiver
node. More specifically, the transmitted wave signal undergoes attenuations
while traveling over the wireless channel through the propagation path from
the transmitter to the receiver node. The effect of these attenuations is
commonly called fading. In free space propagation, namely a propagation
of the wave signal from the transmitter to the receiver without any obstacle
in between, the wave signal arrives at the receiver by a constant attenuated
power due to the “path loss”, which we will see later. However, when a sig-
nal encounters obstacles in the propagation path from the transmitter to
the receiver, or the signal is reflected by obstacles or reflectors, the attenu-
ation is no longer just constant and follows a more complex law due to the
physics of the wireless channel. Here, the signal is reflected, diffracted, and
scattered from objects that are present in the path. Each path can have a
different amount of attenuation, delay and fading amount. The combination
of these different paths is termed multipath fading or multipath propagation.
At the receiver, the waves signals coming from different reflections can add
constructively or destructively, causing random and rapid fluctuations in the
received power at the receive antenna, especially when the receiver or the
transmitter is moving. Due to the Doppler effect, this situation also causes
the signal to be spread in the frequency domain (fad, 2020), meaning that

31
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a wave signal sent offer a certain carrier frequency is received over shifted
frequencies.

The stochastic character of the wireless channel is a factor that affects
severely the signal propagation creating a time-variant environment. All
these effects result in erroneous decoding of the transmitted wireless wave
at the antenna of the receiver node. This is often called “wireless channel
errors”. Understanding the effects of the wireless channel errors can be done
by a mathematical modeling of the attenuations that the transmitted wave
signals undergo over the channel. Since the adverse effects of these errors
influence each protocol in WSNs, the examination of the effects of the wireless
channel is essential in WSNs.

This chapter is organized as follows: The next section briefly discusses
the dominant sources of attenuation in the wireless channel and summarizes
the main fading factors that occur in signal propagation during the sensors’
communication. Then a mathematical modeling of the large-scale fading is
presented, followed by the modeling of the small-scale fading phenomena.
The last section outlines the conclusion of the chapter.

2.1 Physical Sources of Distortion

The wireless channel distorts signals transmitted from a transmitter
node. The cause of this distortion can be classified into four main phe-
nomena (Akyildiz and Vuran, 2010):

2.1.1 Attenuation (Path Loss)

The term refers to the reduction in power density (attenuation) of the
electromagnetic wave as it propagates through space as function of the dis-
tance. The attenuation is proportional to the distance travelled by the wave
over the space.

2.1.2 Reflection and refraction

When a signal wave is incident at a boundary between two different
types of material, a certain fraction of the wave is absorbed by the material,
whereas another fraction bounces off the surface, which is called reflection.
Depending on the properties of the two materials, a certain fraction of the
wave may also propagate through the boundary, which is called refraction.
Reflection and refraction are usually observed on the ground or the walls
of a building as shown in Figure 2.1(a). More generally, these phenomena
occur in case of obstructing objects with large dimensions compared to the
wavelength. As a result the signal received at the antenna of the receiver
node may fade based on the constructive or destructive effects of multiple
waves that are received.
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Figure 2.1 Propagation phenomena of signals over the wireless channel (Aky-
ildiz and Vuran, 2010).

2.1.3 Diffraction

The term refers to the phenomena that occur when an electromagnetic
wave propagates through sharp edges such as the tip of a mountain or a
building or surfaces with irregularities. As shown in Figure 2.1(b), this
causes the sharp edge to act as a source, where new secondary waves are
generated giving rise to a bending of waves around and behind the obstacle.
In effect, the original signal strength is distributed to the new generated
waves.

2.1.4 Scattering

Signal waves do not generally encounter obstacles with perfect bound-
aries. Instead, when a signal wave is incident at a rough surface, it scatters
in random directions as shown in Figure 2.1(c). This phenomenon is also
encountered in case of a radio wave traveling through a medium contain-
ing many small (compared to the wavelength) objects, which influence the
propagation.

2.2 Statistical fading models

The physical causes of fading of a transmitted signal wave can be mod-
eled statistically. These statistical mathematical models are very useful to
characterize the probability to receive messages transmitted over the wire-
less channels. The availability of these statistical models allow to tie the
probability to successful message reception with the characteristics of the
wireless channel, the transmit radio power, and many other parameters such
as modulation, coding, etc.
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According to Friis transmission equation, the received power can be writ-
ten as (Sli, 2013):

Pr = PtGt(θt, ψt)Gr(θr, ψr)
λ2

(4πr)2
PLz y , (2.1)

whereGt(θt, ψt) is the transmit antenna gain in the direction (θt, ψt), Gr(θr, ψr)
is the receive antenna gain in the direction (θr, ψr), λ2/(4πr)2PL y is the
large scale fading, and z is the small scale fading. In particular, large scale
fading refers to the path loss describing the variation of the attenuation with
respect to the distance (the term λ2/(4πr)2PL), and the shadow fading (the
term y), which, in turn, describes the random variation of the attenuation
for a specific distance. On the other hand, small scale fading z refers to the
abrupt changes in signal amplitude and phase that can be experienced as a
result of small changes (as small as half wavelength) in the spatial position
between transmitter and receiver (Pantos et al., 2008). These fluctuations
are due to the signal’s time spread caused by multipath propagation and due
to the channel’s variation in time because of the movements of the nodes and
scattering objects that participate in the propagation. In the following sec-
tions, a mathematical modeling of large-scale and small-scale phenomena are
presented.

2.3 Large Scale Fading

2.3.1 Path Loss

Path loss is the attenuation in signal power (strength) of the signal wave
as it propagates through air. Path loss is proportional to the distance be-
tween the transmitter and the receiver. The causes for path loss are free
space loss, refraction, reflection, diffraction, absorption and others. The
signal strength decreases with distance and when it is below threshold (re-
ceiver sensitivity) the distance is called maximum communication range of
the transmitter. In the received power expression 2.1, the path loss is

PL =
(4πr)2

λ2
PL . (2.2)

Generally, the path loss can be represented as the ratio of the transmitted
power at a node, Pt and the received power, Pr . In logarithmic scale,

PL(d)[dB] = PL(d0)[dB] + 10n log10

(
d

d0

)
, (2.3)

where PL(d0)[dB] is the path loss at the reference distance, d0, in dB,
PL(d)[dB] is the path loss at distance, d, in dB and n is the path loss
exponent. It can be seen from the above mentioned equation that path loss
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increases with the communication distance; that means we need to increase
transmitted power level for successful communication at longer distances. In
addition, path loss also increases with the carrier frequency; that explains
why higher carrier frequencies suffer from higher propagation losses. The
path loss exponent n depends on the topology of the terrain and on the
characteristic of the medium, such as oxygen concentration and tempera-
ture. Normally, its value ranges from 2− 6. For free space, it has a value of
2 and it is equal to 4 for the plane earth model.

Path loss can be mathematically modeled by different models such as

1. Physical path loss models

(a) Power law propagation models

(b) Ray tracing

2. Empirical path loss models

(a) Okumura and Hata’s mode

(b) COST-231 - Hata model

These mathematical models have been heavily investigated in the literature.

2.3.2 Shadowing

Radio signals are often shadowed while transmitted by buildings or other
large obstacles resulting in an Non Line Of Sight (NLOS) path between the
transmitter and the receiver. Shadow fading is a phenomenon that occurs
when a node moves behind an obstruction (sized hundreds times of wave-
length λ) and experiences a significant reduction in signal power. The re-
ceived signal power can be modeled by a random variable that depends on
the number and the characteristics of the obstructing objects that are located
in the propagation area and participate in the process of signal propagation.
Therefore, the value of the received power may differ substantially from the
path loss model (Pantos et al., 2008). The path loss can be seen as the
statistical mean value of the received power.

Based on radio channel measurements, the shadow fading in the received
signal power expressed in logarithmic scale (dBm or dBW) follows a Gaussian
distribution, with its mean value being determined by the path loss exponent
n and standard deviation σ that depends on the environment. Thus, the
received power as function of the path loss and shadowing is extended as
(Akyildiz and Vuran, 2010)

PL(d)[dB] = PL(d0)[dB] + 10n log10

(
d

d0

)
+Xσ , (2.4)
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Figure 2.2 PDF for wireless channels with Lognormal attenuations (Pantos
et al., 2008).

where Xσ is random variable (in dB) that follows a Gaussian distribution
with zero mean and variance σ2. Thus in linear units, the statistical distri-
bution of the wireless channel undergoing shadow fading is Lognormal. The
standard deviation of the shadowing is called as “location variability” and
varies with the frequency, the antenna heights and the environment. The
probability density function of shadowing is depicted in Figure 2.2.

A physical explanation for Lognormal distribution is given as follows.
Considering the contributions Ai to the signal attenuation along the prop-
agation path acting independently, then the total attenuation A due to N
individual contributions will be simply the product of the contributions

A = A1 ·A2 · ... ·AN , (2.5)

and in dB scale, the sum of the individual losses

L = L1 + L2 + ...+ LN . (2.6)

If all of the contributions Li are taken as random variables, then according
to the Central Limit Theorem, L is a Gaussian random variable and, there-
fore, A must be lognormal. In practice, not all of the losses will contribute
equally, with those nearest the receiver node being most harmful and the
contributions of individual diffracting obstacles cannot simply be added, so
the assumption of independence is not strictly valid. However, when the
different building heights, spacing and construction methods are taken into
account, along with the attenuation due to trees, the resultant distribution
function is very close to lognormal (Pantos et al., 2008).
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2.4 Small Scale Fading

2.4.1 Multipath Fading

Multipath is defined as the propagation phenomenon that results in radio
signals reaching the receiving node by multiple paths. Multipath propaga-
tion occurs because of the presence of physical objects that lead signals to
be reflected and scattered. It can contribute to a constantly changing en-
vironment in the channel that dissipates signal energy in amplitude, phase
and time. These multiple replicas of the transmitted signal that arrive in the
receiver produce random phase and amplitude, which result in fluctuations
in signal strength. Based on the environment multipath fading can follow
different distributions; the most common ones are reported in the following
subsections.

Rayleigh Fading

Rayleigh fading is a statistical model that is often used to describe the
effect of a propagation environment on a radio signal due to scattering. It is
most applicable when there is no dominant propagation along a line of sight
between the transmitting and receiving node. Because there is no direct ray
component, Rayleigh fading is often classified as the worst case fading type
(Pottie and Kaiser, 2005).

Rayleigh fading models assume that the complex envelope c(t) of the
received signal is the sum of many random complex components arriving
from different paths. Its amplitude r(t) follows the Rayleigh distribution
(Pantos et al., 2008), namely

c(t) = x(t)eθ(t) , (2.7)

where, recalling z in (2.1),

x(t) ,
√
z(t) =

√
[I(t)]2 + [Q(t)]2 ,

θ(t) = arctan

(
Q(t)

I(t)

)
,

and I(t), Q(t) are the baseband orthogonal components of the received pass-
band signal which are given by

I(t) =

N∑
i=1

ai cos(ωi(t) + ψi) , (2.8)

Q(t) =
N∑
i=1

ai sin(ωi(t) + ψi) , (2.9)
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Figure 2.3 Rayleigh PDF and CDF (Pantos et al., 2008).

where ai and ψi are random variables that represent the amplitude and phase
respectively of each received component. If the number N of the received
components is larger than 6, then the Central Limit Theorem exists and
I(t), Q(t) are independent Gaussian random variables with zero mean value
and variance equal to σ2 (Pantos et al., 2008; Pottie and Kaiser, 2005).
Thus, the amplitude x(t) follows the Rayleigh distribution with probability
density function given by

pr(x) =
x

σ2
e−

x2

2σ2 , 0 ≤ r ≤ ∞ . (2.10)

In Figure 2.3, the Rayleigh distribution and its characteristic values are
presented.

Rician Fading

In case there is a strong component (usually an LOS component or a
strong reflection) in addition to the other multipath components, then the
amplitude and phase distributions of the complex envelope are different from
the previous case. The complex envelope has now the following form

c(z) = c0 +

N∑
i=1

ci(z) . (2.11)

Real and imaginary part of c(z) remain Gaussian with the same variance but
now their mean values are not equal to zero (Pantos et al., 2008). Recalling
z in (2.1), and letting x2 = z, the amplitude of the complex envelope follows
Rician distribution whose probability density function is given by

pr(x) =
r

σ2
e−

x2+|c0|
2

2σ2 I0

(
x|c0|
σ2

)
. (2.12)

where
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Figure 2.4 Ricean PDF (Ric, 2013).

I0(x) =
1

2π

π∫
−π

ex cos(θ)dθ

is the modified Bessel function of order zero of the first kind. Figure 2.4
shows the probability density function for Rician distribution for different
values of |c0| (parameter v denotes |c0|).

The ratio between the power in the direct path and the power in the
other, scattered, paths is called Rician K factor and is defined as (Pantos
et al., 2008):

K =
|c0|2
2σ2

, (2.13)

K(dB) = 10 log10

( |c0|2
2σ2

)
. (2.14)

From the previous definition, it can be concluded that Rayleigh fading is
the specialized model for stochastic fading when there is no line of sight
signal and is sometimes considered as a special case (K = 0) of the more
generalized concept of Rician fading. For large values of K, the distribution
approximates Gaussian with mean value equal to c0.

Nakagami Fading

Another useful type of distribution is Nakagami-m which has similar be-
havior to the Rician one. If the Central Limit Theorem is not satisfied,
then Nakagami-m is an approximate distribution for the amplitude of the
complex envelope (Pantos et al., 2008). This distribution has more general
application since it is used in order to describe either better or worse fad-
ing conditions than Rayleigh and Rician distribution by choosing properly
the value of parameter m. More specifically, the Nakagami-m distribution
models very well the distribution of signal envelopes in a variety of fading
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Figure 2.5 Nakagami-m PDF.

environments, ranging from a strong line-of-sight environment to a highly
diffuse scattering environment. The degree of fading in this distribution is
characterized by the shape parameter m, which takes a value greater than
or equal to half, where m = 1/2 corresponds to one-sided Gaussian fading
(it represents the maximum amount of fading that the Nakagami-m distri-
bution can characterize), m = 1 and 1 < m < ∞ corresponds to Rayleigh
and Rician fading respectively. An infinite m corresponds to a deterministic
envelope (it represents the case of no fading) (Kallik, 2010). Thus the degree
of fading decreases with increase of the parameterm. Recalling that x =

√
z,

the probability density function of Nakagami-m is given by

pr(x) =
2

Γ(m)

(m
Ω

)m
x2m−1e−

m
Ω
x2
, x ≥ 0,m ≥ 1

2
. (2.15)

where Ω = E[x2] is the spread of the distribution, and

m =
Ω2

(x2 − Ω)2

is the shape parameter and Γ(m) is the gamma Euler function. Figure 2.5
shows the above mentioned pdf for different values of parameter m. Finally,
the relation between the shape parameter m and the Rician K factor are
given as (Pantos et al., 2008):

m =
(K + 1)2

2K + 1
, (2.16)

K =

√
m2 −m

m−
√
m2 −m

. (2.17)

2.4.2 Doppler Spread

Due to the relative motion between the nodes that are in the communi-
cation link, each multipath wave experiences an apparent shift in frequency.
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The shift in received signal frequency due to motion is called the Doppler
spread, and is directly proportional to the velocity and direction of motion
of the mobile node with respect to the direction of the arrival of the received
multipath wave. This phenomenon occurs during a transmission where a re-
ceiver node moves towards or away from a transmitter node. Objects in the
radio channel will induce a time varying Doppler spread on multipath com-
ponents if they are in motion. This means that if the surrounding objects
move at a greater rate than the receiver, the effect dominates the small-scale
fading and otherwise the motion may be ignored and only the speed of the
receiver needs to be considered (Pantos et al., 2008).

2.5 Conclusion

In this chapter the impact of different attenuation effects that occur
in the wireless channel was summarized. A study of the different fading
phenomena was performed together with a mathematical description based
on the statistical properties of each phenomenon. The effects which were
discussed can help in calculating receiver sensitivity and link budget analysis
for the design of wireless sensor networks. The mathematical modeling of the
wireless channel is very useful to understand the probability of message losses
when transmitting messages over the wireless channel, as it will be studied
in next chapter. Therefore, since all the previously examined factors result
in an overall degradation in the performance of communication over a WSN,
wireless channel attenuation should be highly considered for applications
that involve wireless sensors.

Problems
Problem 2.1 The noisy sensor (Ex.14.6 in (Pottie and Kaiser, 2005))
Sensor nodes are laid out on a square grid of spacing d as reported in Figure 2.6. For
simplicity, propagation losses go as the second power of distance. The source to be
detected has a Gaussian distribution with zero mean and variance σ2

n. The source
is measured at each sensor by a noisy measurement having an independent Additive
White Gaussian Noise (AWGN) with variance σ2

S . Sensor node 1 is malfunctioning,
producing noise variance 10σ2

n . The two best nodes in terms of SNR cooperate to
provide estimates of the source.

(a) Sketch the region of source locations over which node (1) will be among the two
best nodes, assuming a long sequence of measurements are made of the source.

(b) For a single measurement, approximate the likelihood that a source at position
(0.25d, 0) will result in better SNR at sensor 5 than at sensor 1.

Problem 2.2 Radio power optimization
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12 3 4
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6

Figure 2.6 A sensor network.

Consider the following model describing the required energy E(A,B) to send a
packet from node A to node B: E(A,B) = d(A,B)α. Here, d(A,B) is the distance
between node A and B and α is a system parameter with α > 2. Assume that
we are allowed to place a number of equidistant relay nodes between source node
S and destination node T. Here, relay nodes serve as intermediate nodes to route
packets from S to T. For instance, if S and T would use relay nodes A and B, the
message would be sent from S to A, from A to B and finally from B to T.

(a) What is the ideal number of relay nodes in order to send a message from S to
T with minimum energy consumption?

(b) How much energy would be consumed in the optimal case of the previous item?

(c) Assume now an energy model which determines the energy required to send a
message from A to B as E(A,B) = d(A,B)α + c, with c > 0. Argue why this
energy model is more realistic.

(d) Prove under the modified energy model introduced in previous item that there
exists an optimal number n of equidistant intermediate nodes between S and D
that minimizes the overall energy consumption when using these intermediate
nodes in order to route a packet from S to T. [Assume n as a continuous variable
for simplicity].

(e) Derive a closed-form expression on how much energy will be consumed when
using this optimal number n of relay nodes. [Assume n as a continuous variable
for simplicity].

Problem 2.3 Density of a Function of a Random Variable: the Rayleigh channel
Suppose that x has a chi-square distribution with the density

f(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2U(x),

where

Γ(a+ 1) =

∫ ∞
0

xae−xdx

is the gamma function and U(x) = 1 for x ≥ 0 and U(x) = 0 otherwise. For a new
random variable y =

√
x compute its density function.
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Figure 2.7 2-state Markov chain describing to Gilbert Elliott model.

Problem 2.4 Deriving the Density of a Function of a Random Variable: The
step windowing
For a random variable x with density function fx, compute the density function of
y = xU(x), where

U(x) =

{
1 x ≥ 0
0 otherwise .

Problem 2.5 Deriving the Density of a Function of a Random Variable: The
shadow fading
A log-normal distribution is a continuous probability distribution of a random
variable whose logarithm has a Normal distribution. If x is a random variable
with a normal distribution, then y = exp(x) has a log-normal distribution. For
x ∼ N (µ, σ), compute the density function of y = exp(x).

Problem 2.6 Mean and Variance of Log-normal Distribution
For x ∼ N (µ, σ), compute mean and variance of y = exp(x).

Problem 2.7 Gillbert-Elliott Model for Wireless Channels
The Gillbert-Elliott model is a 2-state Markov chain to model the wireless channel
behavior when sending packet losses. This model consists of two channel states
denoted as Good and Bad with corresponding error probabilities. In Fig. 2.7 each
state may introduce errors for independent events with state dependent error rates
1 − k in the good and 1 − h in the bad state. In our framework, we interpret the
event as the arrival of a packet and an error as a packet loss.

(a) Based on the given error rates and transition probabilities p and r, formulate
πG and πB to be the stationary state probabilities of being in each state.



Chapter 2. Wireless Channel 44

(b) Obtain error rate pE in stationary state.

(c) Consider the Average Error Length (AEL) and Average number of Packet Drops
(APD) as two statistics of channel. Derive πG and πB .

Problem 2.8 Gillbert-Elliott model application
We have two sensor nodes that share a wireless channel. The state of the channel
follows the Gillbert-Elliott model. Suppose that the transition probabilities in
Fig. 2.7 are p = 10−5 and r = 10−1.

(a) Find the average length of an error burst.

(b) Obtain the average length of an error-free sequence of message transmission.

(c) Assume that the error probability in Good and Bad states is negligible and
almost sure, respectively. Compute the average message loss rate of the channel.
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Physical Layer

The nodes of a WSN have to be able to successfully transmit/receive mes-
sages over the wireless channel that serves as physical medium for the digital
communication link between the nodes. At the physical layer of the protocol
stack, a reliable communication depends upon radio power, wireless channel
attenuation, modulation and coding. The aim of this chapter is to under-
stand the basics of physical layer so to model mathematically the probability
to successfully receive messages as function of the radio power, modulations,
coding, and channel attenuations normally experienced in WSNs.

In WSNs commercially available, the physical layer uses three different
bands (also often called ranges) of frequencies for communication. In prac-
tice, a frequency slot over a frequency band is used to transmit message.
The frequency slot corresponds to the carrier frequency fc that is used (see
previous chapter). Such a frequency slot is often called “frequency channel”
or communication channel. The three frequency bands for home and indus-
trial automation purposes of WSNs are 2.4GHz, 915MHz in America, and
868MHz in Europe. In addition to larger bands reserved for Ultra Wide
Bands (UWB) communication (which we do not consider in this book), 47
frequency channels are distributed among these bands. To have an idea of
the about of bits per seconds that can be transmitted over these frequency
channels, we mention that one channel is associated with the 868MHz band
with a data rate of 20–250 kbps; 30 channels are defined for the 915MHz
band and 16 are used in the 2.4GHz range. Over these frequencies, and
using the typical transmit radio powers of the transceivers of commercially
available circuits, the transmission range of the nodes results to be 10–100
m with data rates from 20 to 250 kbps. In the 868/915MHz bands, the
modulation used over the carrier frequencies are Binary Phase Shift Keying
(BPSK) and Quadrature Phase Shift Keying (QPSK). QPSK is also used in
the 2.4GHz band. This is the reason why in this chapter, we give particular
relevance to these modulation formats.

The chapter begins with discussion on basic components of digital com-

45
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Figure 3.1 Overview of radio frequency (RF) communication blocks.

munication system which is followed by different types of digital modulation
techniques. Then communication over AWGN and fading channels is dis-
cussed. The error probability calculations for both the aforementioned cases
of channels is derived. At the end, a quick mention to channel coding theory
is given with particular focus on the block codes.

3.1 Basic Components

Low-power RF communication techniques are generally used in WSNs.
An illustration of RF wireless communication and general components is
given in Figure 3.1. Accordingly, the following are performed to transmit
information between a transmitter and a receiver:

• Source coding (data compression): At the transmitter end, the infor-
mation source is first encoded with a message source encoder, which
exploits the properties of the source message to encode it in a num-
ber of bits, and produce source message codeword. Thus, a source
message codeword is a sequence of bits corresponding to the source
message. Source coding is also referred to as data compression, be-
cause the goal is to encode a source message into a few bits as possible.
Source (en/de)coding is performed at the application layer as shown
in Figure 3.1.

• Channel coding (error control coding): The source codeword is then
further encoded by the channel encoder. The purpose of this additional
encoding is to add robustness to the source codeword with respect to
the wireless channel errors affecting the transmitted bits. Therefore,
channel coding is also referred to as error control coding.

• Interleaving and modulation: The bits that result from the channel
coding are then interleaved to combat the bursty errors that can affect
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a large number of consecutive bits. The channel coding and the in-
terleaving mechanism help the receiver either to (1) identify bit errors
to initiate retransmission or (2) correct a limited number of bits in
case of errors. The bits are then associated to an analog signal by the
modulation procedure. In this operation, the bits resulting from the
channel coding are grouped into groups each of which is associated to
a “message symbol”. In particular, an analog signal (or a set thereof) is
modulated by the message symbol (and hence by the sequence of bits
the symbol carries) to create the waveform that will be sent over the
wireless channel. Finally, the waveforms are transmitted through the
antenna to the receiver.

• Wireless channel propagation: The transmitted waveform, which is es-
sentially an electromagnetic wave, travels through the wireless channel.
As a consequence, the waveform is attenuated and distorted by several
wireless channel effects.

At the receiver end, symbol detection is performed first to lock into the
sent waveform. The received signal is demodulated to extract the message
symbols, which are then de-interleaved and decoded by the channel and the
source decoders to determine the information sent by the transmitter.

3.2 Modulation

After encoding the source message by source coding and channel coding,
the resulting bits are divided into groups. Every groups is then associated
to a message symbol, which is then modulated at the transmitter. The
modulated signal is then transmitted over the wireless channel by a node’s
antenna. Such a signal has the following representation:

s (t) =
∞∑
k=0

ak (t) g (t− kTs) , (3.1)

where ak is complex valued function representing the modulated message
symbol and g(t) is pulse shaping function of that modulated symbol. Ts is
the symbol duration.

It is interesting to compute the Fourier transform of ak(t)g(t − kTs)
because it helps to understand how the modulated signal occupies frequency
bands around the carrier frequency. The Fourier transform is given by

G (f)
∆
=

Ts∫
0

a0g (t) e−2πftdt , (3.2)
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and power spectral density of the signal is

Φs (f)
∆
=
|G (f)|2
Ts

. (3.3)

The power spectral density gives a measure of occupation of the modulated
signal in the frequencies around the carrier frequency.

The modulated message symbols, ak, can be modulated by different tech-
niques. There are many types digital modulation techniques such as ASK
(Amplitude Shift Keying), PSK (Phase Shift Keying), FSK (Frequency Shift
Keying), QAM (Quadrature Amplitude Modulation) and others. The tech-
niques that are relevant for WSNs commercially available are discussed in
next sections.

3.2.1 Binary Phase Shift Keying (BPSK)

A basic digital modulation technique is BPSK (also sometimes called
PRK, Phase Reversal Keying, or 2PSK) which is the simplest form of phase
shift keying (PSK).

The general form for BPSK follows the equation:

sn(t) =

√
2E

Ts
cos(2πfct+ π(1− n)) n = 0, 1 . (3.4)

In this case, ak(t) and g(t) in Equation (3.1) becomes

ak (t) =

{
cos (2πfct) if bit 0 is transmitted
cos (2πfct+ π) if bit 1 is transmitted (3.5)

g (t) =

√
E

Ts
, 0 ≤ t ≤ Ts . (3.6)

In frequency domain, ai(t)g(t) is

G (f) = −
√
E

Ts

ejπfTs − e−jπfTs
j2πf

= −
√
E

Ts
Ts

sin (πfTs)

πfTs

= −
√
E

Ts
Tssinc (fTs) , (3.7)

and spectral density of BPSK becomes:

Φs (f)
∆
=
E

Ts
sinc2 (fTs) , (3.8)

where we see that the transmit power is

Pt =
E

Ts
.
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Figure 3.2 Constellation of a BPSK modulation.

If we look at Equation (3.5), we see that it uses two phases which are
separated by 180° on the constellation diagram, so it can also be termed
2-PSK. The placement of constellation points is not fixed. For example, in
Figure 3.2, they are shown on the real axis, at 0° and 180°.

This modulation is the most robust of all the PSKs since it takes the
highest level of noise or distortion to make the demodulator reach an incor-
rect decision. It is, however, only able to modulate at 1 bit/symbol (Fig-
ure 3.2) and so is unsuitable for high data-rate applications. In the presence
of an arbitrary phase-shift introduced by the communications channel, the
demodulator is unable to identify the modulation points correctly. As a re-
sult, the data is often differentially encoded prior to modulation. BPSK is
functionally equivalent to 2-QAM modulation.

3.2.2 Quadrature Phase Shift Keying (QPSK)

QPSK uses a constellation signal with four phases that are separated
from each other by 90°. It can modulate two bits per symbol and therefore
can achieve higher data rate than BPSK, however the probability of error
increases as well. The constellation diagram for QPSK is shown in Figure 3.3.

The general form for BPSK follows the equation

sn(t) =

√
2Es
Ts

cos
(

2πfct+
π

4
(2n− 1)

)
, n = 1, 2, 3, 4 . (3.9)

The QPSK modulation scheme has been adopted by the IEEE 802.15.4
standard for WSNs (which we will study in the detail in next chapter) to
modulate the chips (bits used to represents an information bit after the
spread spectrum coding) sent for each bit as a part of the direct sequence
spread spectrum (DSSS) scheme. More specifically, modulation of bits in
an IEEE 802.15.4 transceiver uses offset QPSK with DSSS. The modulation
structure consists of the conversion of bits to symbols, conversion of symbols
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Figure 3.3 QPSK constellation diagram.
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Figure 4.6 The modulation structure in IEEE 802.15.4 [4].

4.4.1 FSK
Binary FSK has been used by early WSN platforms such as Mica2 [1]. As shown in Figure 4.5, the
modulation is based on using two distinct frequency values to represent digital 1 and 0. At the receiver
side, the center frequency of the received waveform is estimated to decide whether a 1 and/or 0 is
received.

At the transmitter side, the appropriate waveform is selected to transmit the bits sequentially. The
transmitter ensures that the phase is preserved between different bit transmissions. At the receiver side,
the waveform is passed through two matched filters that operate at frequencies f1 and f2. The output of
each filter represent the signal content at the particular center frequency, which is input to an envelope
detector. The results of the envelope detector are compared for a decision.

The bit error rate of the binary FSK modulation scheme is given by

pFSK
b = 1

2
exp

(
− Eb

2N0

)
(4.10)

where Eb/N0 is the ratio of energy per bit to noise spectral density, which represents the quality of the
received signal at the receiver.

4.4.2 QPSK
The QPSK modulation scheme has been adopted by the IEEE 802.15.4 [4] standard to modulate the
chips sent for each bit as a part of the DSSS scheme as explained in Section 4.1.1. More specifically,
modulation of bits in an IEEE 802.15.4 transceiver uses offset QPSK (O-QPSK) with DSSS. The
modulation structure is shown in Figure 4.6, which consists of the conversion of bits to symbols,
conversion of symbols to chips, and O-QPSK modulation for the chips.

In the IEEE 802.15.4 standard, a byte is represented by two symbols with 4 bits per symbol, which
results in a 16-ary modulation. Each 16 symbol is represented by a combination of 32 chips. Then, each
chip is transmitted using O-QPSK modulation.

The modulation scheme used in MicaZ nodes is O-QPSK with DSSS. The bit error rate of this scheme
is given by [18]

p
OQPSK
b = Q(

√
(Eb/N − 0)DS) (4.11)

where
(Eb/N0)DS = 2N × Eb/N0

N + 4Eb/N0(K − 1)/3
(4.12)

where N is the number of chips per bit, and K is the number of simultaneously transmitting users.

4.4.3 Binary vs. M-ary Modulation
The modulation schemes shown in Figure 4.5 are denoted as binary modulation schemes, since two types
of waveforms are used to represent digital 1 and 0. In addition to binary schemes, a higher number of

Figure 3.4 Modulator structure of the IEEE 802.15.4 standard for WSNs.

to chips, and QPSK modulation for these chips. The modulation structure
is shown in Figure 3.4.

The modulation scheme used in Telos nodes is O-QPSK with DSSS. The
bit error rate of this scheme is given by:

Pb,QPSK = Q

(√
Ec
N0

)
, (3.10)

with

Ec
N0

=
2N Eb

N0

N + 4
3
Eb
N0

(K − 1)
, (3.11)

where N is the number of chips per bit, and K is the number of simultane-
ously transmitting users.

3.2.3 Amplitude Shift Keying

Amplitude Shift Keying (ASK) is a digital modulation technique in which
the amplitude of an analog carrier singal is modulated according to the mes-
sage bits. The frequency and phase of the carrier signal remain unchanged.
ASK can be realized by different schemes. A basic one is called on-off key-
ing. In this approach, the bit ’1’ can be represented as presence of the signal
having frequency fc while the bit ’0’ can be represented by no signal. This
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Figure 3.5 ASK using on-off switch

Figure 3.6 ASK modulation using pulse shaping filter.

is illsutrated in Figure 3.5. It can be seen that the mixer multiplies the mes-
sage and carrier signal(from the local oscillator) to produce the modulated
wave.

Direct mixing of square wave requires mixer with excessive bandwidth,
which is expensive to afford. This can be avoided by using pulse-shaping filter
(PSF) that is implemented before the mixer. PSF can remove high frequency
components from the square wave and convert it into low-frequency signal
that will modulate the carrier signal. This is shown in Figure 3.6.

On-off keying is an example of binary-ASK. More amplitude values can
be added for large signal sets, for example 4-ASK,8-ASK etc. Every point
(symbol) is associated to a signal with specific amplitude. In this case, plural
bits constitute a symbol of the signal set that results in large data rate but
at the same time, high error probability. In ASK, all the constellation points
reside on one axis and distance between these points determines the error
probability. For fixed peak power, plural bits mean less distance between
the constallation points and hence high probability of error.

3.3 Communication over Gaussian Channel

Signals in the Gaussian channel are received corrupted by Additive White
Gaussian Noise (AWGN). We assume that such as noise has a power spectral
density of N0/2. Signal and noise are orthogonal with each other so receivers
use matched filters and correlators to separate out the two components. In
particular, at the receiver, after the matched filter, the signal is mapped onto
the signal space of the modulation scheme. A decision is then takes as to
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which symbol correspond to the point on the constellation. These decisions
are made by the decision circuit based upon the closest points in signal space.

While designing signal sets, the minimum distance between the points in
signal space is maximized and it is also subject to peak and average power
constraints. This is because of the requirement for low error rates in digital
communications. The symbol error probability is closely approximated as

P(e) ' NdminQ

(
dmin√
2N0

)
, (3.12)

where Ndmin is the average number of nearest neighbors at the minimum
distance.

3.3.1 Error Probability for BPSK

Assume that the transmitted signal is received together with an Additive
White Gaussian Noise (AWGN)

r (t) = s (t) + n0 (t) , (3.13)

n0 (t) ∈ N
(

0, σ2 =
N0

2Ts

)
. (3.14)

After the matched filter, the demodulator in the receiver block produces a
signal

r′ (t) = s′ (t) + n′0 (t) , (3.15)

n′0 (t) ∈ N
(

0, σ2 =
N0

2Ts

)
. (3.16)

Such a demodulated signal contains both the message signal and noise. Here
we have that

s′ (t) = ±
√
E

Ts
,

so the bit ‘0’ can be chosen as the threshold between the two points of the
signal space. If r′(t) ≥ 0 the detector decides for bit 1 and if r′(t) < 0 the
detector decides for bit 0. The received noise has zero mean and variance
N0/2Ts. An error occurs when the decision circuits decides ‘1’ while ‘0’ was
transmitted and vice versa. Calculating conditional probabilities for BPSK
gives

Pe,0|1 =

0∫
−∞

1√
2πσ2

e−
x−

√
E
Ts

2

2σ2 dx = Q

(√
2E

N0

)
, (3.17)

Pe,1|0 =

−∞∫
0

1√
2πσ2

e−
x+

√
E
Ts

2

2σ2 dx = Q

(√
2E

N0

)
. (3.18)
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The overall probability of error is given by

Pe =
1

2
Pe,0|1 +

1

2
Pe,1|0 = Q

(√
2E

N0

)
, (3.19)

where the Signal to Noise Ratio is defined as

SNR ,
E

N0
. (3.20)

3.3.2 Error Probability for 4-PAM

Pulse amplitude modulation (PAM) is effected by multiplying a rectan-
gular pulse of duration Ts, the symbol time, by one of M equally spaced
voltage levels symmetric about the origin. It can be easily shown that this
symmetry minimizes the peak and average power, without affecting the error
probability. In the particular case of 4-PAM, the signals are given by

s00 =
√
E/5φ1(t) s01 = 3

√
E/5φ1(t)

s10 = −
√
E/5φ1(t) s11 = −3

√
E/5φ1(t)

(3.21)

with

φ1(t) =

√
1

Ts
.

Clearly, the average energy is E = (2E/5 + 9E/5), and the squared minimum
distance is 4E/5. Here s00 and s10 have two neighbors at the minimum
distance, while s11 and s01 have only one. Thus Ndmin = 1.5. Also, the
most likely error is to cross only into the neighboring region, for which the
bit labels differ in only one position. Thus a symbol error results in only one
of the two bits being in error. Consequently, symbol error rate:

Pe ' 1.5Q

(√
2E

5N0

)
= 1.5Q

(√
4Eb
2N0

)
, (3.22)

with bit error rate

Pb ' 0.75Q

(√
4Eb
5N0

)
,

and the energy per bit is

Eb =
E

log2M
=
E

2
.

Modulations may be compared on the basis of their error performance as
a function of Eb/N0, and their spectral efficiencies. Binary PAM for example
has two signals: s0 =

√
Eφ1(t), s1 = −

√
Eφ1(t).
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Figure 3.7 Modulator and demodulator for 4-QAM.

Given that the same pulse shaping function is employed, the psd is identi-
cal to that of binary PSK and M-ary PAM, for any M. Compared to 4-PAM,
only half as many bits per hertz may be conveyed. It is therefore less spec-
trally efficient. The error probability is given by:

Pe = Pb = Q

(√
2E

N0

)
= Q

(√
2Eb
N0

)
. (3.23)

Thus, binary PAM requires less energy per bit to achieve the same error
probability as 4-PAM, and is considered more energy-efficient. The ratio is
5/2 or approximately 4 dB.

3.3.3 Error Probability for QAM

4-QAM and 4-PSK are actually the same modulation. When described
by four equally spaced phases:

si(t) =

√
2E

T
cos(2πfct+ (2i− 1)π/4), 0 ≤ t ≤ T , (3.24)

it is 4-PSK, whereas it is thought of as 4-QAM when equivalently described
as 2-PAM on quadrature carriers:

si(t) =

√
2E

T
cos((2i−1)π/4) cos(2πfct)−

√
2E

T
sin((2i−1)π/4) sin(2πfct) .

(3.25)
In either case, the signal space can be constructed using only two basis
functions:

φ1(t) =

√
2

T
cos(2πfct) , 0 ≤ t ≤ T

φ2(t) =

√
2

T
sin(2πfct) , 0 ≤ t ≤ T

(3.26)
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Figure 3.8 Decision regions for 16-QAM.

The minimum distance is
√

2E, and there are two neighbors at dmin. Con-
sequently:

Pe ' 2Q

(√
E0

N0

)
= Q

(√
2Eb
2N0

)
. (3.27)

This is as efficient in terms of Eb/N0 as BPSK or PAM, with twice the bits
per symbol. It uses the same bandwidth, and is therefore twice as spectrally
efficient. The modulator and demodulator are shown in Figure 3.7. In the
modulator, the input streams of 1s and 0s are converted to 1s and –1s. In
the demodulator, the integrator outputs are sampled every Ts seconds, and
then a threshold detector decides the value is 1 if the result is positive or
0 otherwise. M-QAM generally uses larger PAM constellations on each of
the quadrature carriers. For 16-QAM, draw the optimal decision regions
in signal space and a receiver that would implement these decisions, then
compute the approximate error probability.

Solution

There remain only two orthogonal functions. The decision boundaries
are composed of the right bisectors of the lines joining neighbors. Due to
the symmetry of the signal set, the boundaries are as depicted in the figure
below:

The demodulator is exactly as depicted in Figure 3.7, except that four-
level uniform slicers replace the two-level slicers (quantizers). Let the co-
ordinates of the lowest-energy signal in the first quadrant be (a, a). Then
the minimum distance is 2a, and the average number of neighbors at this
distance is [4(4) + 8(3) + 4(2)]/16 = 3. The average energy E may be com-
puted using the four-fold symmetry and similarity for the two coordinates as
[4(a)2 + 4(3a)2]/4 = 10a2. Alternatively one could have doubled the average
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energy of 4-PAM. In either case, dmin is related to Eb by

dmin = 2a = 2

√
E

10
= 2

√
4Eb
10

=

√
8Eb

5
. (3.28)

So that

Pe = 3Q

(√
4Eb
5N0

)
.

Gray coding, which labels symbols so that the nearest symbols differ in
exactly one bit, exists for all QAM configurations, and thus the bit error rate
performance as a function of Eb/N0 is the same for 16-QAM as for 4-PAM.
This is achieved with twice the spectral efficiency.

Signal sets can also be constructed using orthogonal frequencies. In
BFSK two carriers separated in frequency by 1/T are used, with the bit
conveyed depending upon the frequency. A two-branch detector is required.
The squared distance between two orthogonal signals with energy E is half
that of two antipodal signals with energy E, and thus BFSK performs 3 dB
worse with respect to Eb/N0 than BPSK. In contrast to other M-ary mod-
ulations, however, M-FSK actually has better performance as M increases,
with

Pe ' (M − 1)Q

(√
E

N0

)
= (M − 1)Q

(√
Eb log2M

N0

)
. (3.29)

The price of this performance increase is a linear increase in the required
bandwidth, in contrast to the phase/amplitude modulations for which band-
width is independent of M. In practice, a better trade in bandwidth and
Eb/N0 performance is obtained through the use of channel codes and a mod-
ulation such as PSK, making these the methods of choice for deep-space
communication. FSK finds application mainly as a non-coherent scheme in
low-cost applications such as paging.

3.4 Communication over Fading Channel

Signal propagation in real channel is different from that in Gaussian
channel. It not only suffers from AWGN but also the transmitted signals are
attenuated and distorted by the wireless channel.

r (t) =
√
As (t) + n0 (t) . (3.30)

Electromagnetic waves in the air suffers from path loss, fast fading or slow
fading. The fading effects of wireless medium are random so they are mod-
elled by probability distributions. For details, see Chapter 2. The received
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power in presence of AWGN + Rayleigh channel with path loss, Rayleigh
fast fading, and fixed shadow fading can be modelled as,

Pr = PtGt (θt, ψt)Gr (θr, ψr)
λ2

(4πr)2 PL · y · z ∆
= PtC · z (3.31)

where

C = Gt (θt, ψt)Gr (θr, ψr)
λ2

(4πr)2 PL · y (3.32)

The receiver sees the transmit power Pt = E/Ts received with an atten-
uation C · z and then

SNR =
E

N0
Cz . (3.33)

To compute the probability, mathematically, it is as if the transmit power
were Pt = E/TsCz and the channel were just AWGN and with no fading.
So, the probability of error with fading has same expression as that of simple
AWGN channels, but with the new SNR as defined above. For example

Pe,BPSK = Q

(√
2E

N0

)
−→ Pe,BPSK (z) = Q

(√
2ECz

N0

)
, (3.34)

AWGN −→ AWGN + Rayleigh fading .

We have derived instantaneous error probability over fading channel so
far which depends on the given realization of the fading channel z. In order to
calculate the average probability of error, take the expectation of Pe,BPSK(z)
over the distribution of z, so

p(z) =
1

γ∗
e
− z
γ∗ , γ∗ = SNR =

E

N0
C, z = 1 , (3.35)

Pe,BPSK =

∫ ∞
0

Pe,BPSK(z)p(z)dz =
1

2

[
1−

√
γ∗

1 + γ∗

]
. (3.36)

At high SNR, the approximation (1 + x)
1
2 = 1 + x/2 can be used, giving

Pe '
1

4γ∗
(3.37)

compared with Pe = Q(
√

2γ∗) for the Gaussian channel.

Thus for the Gaussian channel a linear increase in SNR results in an
exponential decrease in the error probability,

Pe,BPSK = Q

(√
2E

N0

)
, (3.38)
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but incase of Rayleigh channel only a linear decrease in the error probability
occurs on linear increase of the SNR. This is disastrous: to achieve Pe =
10−6, the Rayleigh channel demands 40dB higher SNR than the Gaussian
channel. As this represents a factor of 10000 in linear scale, it is clear that
small low-power devices will not be adequate if boosting power is the only
approach.

Pe,BPSK '
1

4γ∗
, γ∗ = SNR =

E

N0
C . (3.39)

There is nothing special about BPSK in this respect; in fact the behavior
is typical. For the popular binary modulations the error probabilities are
given approximately by:

coherent PSK = 1/4γ∗ , differential PSK = 1/2γ∗ ,

coherent FSK = 1/2γ∗ , noncoherent FSK = 1/γ∗ .
(3.40)

Incase of Gaussian channel, both coherent and non-coherent modulations
show similar performances at high SNR in Pe vs.Eb/N0. But for the Rayleigh
channel, low SNR behaviour of being 3dB worse is always observed. This is
due to the deep fade events at low SNR that causes most of the errors in
Rayleigh channel. Thus receiver has to suffer more for lack of coherence.

There are two basic approaches to dealing with this problem (three if one
counts simply giving the customer a low quality of service). The first is to
allocate more bits to periods of good SNR, which is possible if the channel
is only slowly fading and the transmitter and receiver can collaborate. The
optimal allocation is similar to that in OFDM, only applied to the time
domain. This may be done either to maximize the transmission rate, or to
achieve a desired transmission rate with the minimum required energy. The
second is to spread the information over the fading events, with application
of appropriate weighting as the signals are recombined to make the channel
seen by an information bit more like the average condition. This second
approach amounts to diversity combining. An aggressive combination of the
approaches can completely overcome multipath fading if the channel can be
estimated accurately.

In fact, if transmission delay is not an issue and the number of data to
send is small, multipath fading can even be advantageous. A low-energy
signal is used to probe the channel. The far-end user then signals when the
SNR is far above γ∗ and a low-power signal can then be used to convey a
large number of bits per symbol. This game can, of course, also be played
in the frequency domain if the fading is frequency-selective.

3.5 Channel Coding (Error Control Coding)

Source coding techniques aim to decrease the amount of data to be trans-
mitted by exploiting the statistical properties of the information. Once en-
coded, this information needs to be transmitted reliably over the wireless
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channel. However, the transmitted information can be easily corrupted due
to the adverse effects of the wireless channel. To combat these effects, chan-
nel coding schemes have long been investigated in the context of wireless
communication theory. The main goal of these channel coding approaches
is to exploit the statistical properties of the channel to inject redundancy
into the information to be sent. Consequently, the received information can
be decoded successfully even if certain portions of it are distorted. Channel
coding is also referred to as error control coding (ECC) or forward error
correction (FEC).

When a certain number of information bits are provided to the source
encoder, an output that consists of a smaller number of bits is created. Al-
though compressed, if this source codeword is successfully received at the
source decoder, the original set of information bits can be decoded. In order
to successfully transmit the source codeword, the channel encoder creates an
output that consists of a larger number of bits compared to the source code-
word. The redundant bits (or parity bits) are added to the source codeword
to create the channel codeword, which helps combat the wireless channel
errors.

There exist several powerful channel codes that have been developed for
communication systems. These codes constitute the basis of error control
techniques such as automatic repeat request (ARQ), forward error correction
(FEC), and hybrid ARQ schemes. Next, we present some of the common
channel codes that are being used in WSNs.

3.5.1 Block Codes

Block codes are generally preferred in WSNs due to their relatively sim-
pler implementation and smaller memory requirements. A block code trans-
forms an input message u of k bits into an output message v of n bits, n >
k. The output message v is denoted as the channel codeword. Depending
on the complexity of the code, each code is capable of correcting up to t bits
in error. Accordingly, a block code is identified by a tuple (n, k, t).

The error detection and error correction capabilities of block codes are
determined by the minimum distance of the code. The Hamming distance
between two codewords is defined as the number of places they differ. Ac-
cordingly, the minimum Hamming distance, dmin, is the minimum distance
between any two words in a code. A code with minimum distance dmin can
detect up to dmin − 1 errors and correct up to t errors such that 2t + 1 ≤
dmin ≤ 2t + 2.

Three main types of block codes are used in WSNs in general.
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BCH Codes

A popular example of block codes is the Bose, Chaudhuri, and Hoc-
quenghem (BCH) code. BCH codes have been used in many different ap-
plications and provide both error detection and correction capabilities. A
BCH code is identified by a tuple (n, k, t ), where n is the block length, k is
the information length, and t is the maximum number of errors that can be
corrected. The following hold true for any BCH code:

n = 2m − 1 , (3.41)

n− k ≤ mt , (3.42)

dmin ≥ 2t+ 1 . (3.43)

The encoding and decoding operations of BCH codes are performed in a
finite field GF(2m), called a Galois field, which has 2m elements.

Reed Solomon (RS) Codes

RS (Reed–Solomon) codes are a family of BCH codes that are non-binary,
i.e., the operations are performed in GF(q), where q is a prime number.
While they retain the properties of binary BCH codes, the following hold
true for all RS codes:

n = q − 1 , (3.44)

n− k = 2t , (3.45)

dmin = 2t+ 1 . (3.46)

Cyclic Redundancy Check (CRC) Codes

CRC (Cyclic Redundancy Check) codes are a special family of BCH codes
that are used to detect errors in a packet. Irrespective of whether an error
control code is used within communication, CRC codes are used in almost
any communication system. The automatic repeat request (ARQ) scheme,
which relies on retransmissions for reliability, is based on CRC codes. In
particular, CRC codes are BCH codes with dmin = 4. Upon decoding, CRC
codes detect whether a packet is received in error or not. However, they
cannot correct these errors. Block codes are easy to implement because of
the relatively simpler encoder and decoder structures. Consequently, the
encoding complexity of block codes is negligible. Hence, only the decoding
complexity is considered. Accordingly, assuming software implementation,
block codes can be decoded with (2nt+ 2t2) additions and (2nt+ 2t2) mul-
tiplications.
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Problems

Problem 3.1 Bit error probability for BPSK over AWGN channels

Compute the probability of error for binary phase shift keying (BPSK) with Ad-
ditive white Gaussian noise (AWGN) channel model.

Problem 3.2 Bit error probability for QPSK over AWGN channels

Compute the probability of error for Quadrature phase-shift keying (QPSK) mod-
ulation with Additive white Gaussian noise (AWGN) channel model.

Problem 3.3 Error probability for 4-PAM over AWGN channels

Compute the probability of error for Pulse amplitude modulation (PAM) with Ad-
ditive white Gaussian noise (AWGN) channel model.

Problem 3.4 Average error probability for Rayleigh fading

Compute the average probability of error for a Rayleigh fading channel given the
error probability of AWGN channel model.

Problem 3.5 Detection in a Rayleigh fading channel

In a Rayleigh fading channel the detection of symbol x from y is based on the sign
of the real sufficient statistic

r = |h|x+ z,

where z ∼ N (0, N0/2). It means that, If the transmitted symbol is x = ±a, then,
for a given value of h, the error probability of detecting x is

Q

(
a|h|√
N0/2

)
= Q

(√
2|h|2SNR

)
,

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol time
(note that we normalized the channel gain such that E[|h|2] = 1.) For Rayleigh
fading when |h| has Rayleigh distribution with mean 0 and variance 1, calculate
the average probability of error. Approximate the solution for high SNR regions.

Problem 3.6 Average error probability for log-normal fading
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Consider a log-normal wireless channel with AWGN receiver noise. We know that
the probability of error in AWGN is

Q(γ) = Pr{x > γ} =

∫ ∞
γ

1√
2π
e−t

2/2dt .

The average probability of error with respect to the log-normal distribution is
the average of Q(γ) with respect to the log-normal distribution. It is difficult to
compute because Q is highly non linear. Suppose to perform a Stirling approxima-
tion of the Q function, which is

E {f(θ)} ∼ 2

3
f(µ) +

1

6
f(µ+

√
3σ) +

1

6
f(µ−

√
3σ) .

where f(θ) is any function of a random variable θ having mean µ and variance
σ2. Compute the average probability of error of log-normal channel by using the
Stirling approximation.

Problem 3.7 Probability of error at the message level

In a WSN communication platform, consider a Rayleigh Channel over a AWGN
receiver noise. The message is a frame of size f bits and is composed of the preamble,
network payload, and a CRC code.

(a) Compute p the probability that the message is correctly received.

(b) Assume that the received signal level at the receiver decays inversely with the
squared of the distance, i.e.,

SNR ≈ αEb
N0d2

.

For messages of size 10 bits and the values Eb/N0 = 100 and α = 0.1, com-
pute the farthest distance to deploy a receiver such that the probability of
successfully message reception is at least p = 0.910 ≈ 0.35.

Problem 3.8 Gray Code (Ex. 6.5 in (Pottie and Kaiser, 2005))

The property of the Gray code is that the code-words of adjacent symbols only differ
in one bit. For example, the code words of 8-PAM (pulse amplitude modulation)
symbols are as illustrated in Figure 3.9. This results in a minimum expected number
of bit errors per symbol error, in conditions of low symbol error probability. Devise
a Gray code for 16-QAM (quadrature amplitude modulation) symbols.

Problem 3.9 The rate 2/3 parity check code
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Figure 3.9 Gray-coded 8-PAM.

A parity check code forms a modulo 2 sum of information bits and then appends this
bit as the parity check. Consider, e.g., a scheme in which there are two information
bits and one party bit. The codewords are then the set 000, 011, 101, and 101,
which have even parity, while the odd-parity possibilities 001, 010, 100 and 111 are
excluded. There are four code-words and thus two bits of information, compared
with the eight uncoded possibilities which would take three bits to represent. The
code rate is thus 2/3. Suppose this coding scheme is used in conjunction with
binary phase shift keying (BPSK). Compute the coding gain assuming ML soft
coding.

Problem 3.10 Hard vs. soft decisions (Ex. 6.7 in (Pottie and Kaiser, 2005))
In previous exercise, if hard-decisions are used instead of soft-decisions, answer to
the following questions:

(a) How many errors can the code detect and correct, respectively?

(b) Compute the error probability, i.e., the probability that the decoder cannot
make the correct decision.

(c) Compare the error probability with that resulting from soft-decisions.





Chapter 4

Medium Access Control

4.1 Introduction

In the previous chapter, we studied that the physical layer is responsible
for the transmission of the message bit stream over the wireless channel.
Several issues, e.g., the way information is modulated and transmitted over
the channel and the probability of successful message reception were covered.
The question we would like to answer in this chapter is when a node gets
the right to transmit messages over a wireless communication medium that
is shared by many transmitters? Moreover, what is the mechanism to get
such a right? This mechanism is regulated by the Medium Access Control
(MAC). In this chapter, the main aspects of the MAC layer in WSNs are
studied. Within the OSI stack model, the MAC layer is considered as a part
of the Data Link layer (DLL).

The principal objective of the MAC layer is to ensure reliable data trans-
mission across the link that the physical layer has already determined. Fur-
thermore, MAC layer determines the way access is controlled in the commu-
nication channel, a fundamental function in case of broadcast WSNs where
the physical medium is shared by a large number of sensors. Specifically, in
any broadcast network the important issue is how to determine which node
uses the wireless channel at which time and over which frequency. Therefore,
message transmission regulation is needed to achieve an efficient channel al-
location amongst the nodes.

MAC layer and its associated protocols that set the rules for the commu-
nication between the sending and the receiving node, refer mainly to mech-
anisms that control the timing of frequency intervals for sending a message
(packet) through the channel and listening for it.

The chapter is organized as follows:
Important classes of useful MAC protocols are schedule-based (Section 4.3.1)
and contention-based (Section 4.3.2) protocols. In Section 4.4, the IEEE
802.15.4 MAC protocol is discussed. This protocol combines contention and

65



Chapter 4. Medium Access Control 66

Figure 4.1 Typical power consumption of a node of a WSN.

schedule-based elements and can be expected to achieve significant commer-
cial impact.

4.2 Problems and Performance Requirements for
MAC Protocols

4.2.1 Energy Efficiency

The issue of energy efficiency is the prime consideration in WSN MAC
protocols. MAC is one of the major components for energy expenditure
in WSNs. The power consumption of a node is distributed over its differ-
ent operations as shown in Figure 4.1. From the figure, we see that about
30% of the power consumption is for message reception, 30% is for message
transmission, and 30% for idle listening for incoming messages. The design
of MAC protocols for WSNs has to take into account these typical figures.
Most of the sensor nodes are deployed with batteries and have limited life-
time, hence prolonging lifetime is of crucial importance. MAC protocols aim
to deal with all the operations related to energy consumption and try to
minimize their effect. As shown in Figure 4.1, receiving messages is about
as expensive as transmitting, and idle listening for messages consumes also
a significant amount of a sensor’s energy.

Typical sources of energy wastage in WSNs include message collisions,
message overhearing, idle listening and protocol overhead:

• Frame collisions: A data message collision occurs when a node sends
a data message that collides or overlaps in time with another message.
The collision is indicated by a failure from the receiver to return an ac-
knowledgement (ACK) message for the data message. When a message
collision occurs the node has to retransmit the lost message to increase
the probability that it is successfully received. This activity requires a
new session of link establishment between nodes as well as energy for
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retransmitting the message. A protocol may reduce message collisions
by employing contention-free scheduling protocols or contention- based
backoff algorithms to minimize the probability of collisions.

• Message overhearing : In this case, effort is consumed in receiving a
message destined for another node. Receiving and discarding messages
intended for other nodes is commonly employed in non-energy con-
strained networks to increase throughput and decrease latency. Energy-
efficient methods to deal with this problem are early rejection and net-
work allocation vector (NAV) sleep. Specifically, early rejection allows
a sensor node to turn off its radio once it has read a different destination
field for an incoming message. Furthermore, NAV sleep allows nodes to
schedule a sleep period during the overheard request-to send/clear-to
send (RTS-CTS) handshake sequence by noting the message duration
field and scheduling a NAV table interrupt.

• Idle listening : Idle listening occurs when a device listens to a wireless
channel that is free from transmissions (idle medium). Contention-
based WSN MAC protocols attempt to synchronize network traffic so
that transmissions begin only in predetermined time slots. Once all
network transmissions are complete for a particular cycle or time du-
ration of a message, the protocols allow nodes to return to sleep until
the next transmission period. Contention-free WSN MAC protocols re-
duce idle listening by scheduling transmission slots and allowing nodes
not actively exchanging messages to sleep.

• Protocol overhead : The overhead in MAC protocols can result form
per-message overhead (MAC headers and trailers), collisions, or from
exchange of extra control messages. When designing a MAC protocol
one should keep the number of control messages to a minimum. Other-
wise this overhead will result in unnecessary energy consumption while
transmitting and receiving.

As we saw in the previous chapter, the received power decreases with the
distance between transmitting and receiving node. This path loss combined
with that any transceiver needs a minimum signal strength to demodulate
signals successfully leads to a maximum range that a sensor node can reach
with a given transmit power. If two nodes are out of reach, they cannot
hear each other. This gives rise to the well-known hidden terminal/exposed
terminal problems that are described in the following sections. In general,
there are three types of ranges:

• Transmission Range: The range within which a message can be suc-
cessfully received. This value is mainly determined by the transmission
power, the receiver sensitivity (SNR) threshold requirement and the
radio propagation environment.
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Figure 4.2 The hidden terminal problem. The transmitter A does not hear
the transmissions of C, which results in a collision in B.

• Carrier Sense Range: For a sending node, Carrier Sense Range is
defined as the range within which all other nodes will detect the channel
busy. It is determined by the power sensing threshold, the antenna
sensitivity, and the wireless channel propagation properties.

• Interference Range: For a receiving node, Interference Range indicates
the range within which an unrelated transmitter can corrupt the mes-
sage at the receiver.

4.2.2 The Hidden Terminal Problem

The hidden terminal (here terminal is synonymous of node) problem
occurs when a node senses the medium (i.e., the wireless channel) before
starting to transmit a message. In wireless networking, the hidden terminal
problem occurs when a node is visible from a receiver node, but not from
other nodes communicating with said receiver node. The scenario, as shown
in Figure 4.2, is as follows: Suppose that node A wants to send a message
to node B. Node A does not hear transmitter C sending messages that can
be received by node B and node D. The receiving node B is simultaneously
included in the transmission range of node A and the interference range of
node C, as shown in Figure 4.2. Hence, a collision is possible to occur at
B when A and C transmit messages at the same time as B. This collision
cannot be directly detected since a carrier-sensing operation by C shows an
idle wireless channel because A and C cannot hear each other.

The hidden terminal problem is particularly relevant for Carrier Sense
Multiple Access (CSMA) protocols, which we will see later below.

4.2.3 The Exposed Terminal Problem

The exposed terminal problem is shown in Figure 4.3. According to this
scenario, node B wants to send a message to node A. In addition, node C
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Figure 4.3 The exposed terminal problem: B hears a transmission of C
and does not transmit, even though the transmission of B does not cause
collisions at A or D.

wants to send a message to node D. Although this would be theoretically
possible since both A and D would receive their messages without distortions,
the carrier-sense operation performed by node C, suppresses C’s transmission
and bandwidth is wasted.

4.2.4 Characteristics of MAC Protocols

The essential task of any MAC protocol is to regulate the access of the
nodes to the wireless channel so that that certain application-dependent
performance requirements are satisfied. Some of the traditional performance
criteria are transmission delay, throughput and fairness, whereas in WSNs,
the additional performance creterion of energy conservation is important.
The most common characteristics of the MAC protocols can be summarized
as follows:

• Transmission delay : Transmission delay is defined as the amount of
time that a single message spends in the MAC protocol. It can by
categorized in deterministic delay (related to a predictable number of
state transitions) and probabilistic delay that allows only an approx-
imation of the delay, giving the possibility to calculate relative worst
or best case bound. The delay issue requires MAC protocols to be
simple and have as fewer mechanisms as possible. Designing principles
have to compromise on simplicity and low delay with the error control,
retransmissions and collision avoidance.

• Throughput : Throughput is defined by the rate at which messages are
served. The throughput can be measured in messages or symbols per
second but most commonly is measured in bits per second. The goal
is to maximize it.

• Fairness: A MAC protocol is considered fair if it allocates a channel
among the competing nodes according to some fairness criteria. How-
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ever, fairness is a complex term in WSN. WSN can be viewed as a
distributed system and envisaging it so the ratio of channel allocation
between nodes may or may not be fair.

• Scalability : Scalability describes the ability of the communication sys-
tem to meet performance characteristics despite of the size of the net-
work and number of competing nodes. Although this metric belongs
more to the networks architecture the designer of a MAC protocol
has to consider how to handle competition for channel access, retrans-
mission and what happens if the traffic load increases because of the
increase of the number of nodes.

• Robustness: Robustness is referred to as a composition of reliability,
availability, and dependability. It describes protocol sensibility for traf-
fic load over a sustained period of time.

• Stability : Stability describes how good the protocol handles fluctuation
of traffic load over a sustainable period of time.

4.3 Definition and Classification of MAC Protocols

Depending on the way MAC protocols regulate access on the shared
medium, they can be classified into two broad classes: schedule-based (or
contention-free) and contention-based protocols. Protocols belonging to the
first class, allow only one node at a time to access the wireless channel.
A schedule regulates which node may use which time or frequency slot at
which time. The schedule can be fixed or computed on demand resulting to
a further classification into fixed-assignment and on-demand protocols, re-
spectively. In this case, collisions, overhearing and idle listening are avoided,
but time synchronization among nodes is needed.

On the other hand, contention-based protocols allow nodes to access
the wireless channel simultaneously. The main principle of these protocols
is random access. For this reason, mechanisms are implemented to han-
dle or reduce the occurring message collisions. MAC protocols that do not
fit into this classification having characteristics of both contention-free and
contention-based techniques are hybrid approaches often aiming to inherit
the advantages of these main categories, while minimizing their weaknesses.

4.3.1 Schedule-based MAC Protocols

Typical protocols of this class are TDMA, FDMA and CDMA. The Time
Division Multiple Access (TDMA) scheme divides the time axis into slots.
These time slots are assigned to each node exclusively and therefore every
node transmits periodically only in its own time slot. A In most cases, a
central node decides the TDMA schedules. Synchronization is also needed
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among the nodes to avoid message collisions in adjacent time slots. This
scheme is useful in small networks or when the network is divided into smaller
clusters, where, in each of them, MAC can be controlled at a local cluster
head.

In TDMA MAC protocols, we assume that N time slots are assigned to
N nodes in the network. The nodes are synchronized with a predetermined
synchronization message transmission frequency fs. Each slot is long enough
to accommodate guard time to account for synchronization errors and one
message transmission. The length of guard time is a function of fs.

The average delay to transmit a message is given as follows:

D =
N

2
ts + tp =

N

2

(
d

fs
+ 2tp

)
, (4.1)

where ts is the duration of TDMA slot, d is the clock drift per unit time
and tp is the message transmission time, which corresponds to L times the
slot time rs where L denotes the message transmission duration measured
in slots1 and rs the duration of the slot.

The reliability of TDMA schemes is approximately 1 assuming appropri-
ate transmit radio powers are used and ignoring the interference from other
networks.

The average energy consumption is given as follows:

E = PrLrsfs + Pt
L

L+X
+ Ps

(
1− L

L+X
− Lrsfs

)
, (4.2)

based on the assumption that L/(L+X) + Lrsfs ≤ 1. X denotes the time
duration to wait before the next transmission attempt measured in slots and
Pr, Pt and Ps are the average energy consumption in receive, transmit and
sleep states respectively.

In Frequency Division Multiple Access (FDMA), the available frequency
band for transmissions is divided into subchannels, each of which is assigned
to particular node. Since each node has its own private frequency band,
centered around a carrier frequency, there is no interference between different
nodes. In this case, frequency synchronization as well as narrowband filters
are required.

Code Division Multiple Access (CDMA) assigns a different code to each
node. Each node then uses its unique code to encode the data bits it sends.
If the codes are chosen carefully, different nodes can transmit simultaneously
and yet have their respective receivers correctly receive a sender’s encoded
message bits (assuming the receiver knows the sender’s CDMA code and the
codes are “orthogonal”) in spite of interfering transmissions by other nodes.

The above mentioned schedule-based methods are efficient and provide
better performance when the number of nodes in the network is small and

1We assume that this duration is an integer number of slots.
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Figure 4.4 The slotted ALOHA protocol.

constant. On the contrary, when the number of nodes is large and continu-
ously varying or the traffic is bursty, schedule based methods present some
problems. In specific, in TDMA, delay occurs whenever a user does not use
the allocated slot. In FDMA, if the carrier frequency is divided into N slots
and fewer than N nodes are currently interested in communicating, a large
piece of valuable spectrum is wasted. Furthermore, if more than N nodes
want to communicate, some of them will be denied permission due to lack of
bandwidth, even if some of the sensors that have been assigned a frequency
band hardly ever transmit or receive anything.

4.3.2 Contention-based MAC Protocols

When the number of nodes is large and variable or the traffic is fairly
bursty, schedule-based schemes are poor choices. In this case, certain contention-
based MAC protocols have been proposed as alternative. Typical protocols
of this class are the ALOHA and CSMA protocols, which we study below.

ALOHA Protocols

Slotted ALOHA is considered as one of the simplest contention-based
MAC protocols. It works on top of TDMA as time is divided into slots of
size equal to the time interval a message requires to be transmitted. In this
scheme, nodes are synchronized and start to transmit messages only at the
beginnings of the slots. In case that two or more messages collide during a
slot, then all the nodes detect the collision event before the slot ends. In
particular, let p be a probability that a node can transmit a message. The
steps of slotted ALOHA (Figure 4.4) are the following:

• When a node has a new message to send, it waits until the beginning
of the next slot and transmits the entire node in the slot.

• If no collision occurs, the node has successfully transmitted its node
and thus need not consider retransmitting the message.

• If collision occurs, the node detects the collision before the end of the
slot and retransmits its message in each subsequent slot with proba-
bility p until the message is transmitted without a collision.
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Figure 4.5 The pure ALOHA protocol.

Slotted ALOHA constitutes a simple MAC protocol. It is also highly
decentralized, because each node detects collisions and independently decides
when to retransmit. Let’s assume that each sensor always has a message to
send and that it transmits with probability p for a new message as well as
for a message that has already suffered a collision. Suppose also that n is the
number of nodes attempting to transmit. Then the probability that a given
slot is a free slot, is given by the probability that one of the nodes transmits
and that the remaining n− 1 nodes do not transmit. The probability that a
given node transmits is p; the probability that the remaining nodes do not
transmit is (1− p)n−1. Therefore the probability a given node has a success
is p(1− p)n−1. Because there are n nodes, the probability that any one of
the n nodes has a success, or the probability that a slot is taken, is(

n
1

)
p(1− p)n−1 .

The slotted ALOHA protocol requires that all nodes synchronize their
transmissions to start at the beginning of a slot. The first ALOHA proto-
col was actually an unslotted, fully decentralized protocol, a so called pure
ALHOA. In pure ALOHA, messages are transmitted at completely arbitrary
times and the basic idea is simple: nodes transmit whenever they have mes-
sages to send. If a transmitted message experiences a collision, which is
found out either by listening to the channel at the receiver node or by nega-
tive acknowledgement messages (NACK) from the receiver to the transmitter
node, the node will then immediately (after completely transmitting its col-
lided message) retransmit the message again with probability p. Otherwise,
the node waits for a random amount of time and it then retransmits the
message with probability p. The waiting time must be random or the same
messages may collide over and over, in lockstep. This is an unsynchronized
transmission at any instant, since time is not divided into slots during which
messages must fit, as it is shown in Figure 4.5.
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CSMA Protocols

In both slotted and pure ALOHA, a node’s decision to transmit a mes-
sage is made independently of the activity of the other nodes sharing the
wireless channel. In Carrier Sense Multiple Access (CSMA) protocols, a
node first listens (channel assessment) if the channel is free or busy from
other transmissions.

Some protocols of this class may also be characterized by the collision de-
tection property (CSMA/CD). In specific, a transmitting node listens to the
channel while it is transmitting. If it detects that another node is transmit-
ting an interfering message, it stops transmitting and waits a random amount
of time before repeating the listen-and-transmit-when-idle cycle. CSMA/CD
protocols are most applicable in case of a wired medium where an absence of
collision at the transmitting node means that there will be also no collision
at the receiver node during message transmission. However, in a wireless
channel, collisions may occur at the receiver and the transmitting node will
therefore be unaware of a collision.

Another important class of CSMA protocols are those equipped with
the property of collision avoidance. In the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocols, nodes attempt to avoid
collisions by not transmitting immediately when the channel is sensed to be
idle. In particular, a node, first, listens to the channel for a specific time,
which is generally referred to as the intermessage space (IFS) and which is
a multiple of a slot size. The IFS duration ensures that nodes transmit only
if the channel is idle and helps to prevent collisions. If the channel is sensed
as busy during the IFS, it is determined that another node is transmitting
a message. Therefore, the competing nodes will defer their transmission
until the end of ongoing transmission. However, at the end of the ongoing
transmission, the competing nodes would sense the channel as idle and try
to send their messages simultaneously. In order to prevent this collision,
random backoff periods are assigned to the competing nodes before they
transmit a message.

This backoff mechanism of CSMA/CA protocols is crucial for the avoid-
ance of collisions. Once the ongoing transmission is over, the nodes delay
another IFS. If the wireless channel remains idle for this period, the nodes
pick up a random number of slots within a range of values to wait before
transmitting their own message. This range of values is referred to as the
contention window and nodes select a random number within this window for
their backoff. The backoff is performed through a timer, which reduces the
backoff value for each specific duration equal to a slot. After the nodes enter
the backoff period, the first node with its clock expiring starts transmission.
In other words, the node with the shortest backoff period starts to send while
the other nodes sense the new transmission and freeze their backoff clocks,
to be restarted after completion of the current transmission in the next con-
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tention period. This random backoff mechanism aims to prevent nodes from
self-synchronizing at the end of a transmission and colliding with each other.
However, it is clear that in the case of dense networks, there will be many
nodes that will enter the backoff mechanism. As a result, with some proba-
bility, some nodes can select the same backoff period and collide with each
other. In this case, the nodes that collide double their contention window
and select a new backoff period. This mechanism is referred to as the binary
exponential backoff scheme. In the case of a successful communication, the
contention window is set to its initial value.

Other schemes equipped with the collision avoidance property rely on
a dynamic channel reservation mechanism. Specifically, nodes send small
control messages to reserve the wireless channel prior to data transmission.
The channel reservation is performed through two small control messages,
i.e. request-to-send (RTS) and clear-to-send (CTS) control messages as in
Multiple Access with Collision Avoidance (MACA). With an RTS message, a
node indicates its desire to transmit a data message to an intended receiver.
If the RTS arrives without collision the receiver node responds with a CTS
control message, granting the right to send the message. If a sender does
not receive a CTS in response to its RTS, it will retry at a later time.
However, if the CTS message has been received, the channel reservation
has concluded successfully. The competing nodes, hearing either the RTS or
CTS message, are informed about the ongoing transmission and they wait
before they attempt to reserve the channel. Using this handshake, MACA
addresses the hidden terminal problem and reduces the number of collisions
by reserving the medium for data transmissions.

In MACA, this waiting time can be based upon the size of the data trans-
mission, which can be indicated as part of the RTS and CTS messages. This
introduces the Network Allocation Vector (NAV) process according to which
when a node sends an RTS message, the duration of the data message that
will be sent is also indicated in the RTS message. Moreover, the receiver node
replies to this RTS with a CTS message, copying the duration of the data
message. As a result, nodes that hear either the RTS or CTS message can
determine the duration of the channel reservation handshake. These nodes
can refrain from continuously sensing the channel during the transmission.
NAV consists of the duration of the transmission that is being performed and
is reduced in every slot just as the backoff timer. Physical channel sensing
is only performed when NAV expires. As indicated previously, one of the
major problems of the CSMA/CA scheme is the requirement for continuous
channel sensing. NAV helps, to some extent, to reduce the energy consumed
for channel sensing by enabling the nodes to sleep during an ongoing trans-
mission until NAV expires. The NAV concept is one of the most exploited
ideas in MAC protocols for WSNs.

In MACAW (MACA for Wireless LANs), the receiver responds with an
acknowledgement (ACK) control message once the message has been received
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correctly, allowing other nodes to learn that the channel is available again
and to increase the reliability of transmissions. The consequence is that
nodes overhearing an RTS message must remain silent to ensure that the
sender of the RTS is able to receive the ACK. Nodes that overheard RTS,
but did not acknowledge CTS, do not know whether they did not hear the
CTS signal because they are out of reach of the destination or because the
CTS message was never sent. In either case, they will also not hear the
ACK from the destination, that is, they must stay silent until the expected
completion time of the transmission, based on the information carried in
the RTS message. However, if no CTS was sent, they remain silent and
delay their own transmission, even though no interfering transmissions are
occurring.

Therefore, the MACAW protocol introduces another control message,
called the data sending (DS) message. The DS message is sent by the node
issuing the RTS message after receiving the corresponding CTS message to
confirm that a transmission will actually take place. A node overhearing
an RTS message, but not the corresponding DS message, may assume that
the medium reservation has failed and can attempt to reserve the wireless
channel for its own communication.

4.4 The IEEE 802.15.4 Standard for WSNs

In this section, the architecture and the basic principles of IEEE 802.15.4
standard are summarized with specific reference to the MAC. IEEE 802.15.4
is the de-facto reference standard for low data rate and low power WSNs.
The IEEE 802.15.4 standard specifies two layers: the physical and MAC
layer.

4.4.1 Overview

The main characteristic of IEEE 802.15.4 is the low data rate for ad hoc
self-organizing networks of inexpensive fixed, portable and moving nodes. In
the standard, the nodes are called “devices”. The standard provides high
network flexibility and very low power consumption. The standard intro-
duces a MAC with a superframe structure with two consecutive periods, i.e.,
contention access period and contention-free period.

The network is assumed to be clustered and each cluster head, i.e., Per-
sonal Area Coordinator (PAN) coordinator, broadcasts the frame structure
and allocates slots to prioritized traffic in the contention-free period.

In the contention period, nodes contend using either CSMA/CA or slot-
ted CSMA/CA to access the wireless channel. The winners can allocate the
channel for their transmissions for a specific amount of time. This provides
a flexible access method for nodes with infrequent traffic.
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Figure 4.6 An IEEE 802.15.4 WSN.

During the contention-free period, nodes with higher priority traffic are
served by the PAN coordinator. Based on the traffic requirements, each node
is assigned slots during the contention-free period. These slots are allocated
to only one pair and channel contention is prevented to provide priority. As
a result, the IEEE 802.15.4 protocol provides a hybrid operation through a
CSMA-based and a TDMA-based operation. Section 4.4.2 summarizes the
main features of an IEEE 802.15.4 network. The IEEE 802.15.4 physical and
MAC layer are described in sections 4.4.3 and 4.4.4, respectively.

4.4.2 An IEEE 802.15.4 Network

An IEEE 802.15.4 network is composed of two different kinds of network
devices; full-function devices (FDD) and reduced-function devices (RFD).
The network includes at least one FFD which can operate in three modes;
as a personal area network (PAN) coordinator, as a simple coordinator or as
a simple device. An FFD can talk to RFDs or FFDs whereas an RFD can
only talk to an FFD. RFDs are destined for simple applications and they
are involved in transmissions of small amount of data. Figure 4.6 shows a
typical IEEE 802.15.4 network. An IEEE 802.15.4 network can operate in
three different topologies; Star topology, peer-to-peer topology and cluster
tree topology.

In the star topology, the communication is established between the de-
vices and a central controller that is called PAN coordinator. A PAN co-
ordinator, besides the application that needs to perform, is responsible for
critical network tasks, such as the start, the termination and the routing of
the communication. In this type of topology, the PAN coordinator should
be constantly connected to a power supply whereas the rest devices can
have batteries as their source of energy. A local network organized in a
star topology is characterized by a unique PAN identifier number that al-
lows it to operate independently from all the other local networks within its
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Communication Flow
Reduced Function Device
Full Function Device

Figure 4.7 Star and peer-to-peer topology of IEEE 802.15.4.

First PAN Coordinator
PAN Coordinator
Device

Figure 4.8 The cluster-tree topology of IEEE 802.15.4.

transmission range.
The concept of PAN coordinator exists also in the case of a peer-to-

peer topology. The main difference with respect to the star topology is
that now all the devices are able to communicate each other as far as a
device is located inside the range of another. This sort of topology also
allows network implementations with higher complexity level and, therefore,
it is very popular in WSN applications as it enables self organization and
self configuration (ad hoc networks). These two topologies are shown in
Figure 4.7.

Cluster-tree topology, as shown in Figure 4.8, is a special case of a peer-
to-peer topology where every FFD is able to operate as a coordinator and
provide synchronization both to other devices and to other coordinators.
In this topology, an RFD is connected only at the end of a cluster branch
as it is able to communicate with only one FFD at a time. Moreover, the
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Figure 4.9 Physical layer data unit of IEEE 802.15.4.

coordinator of the first cluster operates as a global PAN coordinator and
consumes most of the computational network resources with respect to any
other device. The main advantage of this particular topology is the wide
coverage of an area; however, the propagation speed of the messages remains
low.

4.4.3 Physical Layer

The IEEE 802.15.4 physical layer provides two main services; the data
service and the management service. Data service allows transmitting and
receiving packets (physical layer data units) across the wireless channel. Fig-
ure 4.9 shows the typical structure of a physical layer data unit. Each packet
consists of the following basic components:

• SHR, which allows a receiving device to synchronize and lock into the
bit stream

• PHR, which contains frame length information

• a variable length payload, which carries the MAC sublayer frame

Start of Frame Delimiter (SFD) indicates the end of the SHR and the
start of the message data. The preamble field that is used for synchronization
together with the SFD field form the SHR (SyncH) header. PHR header
indicates the length of the PSDU (PHY Service Data Unit) payload which
has a non constant value (<128 byte).

The main features of the physical layer include the activation and de-
activation of the radio transceiver, the energy detection (ED, from RSS),
the link quality indication (LQI), the clear channel assessment (CCA) and
the dynamic channel selection by scanning a list of channels in search of a
beacon. ED process includes an evaluation of the received signal’s power
and the result is stored in order to be used by higher layers. LQI determines
a procedure according to which, when a packet is received in the physical
layer, an evaluation of its quality is performed based on the value of ED.
Moreover, during CCA, the channel is checked in order to identify if it is
busy or idle. This becomes possible by checking whether the ED value has
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Frequency band Coverage Channels Data rate

Physical layer

2.4 - 2.4835 GHz Global 16 250 Kbps
902.0 - 928.0 MHz America 10 40 Kbps
868 - 868.6 MHz Europe 1 20 Kbps

Table 4.1 Characteristics of IEEE 802.15.4 physical layer.

Figure 4.10 Frequency channels of the IEEE 802.15.4 standard.

overcome a particular limit value, by detecting the carrier or by detecting a
signal with the expected modulation scheme in the channel. The result is
also stored and can be used by higher layers. Table 4.1 provides the main
characteristics of IEEE 802.15.4 physical layer.

The standard defines three different frequency bands in which it can op-
erate. The three frequency bands result in a total of 27 frequency channels
(Figure 4.10), numbered from 0 to 26. 16 channels are available in the fre-
quency band of 2450 MHz, 10 channels are available in the band of 915 MHz
and 1 channel in the band of 868 MHz. The central frequency of these chan-
nels is determined as follows, where k represents the channel number:

Fc = 868.3 MHz with k = 0 (4.3)

Fc = 906 + 2(k − 1) MHz with k = 1, 2 . . . , 10 (4.4)

Fc = 2405 + 5(k − 11) MHz with k = 11, 12, . . . , 26 (4.5)

Any particular device can operate in different frequency bands with data
and spreading parameters as indicated in Table 4.2.
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Table 4.2 Frequency bands and propagation parameters for IEEE 802.15.4
physical layer.

PHY (MHz) Frequency band (MHz)
Spreading parameters Data parameters

Chip rate (kchip/s) Modulation Bit rate (kb/s) Symbol rate (ksymbol/s) Symbols

868/915
868-868.6 300 BPSK 20 20 Binary
902-928 600 BPSK 40 40 Binary

868/915 (optional)
868-868.6 400 ASK 250 12.5 20-bit PSSS
902-928 1600 ASK 250 50 5-bit PSSS

868/915 (optional)
868-868.6 400 O-QPSK 100 25 16ary Orthogonal
902-928 1000 O-QPSK 250 62.5 16ary Orthogonal

2450 2400-2483.5 2000 O-QPSK 250 62.5 16ary Orthogonal

4.4.4 MAC Layer

The IEEE 802.15.4 MAC layer provides two services; data service and
management service. The data service allows transmitting and receiving
packets (MAC layer data units) through the interaction with the data ser-
vice of the IEEE 802.15.4 physical layer. The main features of the MAC
layer include the beacon management, the channel access, GTS (Guaran-
teed Time Slots) management, frame validation, acknowledged frame de-
livery and the association and disassociation with the PAN. There are two
different channel access mechanisms. In the contention-based access mecha-
nism (beacon-enabled network) a Carrier Sense Multiple Access / Collision
Avoidance (CSMA/CA) algorithm is implemented by the devices at the MAC
layer. On the other hand, the access without contention (non beacon-enabled
network) is exclusively controlled by the PAN coordinator by appropriate al-
location of the GTSs. This distinction is described in the following figure.

Superframes

The IEEE 802.15.4 standard allows the optional use of the superframe
structure. The format of a superframe is determined by the PAN coordi-
nator. It is normally bounded by two network beacon frames and divided
into 16 equally sized slots. The beacon frame is sent in the first slot of each
superframe. If a coordinator does not want to use the superframe structure,
it may turn off the beacon transmissions. The beacon frames are used in
order to synchronize the attached nodes, identify the PAN and describe the
structure of the superframes. Beacons are sent during the first slot of each
superframe and they are turned off if a coordinator does not use the super-
frame structure. As shown in Figure 4.12, a superframe is divided into two
different time portions. During the active portion, communication is per-
formed. In particular, the active period is further divided into two periods;
the contention access period (CAP) where any device wishing to communi-
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Figure 4.11 MAC options in IEEE 802.15.4.

Figure 4.12 Superframe structure of IEEE 802.15.4.

cate competes with other devices using a slotted 2 CSMA/CA mechanism
and the contention free period (CFP) which contains guaranteed time slots
(GTSs). The GTSs always appear at the end of the active superframe start-
ing at a slot boundary immediately following the CAP. The PAN coordinator
may allocate up to 7 GTSs where each of them can occupy more than one
superframe slot periods as shown in Figure 4.13. A GTS allows a device to
operate within a portion of the superframe that is dedicated exclusively to
it. A device attempts to allocate and use a GTS only if it is tracking the
beacons. As far as the GTS allocation is concerned, it is undertaken by the
PAN coordinator only. A GTS is used only for communications between the
PAN coordinator and a device and its direction is specified as either transmit
or receive. On the contrary, in the inactive portion, a node does not interact
with its PAN and may enter a low-power mode.

The duration of different portions of the superframe are described by the

2If a superframe structure is used in the PAN, then slotted CSMA/CA is used in the
CAP period. On the contrary, if beacons are not used in the PAN, or a beacon cannot be
located in a beacon-enabled network, unslotted CSMA/CA is used.
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Figure 4.13 GTSs in a IEEE 802.15.4 superframe.

Figure 4.14 Duration of different portions of the IEEE 802.15.4 superframe.

values of macBeaconOrder and macSuperFrameOrder. The value of macBea-
conOrder represents the interval at which the PAN coordinator shall trans-
mit its beacon frames. The beacon interval, BI, is related to the macBea-
conOrder, BO, as follows:

BI = aBaseSuperFrameDuration2BO , 0 ≤ BO ≤ 14 . (4.6)

The superframe is ignored if BO = 15. The value of macSuperFrameOrder
describes the length of the active portion of the superframe. The superframe
duration, SD, is related to macSuperFrameOrder, SO, as follows:

SD = aBaseSuperFrameDuration2SO , 0 ≤ SO ≤ 14 . (4.7)

If SO = 15, the superframe should not remain active after the beacon. The
active portion of each superframe is divided into a aNumSuperFrameSlots
equally spaced slots of duration 2SOaBaseSlotDuration and is composed
of three parts: a beacon, a CAP and CFP. The beacon is transmitted at
the start of slot 0 without the use of CSMA. The CAP starts immediately
after the beacon. The CAP shall be at least aMinCAPLength symbols un-
less additional space is needed to temporarily accommodate the increase in
the beacon frame length to perform GTS maintenance. All frames except
acknowledgement frames or any data frame that immediately follows the ac-
knowledgement of a data request command that are transmitted in the CAP
shall use slotted CSMA/CA to access the channel. A transmission in the
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CAP shall be complete one IFS3 period before the end of the CAP. If this is
not possible, it defers its transmission until the CAP of the following super-
frame. An example superframe structure is shown in Figure 4.14. The CFP,
if present, shall start on a slot boundary immediately following the CAP and
extends to the end of the active portion of the superframe. The length of
the CFP is determined by the total length of all of the combined GTSs. No
transmissions within the CFP shall use a CSMA/CA mechanism. A device
transmitting in the CFP shall ensure that its transmissions are complete one
IFS period before the end of its GTS. The PANs that do not wish to use
the superframe in a nonbeacon-enabled shall set both macBeaconOrder and
macSuperFrameOrder to 15. In this kind of network, a coordinator shall not
transmit any beacons, all transmissions except the acknowledgement frame
shall use unslotted CSMA/CA to access channel, GTSs shall not be permit-
ted.

CSMA/CA Mechanism

An IEEE 802.15.4 network uses two different approaches regarding the
channel access according to the network settings. More specifically, the net-
works that do not use beacon frames or the beacon frames cannot be located
in a beacon-enabled modality, provide an unslotted CSMA/CA mechanism
and each time a device wants to transmit data frames or MAC layer com-
mands, it waits for a random time period. By the expiration of this period,
if the channel is found inactive, the device sends its data; otherwise, if the
channel is busy, the device waits for a random time period until it checks
again the availability of the channel. The acknowledgement frames are sent
without the use of CSMA/CA mechanism.

On the other hand, the networks that use beacon frames within a su-
perframe structure provide a slotted CSMA/CA mechanism on which the
back-off slots are located at the start of the beacon frames. Every time a
device wants to transmit data frames during the CAP, after specifying the
bounds of the next back-off slot, it waits for a random number of back-off
slots. By the end of this waiting time, if the channel is busy, the device
will wait for a random number of back-off slots until it checks again the
availability of the channel. In case that the channel is free, it will start
transmitting.

In each transmission attempt, the first step of the CSMA/CA algorithm
refers to the initialization of some parameters. Each device is characterized
by three particular variables: NB, CW and BE. NB is defined as the
number of times the CSMA/CA algorithm was required to back-off while
attempting the current transmission. It is initialized to zero before every

3IFS is defined as the amount of time necessary to process the received packet by the
physical layer.
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new transmission attempt. CW is the contention window length (used for
slotted CSMA/CA) which represents the number of back-off periods that
need to be clear of activity before the transmission can start. It is initialized
to 2 before each transmission attempt and it is reset to 2 each time the
channel is assessed to be busy. CW is only used in the case of slotted
CSMA/CA. BE is the back-off exponent that describes how many back-off
periods a device shall wait before attempting to access the channel. The
parameters that affect the random backoff are BEmin, BEmax and NBmax,
which correspond to the minimum and maximum of BE and the maximum
of NB respectively.

In the second step of the algorithm for the slotted CSMA/CA mecha-
nism, the MAC layer delays for a random number of back-off periods in the
interval [0, 2BE − 1]. Moreover, during the third step, MAC layer requires
from the physical layer to perform a CCA and it then proceeds only if the
transmission of the acknowledgement frames has been completed before the
end of CAP. If the MAC layer cannot proceed, it waits until the start of
the next superframe’s CAP and it repeats the evaluation of the channel. In
the fourth step, in case that the channel is evaluated as busy, MAC layer
increases the NB and BE variables by one, ensuring that BE is less than
its maximum value, BEmax. In slotted CSMA-CA, CW can also be reset to
2. Moreover, if NB value is less than the maximum number of CSMA/CA
back-offs, then the MAC layer returns to the second step of the algorithm;
otherwise, the channel access attempt fails and CSMA/CA terminates. In
case that the channel is evaluated as idle, the MAC layer, in the CSMA/CA
slotted mechanism, ensures that CW expires before the transmission begins.
For this reason, MAC reduces CW value by one and if CW becomes equal to
zero, the transmission begins on the boundary of the next back-off period;
otherwise, the algorithm returns to the third step. MAC layer starts the
transmission immediately if the channel is evaluated as idle.
The following flow diagram presents the steps of the CSMA/CA algorithm
in slotted and unslotted modality.

The unslotted CSMA/CA mechanism can be analysed by the use of the
Markov Model as shown in Figure 4.15.

The goal of the analysis is to derive expressions for the probability that
a packet is successfully received, the delay in the packet delivery, and the
average energy consumption. The analysis requires finding a set of equations
that define the optimal network operating point uniquely.

The analysis is developed in two steps. We first study the behavior of
a single device by using a Markov model (Fig.4.15). From such a model,
we obtain the stationary probability φ that the device attempts its carrier
channel assessment (CCA). Second, we couple the per user Markov chains
to obtain an additional set of equations that give the CCA assessments of
other users. The solution of such a set of equations provides us with the per
user φ and probability of free channel assessment.
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Figure 4.15 Markov Model for IEEE 802.15.4 unslotted random access.

We first develop the Markov model to determine φ, see Fig. 4.15. Let
c(t) be the stochastic process representing the counter for random delay
and packet transmission duration. The integer time t corresponds to the
beginning of the slot times. Let α be the probability of assessing channel
busy during CCA. Next, when entering the transmission state, L slots should
be counted, where L denotes the packet transmission duration measured in
slots4. Let X denote the time duration to wait before the next transmission
attempt measured in slots. Let s(t) be the stochastic process representing the
delay line stages representing the number of times the channel is sensed busy
before packet transmission (s(t) ∈ {0, · · · ,NB}), or the transmission stage
(s(t) = −1) at time t. The states (s(t) = −2) in Fig. 4.15 model unsaturated
periodic traffic. We assume that the probability to start sensing is constant
and independent of all other devices and of the number of retransmissions
suffered. With this assumption, {s(t), c(t)} is the two-dimensional Markov
chain of Fig. 4.15 with the following transition probabilities:

P{i, k|i, k + 1} = 1, k ≥ 0 (4.8)

P{0, k|i, 0} =
1− α
W0

, i < NB (4.9)

P{i, k|i− 1, 0} =
α

Wi
, i ≤ NB, k ≤Wi − 1 (4.10)

P{0, k|NB, 0} =
1

W0
. (4.11)

In these equations, the delay window Wi is initially W0 = 2BEmin and dou-
bled any stage until Wi = Wmax = 2BEmax , (BEmax − BEmin) ≤ i ≤ NB.
Equation 4.8 is the condition to decrement the delay line counter per slot.

4We assume that this duration is an integer number of slots.
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Equation 4.9 states that it is only possible to enter the first delay line from
a stage that is not the last one (i < NB) after sensing the channel idle and
hence transmitting a packet. Equation 4.10 gives the probability that there
is a failure on channel assessment and the station selects a state in the next
delay level. Equation 4.11 gives the probability of starting a new transmis-
sion attempt when leaving the last delay line, following a successful or failed
packet transmission attempt.

Denote the Markov chain steady-state probabilities by

bi,k = P{(s(t), c(t)) = (i, k)} ,

for i ∈ {−1,NB} and k ∈ {0,max(L− 1,Wi− 1)}. Using Equation 4.10, we
have

bi−1,0α = bi,0 , 0 < i ≤ NB, (4.12)

which leads to

bi,0 = [α]ib0,0 , 0 < i ≤ NB . (4.13)

From Equations (4.8)–(4.11) we obtain

bi,k =
Wi − k
Wi

(1− α)
NB∑
j=0

bj,0 + αbNB,0

 for i = 0, (4.14)

bi,k =
Wi − k
Wi

bi,0, for i > 0. (4.15)

Since the probabilities must sum to 1, it follows that

1 =

NB∑
i=0

Wi−1∑
k=0

bi,k +

L−1∑
i=0

b−1,i +

X−1∑
i=0

b−2,i

=
NB∑
i=0

bi,0

[
Wi + 1

2
+ (1− α)L+ (1− α)X

]
+ bNB,0αX. (4.16)

By substituting the expression for Wi, we obtain

1 =
b0,0
2

{
[1 + 2(1− α)(L+X)]

1− αNB+1

1− α

+2XαNB+1 + 2diffBEW0
αdiffBE+1 − αNB+1

1− α

+W0
1− (2α)diffBE+1

1− 2α

}
, (4.17)
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where diffBE = BEmax − BEmin. The transmission failure probability Pf

is

Pf = bNB,0α , (4.18)

and the probability that a node starts to transmit is

τ = Ps = φ(1− α) , (4.19)

in which

φ = φ1 =

NB∑
i=0

bi,0 = b0,0
1− αNB+1

1− α . (4.20)

We have now derived one expression for φ from the per user Markov
models. By determining the interactions between users on the medium,
we will now derive expressions for α. Assume that there are N nodes in
the network. Denote by M(s) = −1 the event that there is at least one
transmission in the medium by another node and assume that, without loss of
generality, the sensing node is iN , which is denoted as SiN (c) = −1 if Si(s) =
−1 is the event that node i is transmitting. Then, the probability that a node
sensing the channel finds it occupied is α = Pr(M(s) = −1|SiN (c) = −1),
which is computed as follows

α =Pr(M(s) = −1|SiN (c) = −1)

=
N−2∑
n=0

(
N − 1
n+ 1

)
Pr

(
n+1⋂
k=1

Sik(s) = −1|SiN (c) = −1

)

=
N−2∑
n=0

(
N − 1
n+ 1

)
Pr
(
Si1(s) = −1

)
× Pr

(
n+1⋂
k=2

Sik(s) = −1|Si1(s) = −1, SiN (c) = −1

)
. (4.21)

The probability that node i1 is transmitting is

Pr(Si1(s) = −1) = (L+ 1)Ps = (L+ 1)φ(1− α) , (4.22)

which requires the node to sense (with probability φ) before transmission
and the following slot to be empty (with probability (1 − α)). It is (L + 1)
instead of L due to the misalignment in the slots of the nodes i1 and iN in
the unslotted 802.15.4 protocol.

To express the conditional probability in terms of φ, the transmission
pattern needs to be understood: If there was no difference between sensing
the channel and starting the transmission, then in the unslotted case no two
nodes would be transmitting simultaneously since the probability that two
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nodes start sensing simultaneously in the continuous case is zero. However,
since there is a finite time between channel sensing and starting transmission,
we assume that in the worst case, if two or more nodes start sensing in
the same slot (slots are considered the same if the difference between their
starting time is minimal), even if they are misaligned, the transmissions start
at the same slot.

The conditional probability is hence equivalent to

Pr

(
n+1⋂
k=2

Sik(s) = −1 | Si1(s) = −1, SiN (c) = −1

)

' Pr

(
n+1⋂
k=2

Sik(c) = −1 | Si1(c) = −1, SiN (c) = −1

)
. (4.23)

Since we assumed that the probability φ to sense in a given slot is indepen-
dent across nodes, we can easily see that this is

Pr

(
n+1⋂
k=2

Sik(c) = −1 | Si1(c) = −1, SiN (c) = −1

)
= φn(1− φ)N−2−n ,

(4.24)

which requires nodes i2, ..., in+1 to sense and the remaining N − 2−n nodes
not to sense in the sensing slot of i1. As a result,

α = (L+ 1)[1− (1− φ)N−1](1− α) . (4.25)

From this, we can derive a second expression for φ:

φ2 = 1−
[
1− α

(L+ 1)(1− α)

] 1
N−1

.

The network operating point as determined by φ and α is given by solving
the two non-linear Equations (4.20), (4.25).

We are now in the position to give the expression of the reliability. Recall
that the reliability is defined as the probability of packet success. To have a
successful packet transmission, the channel should be sensed idle when none
of the other nodes is sensing the channel. The reliability is then given by
the following simple expression:

R =
NB∑
i=0

(1− φ)N−1(1− α)αi = (1− φ)N−1(1− αNB+1) . (4.26)

The average delay for the node, given that the packet is successfully trans-
mitted, is given as follows:
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Figure 4.16 Delay for different number of nodes.

D =

[
NB∑
i=0

(
i∑

k=0

Wk + 1

2

)
αi(1− α)

1− αNB+1
+ L

]
rs , (4.27)

where rs is the slot duration. Finally, the average energy consumption is
given by the following expression:

E =Pl

(
NB∑
i=0

Wi−1∑
k=1

bi,k +
NB∑
i=0

bi,0

)
+ Pt

L−1∑
i=0

b−1,i + Ps

X−1∑
i=0

b−2,i . (4.28)

where Pl, Pt and Ps are the average energy consumption in idle-listen, trans-
mit and sleep states respectively. We assume that the radio is put in idle-
listen state during the random backoff.

In the following, an analysis validation of the unslotted IEEE 802.15.4
and TDMA MAC protocol is presented [?]. For the implementation of the
two MAC protocols, the software framework SPINE for health care applica-
tions, which runs on top of TinyOS 2.x (Gay et al., 2005) and Tmote Sky
sensor nodes (sky, 2006) was used. In both the simulation and the experi-
mental implementation we choose the default parameters for IEEE 802.15.4,
namely BEmin = 3, BEmax = 5, NB = 4, fs = 1/30Hz and d = 40µs per
second unless otherwise stated. Nodes were placed at few meters from the
cluster-head, and in line of sight.

Figure 4.16 shows the delay as obtained by analysis and experiments for
different number of nodes, whereas Figure 4.17 gives the delay for different
packet generation periods. The delay increases considerably for TDMA sys-
tems as the number of nodes increases. On the other hand, the delay is
almost constant for IEEE 802.15.4 especially at low packet generation rates.
The curves achieved by our analysis match quite well the experimental be-
havior. The slight difference between analysis and simulations is due to the
unavoidable measurements delay in the TinyOS protocol stack.
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Figure 4.17 Delay for different number packet generation period.
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Figure 4.18 Reliability for different number of nodes.

Figure 4.18 shows the reliability for different number of nodes whereas
Figure 4.19 gives the reliability for different packet generation periods as
obtained by our analysis and experiments. The reliability is approximately 1
for TDMAMAC, except the small amount of packet losses in the experiments
due to mainly rare channel attenuations and imperfect synchronization. The
reliability is very close to 1 for random access schemes when the packet
generation rate and number of nodes is low.

Figure 4.20 shows the energy for different number of nodes whereas Fig-
ure 4.21 gives the energy for different packet generation periods as obtained
by analysis, cfr. (4.28) and (4.2), and experiments. The energy consumption
of TDMA systems is better than random access protocols when the packet
generation rate is very high and the number of nodes increases. However, as
the packet generation rate decreases, the random access protocol performs
better since there is no synchronization overhead. The small difference with
the experimental results reflects the inaccuracies in the delay measurements,
as we observed from the delay evaluation.
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Figure 4.19 Reliability for different packet generation period.
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Figure 4.20 Average energy consumption for different number of nodes.

Data Transfer Model

There are three different approaches regarding the data transfer between
a device and its coordinator. In the uplink mode, data is transferred to
the coordinator by a particular device. On the other hand, in the downlink
mode, data follows the opposite direction from the coordinator to the device.
The last mode refers to the peer-to-peer mode where data is transferred be-
tween any peer network devices.

Uplink

In case of a beacon-enabled network, when a device wants to transmit
data to a coordinator, it first listens for beacon frames. When a beacon
frame is found, the device is synchronized with the superframe structure.
During a particular time interval, the device transmits the data frame to the
coordinator by using the CSMA/CA slotted mechanism. The coordinator
accepts the successful frame inflow and it optionally transmits an acknowl-
edgement frame which corresponds to the end of the transmission process.
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Figure 4.21 Average energy consumption for different packet generation pe-
riod.

On the contrary, in case of a non beacon-enabled network, the device trans-
mits the data frame to the coordinator by using the CSMA/CA unslotted
mechanism. The coordinator optionally confirms the successful acceptance
of the incoming frame by sending back an acknowledgement frame. These
two different approaches are presented in Figure 4.22.

Downlink

In case of a beacon-enabled network, when a coordinator wants to trans-
mit data to a particular device, it indicates to the beacon frame that a data
message is pending. The device listens periodically for beacon frames and, if
a data message is pending, it requests for the data by transmitting a MAC
layer command with the use of CSMA/CA slotted mechanism. The coordi-
nator confirms the request reception by sending back an acknowledgement
frame. In addition, the data message that was pending is now sent with
the use of CSMA/CA slotted mechanism. Finally, the device confirms the
successfully incoming data frame by sending to the coordinator an acknowl-
edgement frame. By the time the last acknowledgement frame is received by
the coordinator, the data message is deleted from the list pending messages.

In case of a non beacon-enabled network, a coordinator, that wants to
transmit data, keeps them until a device makes a request for them. A device
creates a connection with the coordinator by transmitting a MAC layer com-
mand requesting for the data. In response to this request, the coordinator
sends back an acknowledgement frame. In case of a pending data message,
the coordinator sends the data frame using the CSMA/CA unslotted mech-
anism; otherwise, it sends a data frame with zero payload. The last step
of this interconnection involves an acknowledgement frame sent back to the
coordinator when the data frame is successfully received by the device. The
above mentioned approaches are presented in Figure 4.23.
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Figure 4.22 Uplink of a IEEE 802.15.4 WSN.

Peer-to-peer

In case of a peer-to-peer data transfer, every network device is able to
communicate with another inside its communication range. If the devices can
receive messages simultaneously, the transmission is performed with the use
of the unslotted CSMA/CA mechanism; otherwise, specific measurements
are needed in order to achieve synchronization between the devices.

Problems
Problem 4.1 Slotted Aloha
In this exercise we analyze the Slotted Aloha when the number of stations n is not
exactly known. In each time slot each station transmits with probability p. The
probability that the slot can be used (i.e. the probability that exactly one station
transmits) is

Pr(success) = n · p(1− p)n−1 .

If n is fixed, we can maximize the above expression and get the optimal p. Now
assume that the only thing we know about n is A ≤ n ≤ B, with A and B being
two known constants.

(a) What is the value of p that maximizes Pr(success) for the worst n ∈ [A,B]?

(b) What is this “worst case optimal” value for p if A = 100 and B = 200?

Problem 4.2 Slotted ALOHA protocol
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Figure 4.23 Downlink of an IEEE 802.15.4 WSN.

A dense WSN consists of 7200 sensors which are competing for the channel access
according to a slotted ALOHA protocol. The capacity of each particular slot is
equal to 4 Mbps. Each sensor node sends in average 25 transmission requests per
hour each of them having a size of 80 byte. Compute the channel’s total payload.

Problem 4.3 ARQ Ex.8.10 in (Pottie and Kaiser, 2005)

Consider a simple ARQ scheme through a single transmission link of data rate R.
The ARQ scheme works as follows. The sender transmits a data packet across
the link. Once the receiver receives the whole packet, it checks if data have been
corrupted. If there is no error, a packet is sent to the sender to acknowledge the
correct reception of the data packet. If there is an error, an ARQ is sent for a
retransmission. The sender resends the packet immediately after it receives the
ARQ packet. Assume the lengths of data and ARQ packets are L and LARQ
respectively, and the propagation delay along the link is td . Neglect the turn-
around time at the sender and the receiver. Suppose that the probability the data
packet is corrupted during transmission is Pe and ARQ packets are always correctly
received.

(a) Determine the average number of transmissions required for a packet to be
correctly received.

(b) Find the average delay a packet experiences. The delay is defined as the time
interval between the start of the first packet transmission and the end of the
correct packet reception, and note that it does not include the transmission of
the last acknowledgement packet.
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Problem 4.4 Analysis of CSMA based MAC in WSNs
In this exercise we evaluate the performance of slotted CSMA protocol with fixed
contention window size. Such mechanism is supported by protocols such as IEEE
802.15.4 in non-beacon enabled mode.

Assume a network of N sensors with a single channel and all the nodes are in
the communication range of each other. The nodes use slotted CSMA scheme with
fixed contention size M . Nodes sense the channel and if the channel is free they
enter to the contention round. In contention round each node draws a random slot
number in [1,M ] using uniform distribution and sets its counter with this integer
number. In successive slots times tslot each contender counts down until when its
counter expires then it senses the channel and if there is no transmission in the
channel it will send the packet immediately at beginning of the next slot. Assume
td is the required time to transmit the data packet. tslot is determined by physical
layer parameters like propagation time of the packet (it also called vulnerable time)
which is defined by the distance between the nodes. In this exercise tdata depends
on data length is assumed to be much larger than tslot. Each contention round will
finish by a packet transmission that might be either successful or collided. Collision
happens if at least two nodes draw the same minimum slot number, otherwise the
transmission would be successful.

(a) Define Ps as the probability of having a successful transmission after a con-
tention round with M maximum window size and N contenders. Also denote
ps(m) as the probability of success at slot m. Find ps(m) and Ps.

(b) Similarly denote Pc as the probability of collision after contention round and
pc(m) as the probability of collision at slot m. Propose an analytical model
to calculate Pc and pc(m). Note that based on our system model, a collision
happens at slot m, if at least two sensors pick the same slot m to transmit
given that nobody has selected a smaller slot.

Problem 4.5 Malfunctioning Nodes and ARQ (Ex.14.7 in (Pottie and Kaiser,
2005))
A rectangular grid of sensor nodes is used for relaying packets. For the electronics
used, it costs two times the energy of a hop among nearest neighboring nodes
(separated by distance d) to hop diagonally across the square (e.g. node 2 to 5)
and eight times the energy to go a distance of 2d in one hop (e.g. node 2 to 3).
In normal operation, packet dropping rates are negligible and routes that use the
least energy are chosen.

(a) Considering only energy consumption, at what packet dropping rate is it better
to consider using two diagonal hops to move around a malfunctioning node?

(b) Now suppose delay constraints are such that we can only tolerate the proba-
bility of needing three transmission attempts being less than 0.01. In this case,
what error rate is acceptable, assuming packing dropping events are indepen-
dent?

Problem 4.6 MAC optimization for distributed estimation
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Consider N nodes randomly deployed in a field. A node periodically checks with
period S if there is an event of interest. Whenever node k detects such an event
xk, it starts broadcasting a monitoring message mk(xk), which is called “state
vector”, to a fusion center. Nodes uses the slotted ALHOA medium access control
protocol and transmit over the same wireless channel. In particular, each node
transmits mk(xk) in a randomly chosen time slot within the range [1, S] units
where S is the total number of slots per second. The node transmits a message
within the slot boundaries following any slot. Hence, each node starts transmission
with probability

τ =
z

S
, 0 < τ < 1 ,

where z is the rate of state vector transmissions per second. The probability that
a node does not start transmission is 1− τ . Collision at the fusion center happens
when two nodes simultaneously transmit in a time slot.

The state vector transmission interval is Tu = 1/z. Each node wants to min-
imize the state vector transmission interval so to have often and more reliable
information about the event of interest. However, this increases the collision prob-
ability.

(a) Pose an optimization problem which copes with such a tradeoff and argue if it
is a convex one.

(b) Calculate the optimal rate of state vector transmissions per second that mini-
mizes Tu.

Problem 4.7 Broadcast
Three students discuss the broadcasting problem with collision detection in graphs
of constant diameter. Student A claims that there is a deterministic protocol that
allows to broadcast messages of length l in time O(l). He says that it is possible
since all nodes act synchronously and can detect collisions, which allows to transmit
information one bit per round (slot) using the collision detection mechanism, i.e.
detecting a transmission or collision in a slot means bit 1, detecting a free channel
means 0. Student B says that this is not possible because he can prove the existence
of a lower bound of Ω(log n) for deterministic algorithms, which can be much larger
than the length of a message l in general. He says that this can be done in the same
way as for the lower bound of n for the deterministic broadcast without collision
detection for graphs of diameter 2, i.e. using golden and blue nodes in the middle
layer. Student C claims that A’s idea works in principle but all nodes need to know
the length l of the message. Who is right?

(a) If you believe A is right, give an algorithm that performs the broadcast.

(b) If you believe B is right, give a proof.

(c) If you believe C is right, describe an algorithm given that all nodes know the
message length l and explain why the message length l is needed.

Problem 4.8 MAC with NACK
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Suppose that a sensor node A transmits packets to the sink node S. Across this
link, 10 sensor nodes N1, N2, ..., N10 forward the packets acting as relays. The total
packet delay in each relay node is 100 ms. However, in average 1 out of 10 packets
that reach to S have problems and need to be retransmitted. In this case, S sends
a Negative Acknowledgment (NACK) to A in which explicitly notifies the sender
which packets need to be retransmitted. The NACK packets reach in A after 300
ms. In addition, in order to avoid the existence of stale copies of packets within
the WSN, the relay nodes implement an elimination policy of old packets with an
age larger than T . The parameter T is chosen equal to twice the average time a
packet needs to reach from A to S.

(a) Compute and comment the value of parameter T .

(b) What is the percentage of packets that are eliminated before reaching S?

Problem 4.9 M/M/1 queues (Ex.8.9 in (Pottie and Kaiser, 2005))
Consider the infinite length M/M/1 queue.

(a) Given that the probability of n customers in the queue is p(n) = (1 − ρ)ρn,
where ρ = λ/µ , show that the average number of customers in the queue is

N = E (n) =
∞∑
n=0

np(n) =
ρ

1− ρ .

(b) Plot N as a function of ρ when 0 ≤ ρ < 1 . What happens when ρ ≥ 1 ?

(c) Find the average delay that customers experience and the average waiting time
that customers spend in queue. (Hint: use Little’s theorem.)



Chapter 5

Routing

5.1 Introduction

In the previous chapter, we studied the channel access control mecha-
nisms. The mechanism by which nodes get the right to transmit in a shared
communication medium is of crucial importance; the minimization of the
resulting collisions, the fairness among the nodes, and the overall energy
efficiency are major concerns in the design of MAC protocols in WSNs.
The next essential question that arises is on which path messages should
be routed when multiple patch are available from a source node to a des-
tination node? Moreover, which are the basic routing options and how to
compute the shortest routing path along which messages should be sent? In
this chapter, fundamental aspects concerning the routing mechanisms are
examined.

Routing is formally defined as the mechanism of determining a path
between the source and the destination node upon request of message trans-
mission from a given node. In WSNs, the network layer is mostly used to
implement the routing of data messages. In case of large multi-hop networks,
the source node cannot reach the destination directly, and, therefore, inter-
mediate nodes have to relay their messages. An intermediate node has to
decide to which neighbor an incoming message should be forwarded if the
message is not destined to itself.

Traditionally, routing tables that list the most appropriate neighbor for
any given message destination are used. The implementation of routing
tables concerning a particular routing algorithm provides the paths for each
destination. The construction and maintenance of these routing tables is
the crucial task of both a centralized and a distributed routing protocol in
WSNs. The building of these tables basically reduced to establishing what
is the path from a given node to reach a given destination. How this is done,
is the focus of this chapter.

The chapter is organized as follows: In Section 5.2, an overview of the

99
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main challenges that occur in the routing mechanism are reviewed. In Section
5.3, a classification of routing protocols is made, based on various criteria,
and the most representative protocols are presented. Next, the shortest path
optimization problem is summarized accompanied with a generic algorithm
that is used to solve it. After covering the most significant routing metrics,
the final section of the chapter provides a brief description of the ROLL RPL
routing protocol for WSNs.

5.2 Routing Challenges

Routing in WSNs is very challenging due to the inherent characteristics
that distinguish these networks from other wireless networks, such as mobile
ad hoc networks or cellular networks. Due to the unique characteristics
and peculiarities of a WSN, the existing routing protocols developed for
wireless ad hoc networks cannot be directly applied to WSNs. The design
of a routing protocol for WSNs has to take account the unreliability of the
wireless channel, the potential dynamic changes in the network topology,
as well as the limited processing, storage, bandwidth, and energy capacities
of the WSN nodes. Therefore, special approaches are required to ensure
efficient routing amongst the nodes of a WSN.

The design of routing protocols in WSNs is influenced by many factors.
These factors poses several challenges that must be overcome before efficient
communication can be achieved in WSNs. In the following, we summarize
some of the routing challenges and design issues that affect routing in WSNs.

• Energy consumption: Energy consumption is considered one of the ma-
jor concerns in the development routing protocols for WSNs. Sensor
nodes can drain their limited supply of energy while performing compu-
tations and transmitting information in a wireless environment. While
building their routing tables, nodes consume energy by exchanging in-
formation with their neighbors. Furthermore, because of the limited
energy resources of WSN nodes, messages need to be delivered in the
most energy-efficient manner without compromising the accuracy of
the information content. Shortest path algorithms need to adopt met-
rics such as energy-efficiency.

• Scalability : As the size of the network increases, or the number of
nodes increases, the routing protocol should be able to adapt to the
changes and provide adequate performance. WSNs may consist of
a large number of nodes, and therefore, the information each node
obtains about the network topology is limited. Hence, fully distributed
protocols, which operate with limited knowledge of the topology, need
to be developed to provide scalability. In addition, when the density
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may be high in the network, local information exchange should also be
limited to improve the energy efficiency.

• Node mobility : In some cases, nodes are not stationary. Node mobility
introduces changes in the neighborhood relations; nodes move out of
range of their neighbors and hence are no longer able to communicate
with the old neighboring nodes while they come within the range of
new nodes. An ideal routing protocol for WSN should be able to de-
liver data messages from source to destination even when some of the
intermediate nodes move away from their neighbors range. This com-
plicates the design of the routing protocol as it introduces additional
routing overhead. Route stability is an important issue, in addition
to energy and other aspects. Hence, the routing protocol should be
adaptive to dynamic changes in the network topology.

• Node deployment : Node deployment in WSNs can be either determin-
istic or randomly performed, which is dependent on the required appli-
cation. In the deterministic approach to deployment, all the nodes are
placed in predefined positions and messages are routed through paths
that are pre-determined. However, in the randomly deployed nodes,
nodes may be placed randomly in arbitrary positions. The network
topology can change dynamically during the lifetime of the network.
Initially, sensor nodes may be unaware of the network topology. The
relative locations of the neighbors of a node and the relative location of
the nodes in the network significantly affect the routing performance.
This is exactly a task of a routing protocol which should provide topol-
ogy information such that the neighbors of each node are discovered
and routing decisions are made accordingly.

• Robustness: Routing in WSNs is based on the sensor nodes to deliver
data in a multi-hop manner. Hence, routing protocols operate on these
nodes instead of dedicated routers such as in the Internet. These nodes
consist of low cost hardware which may result in unexpected failures
to such an extent that a node may be non-operational. As a result,
routing protocols should provide robustness to sensor node failures.

• Application: The type of application is also important for the design of
routing protocols. In case of monitoring applications, static routes can
be reused to maintain efficient delivery of the observations throughout
the lifetime of the network. On the other hand, in event-based appli-
cations, since the nodes are usually in sleep mode, whenever an event
occurs, routes should be generated to deliver the event information in
a timely manner.
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Figure 5.1 WSN Routing Protocol classification.

5.3 Routing Protocols Classification

Routing protocols for WSNs can be classified in different ways depending
on various criteria. In Figure 5.1, a general classification is reported. In the
following sections, the classification is explained in the detail.

5.3.1 Network Structure

The underlying network structure can play significant role in the opera-
tion of the routing protocol in WSNs. With respect to the network organi-
zation, most routing protocols fit into one of three classes; flat, hierarchical
and location-based protocols. In this section, we survey the protocols that
fall in this category.

Flat and Data Centric Protocols

In flat-based (Data Centric) routing protocols all the nodes are considered
equal with respect to their role and functionality. Due to the potentially large
number of nodes deployed in many applications of WSNs, it is not feasible
to assign global identifiers to each node. Therefore, routing protocols that
are based on unique identifiers (IDs) or addresses are not suitable for WSNs.
To provide the solution for this problem, data centric routing protocols have
been proposed. In these routing techniques, the focus is on the retrieval
and dissemination of information of a particular type or described by certain
attributes, as opposed to the data collection from particular nodes.

Flooding, the WSN protocols for Information via Negotiation (SPIN)
and directed diffusion are few examples of routing protocols that may apply
data-centric techniques. In the following sections, we provide an overview of
some of these data-centric based routing protocols in flat-based networks.

• Flooding
A simple strategy to disseminate information into a network is to flood
the entire network (Figure 5.2). The sender node broadcasts packets to
its immediate neighbors, which will repeat this process by rebroadcast-
ing the packets to their own neighbors until all nodes have received the
packets or the packets have travelled for a maximum number of hops.
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Figure 5.2 Flooding mechanism of a routing protocol.

With flooding, if there exists a path to the destination (and assuming
lossless communication), the destination is guaranteed to receive the
data.

Flooding is very simple to deploy without any algorithms for route
discovery. It is also robust with respect to changes in the network
topology. The main advantage of flooding is the increased reliability
provided by this routing method. Since the message will be sent to
at least once to every host it is almost guaranteed to reach its des-
tination. On the other hand, the drawback is that heavy traffic is
generated throughout the network without considering the resource
constraints of individual nodes. In some cases, a node receives dupli-
cated packets from its neighbors leading to a waste of the bandwidth.
Therefore, measures are taken in order to ensure that packets do not
travel through the network indefinitely. For example, maximum-hop
counts are used to limit the number of times a packet is forwarded.
The hop counter is usually contained in the header of each packet and
is decremented at each hop, with the packet being discarded when the
counter reaches zero. Ideally, the hop counter should be initialized to
the length of the path from source to destination. If the sender does
not know how long the path is, it can initialize the counter to the worst
case, namely, the full diameter of the subnet.

Its value should be set large enough so that every intended receiver can
be reached, but also small enough to ensure that packets do not travel
too long in the network. An alternative technique for damming the
flood is to keep track of which packets have been flooded in order to
avoid sending them a second time. For this reason, sequence numbers
in packets (combined with the address of the source) can be used to
uniquely identify a packet. When a node receives a packet that it has
already forwarded (i.e., with the same destination–source pair and the
same sequence number), it simply discards this duplicate.

• SPIN
Sensor Protocols for Information via Negotiation (SPIN) (Kulik et al.
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2002) is a family of negotiation-based, data-centric, and time-driven
flooding protocols. However, compared to classic flooding, SPIN nodes
rely on two key techniques to overcome the deficiencies of flooding.
SPIN nodes negotiate with their neighbors before they transmit data,
allowing them to avoid unnecessary communications and each SPIN
node uses a resource manager to keep track of actual resource con-
sumption, allowing an adaptive routing and communication behavior
based on resource availability.

SPIN is a combination of different protocols including SPIN-PP, SPIN-
EC, SPIN-BC, and SPIN-RL. SPIN-PP is best suited for point-to-point
traffic and provides optimized routing solution when nodes commu-
nicate directly without interference from other nodes. Data trans-
mission in SPIN-PP consists of three steps; in the first step a node
advertises the data to its neighbors by using advertisement message
(ADV). Neighbors nodes perform some check when they receive the
ADV message to verify that they already have the described data or
not. If neighbor nodes do not have the described data then they re-
quest the data by sending REQ message. Finally, send the data by
sending DATA message that contain the advertised data. SPIN-EC is
a second member of SPIN group and it works in the same way as SPIN-
PP but with the addition of energy conservation. In SPIN-EC nodes
only participate in three-way handshake if they have enough energy
resource level to complete the process of data transmission. Unlike
first two member types of SPIN, SPIN-BC support broadcast trans-
mission where every node in a network will receive the transmitted
message. SPIN-BC adopts the one-to-many data transmission model
where every node hears all the transactions within its range. The last
member is SPIN-RL that also broadcasts the traffic, provides a mech-
anism for detection of packet loss and also addresses the asymmetric
communications.

• Directed diffusion

Directed diffusion is another data centric protocol. The data is named
using attribute-value pairs and it is the collected or processed informa-
tion of a phenomenon that matches an interest of a user. The main idea
of directed diffusion is that nodes request data by sending interests for
named data which are then flooded over the whole network. Whenever
a node receives an interest, it will check whether the interest exists or
new one. If it is a new interest, the sensor node will set up a gradient
toward the sender to draw down data that matches the interest. Each
pair of neighboring nodes will establish a gradient to each other. After
the gradient establishment stage, the source node begins to send the
related data that matches the interest. While sensor data is transferred
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Figure 5.3 Directed diffusion routing: (a) Interest propagation (b) Initial
gradient setup (c) Data delivery.

to the recipient in response to the interest, intermediate nodes com-
bine data from different sources to eliminate redundancy and reduce
the number of transmissions. This process is shown in Figure 5.3.

Directed diffusion differs from SPIN in that queries (interests) are is-
sued on demand by the sinks and not advertised by the sources as in
SPIN. Based on the process of establishing gradients, all communica-
tion is neighbor-to-neighbor, removing the need for addressing schemes
and allowing each node to perform aggregation and caching of WSN
data, both of which can contribute to reduced energy consumption. Fi-
nally, directed diffusion is a query-based protocol, which may not be a
good choice for certain sensor network applications, particularly where
continuous data transfers are required (e.g., environmental monitoring
applications).

Hierarchical Protocols

Hierarchical routing protocols are based on the grouping of nodes into
clusters to address some weaknesses of flat routing protocols, most notably
scalability and efficiency. In this particular technique, sensor nodes are
grouped into clusters where all the nodes communicate only directly with
the leader node (cluster head) within their own cluster as shown in the Fig-
ure 5.4. These leader nodes have more power and less energy constraints
and are responsible with the forwarding of the messages on behalf of the
other nodes. This approach can significantly reduce the communication and
energy burdens on sensor nodes, while cluster heads will experience signifi-
cantly more traffic than regular sensor nodes. Challenges in the design and
operation of hierarchical routing protocols include the selection of cluster
heads, the formation of clusters, and adaptations to network dynamics such
as mobility or cluster head failures. Compared to flat routing approaches,
hierarchical solutions may reduce collisions in the wireless medium and fa-
cilitate the duty cycling of sensor nodes for increased energy efficiency.

Low Energy Adaptive Clustering Hierarchy (LEACH) is an adaptive clus-
tering and self organizing protocol. LEACH assumes that every cluster head
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Figure 5.4 Hierarchical architecture a WSNs.

can directly communicate with the base station.With LEACH, cluster heads
are responsible for all communication between their cluster members and a
base station and the aggregation of data coming from its cluster members
in order to eliminate redundancies. LEACH can achieve significant energy
savings (depending on how much redundancy can be removed) and WSN
nodes (apart from the cluster heads) are not responsible for forwarding data
of other nodes.

Location-based Protocols

Location-based also known as geographic routing protocols rely on the
location information from nodes instead of topological connectivity informa-
tion to make routing decisions. In unicast location-based routing, packets
are sent directly to a single destination, which is identified by its location.
That is, a sender must be aware not only of its own location, but also the
location of the destination. In broadcast or multicast location-based routing
approaches, the same packet must be disseminated to multiple destinations.
Multicast protocols take advantage of the known destination locations to
minimize resource consumption by reducing redundant links.

Location based technique is an optimized solution for routing where WSN
nodes are not required to establish paths between source and destination
and also do not need to maintain routing tables. Typically, location-based
routing protocols require that every node in the network knows its own
geographic location and the identities and locations of its one-hop neighbors
(e.g.,obtained via periodic beacon messages). The destination is expressed
either as the location of a node (instead of a unique address) or a geographic
region.

Greedy Perimeter Stateless Routing (GPSR) is a location based routing
protocol in which packet forwarding decision are based on node position and
destination. In GPSR, nodes obtain information about its directly connected
nodes via HELLO or beacon messages. Source node mark the sending data
with the location of the receiving node and relay a packet to its immediate
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neighbor that make a locally forwarding decision and handle the data to
neighbor that is geographically close to the destination. Every node from
source to destination make local forwarding decision and move data closer
to the destination hop by hop, until the destination is reached.

Compared to other routing solutions, an advantage of location-based
routing is that only geographic information is needed for forwarding decisions
and it is not necessary to maintain routing tables or to establish end-to-end
paths between sources and destinations, eliminating the need for control
packets (apart from the beacon messages among neighbors).

5.3.2 Route Discovery

As mentioned before, routing protocols are responsible for identifying
and selecting routes from a source to a destination node. This route discov-
ery process can also be used to distinguish between different types of routing
protocols. Reactive protocols discover routes on-demand, that is, route is
only determined when needed by a node. An example of an on-demand or
reactive protocol is the Ad Hoc On-Demand Distance Vector (AODV) proto-
col. AODV relies on a broadcast route discovery mechanism, which is used to
dynamically establish route table entries at intermediate nodes. Whenever a
node needs to send a message to a node that is not its neighbor, it initiates a
path discovery process, by broadcasting a Route REQuest (RREQ) message
to its neighbors. Nodes receiving the RREQ update their information about
the source. They also set up a backward link to the source in their routing
tables. Each RREQ message contains the addresses of the source and the
destination, a hop count value, a broadcast ID, and two sequence numbers.
The hop count value keeps track of the number of hops from the source while
the broadcast ID is incremented whenever the source issues a new RREQ
packet and is combined with the source’s address to uniquely identify an
RREQ.

Upon receiving an RREQ packet, a node that possesses a current route to
the specified destination responds by sending a unicast route reply (RREP)
message directly back to the neighbor from which the RREQ was received.
Otherwise the RREQ is rebroadcast to the intermediate node’s neighbors
and its hop count is increased by one. It should be noted that intermedi-
ate nodes reply to an RREQ only if the sequence number of their route to
the destination is greater than or equal to the destination sequence number
specified in the RREQ packet.

When the source node receives the RREP, it checks whether it has an
entry for the route. If it did not have any entry in its routing table, the node
creates a new entry in the routing table. Otherwise it checks the sequence
number of the RREP. If the RREP arrives with the same sequence number
as in its tables but with a smaller hop count, or a greater sequence number
(indicating fresher route), it updates its routing table and starts using this
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Figure 5.5 Path discovery of the AODV routing protocol.

better route. Once an entry for the new route has been created in the
table, the node can start communication with the destination. Figure 5.5
summarizes the path discovery procedure of the AODV protocol.

The Dynamic Source Routing (DSR) protocol employs route discovery
and route maintenance procedures similar to AODV. In DSR, each node
maintains a route cache with entries that are continuously updated as a
node learns new routes. Similar to AODV, a node wishing to send a packet
will first inspect its route cache to see whether it already has a route to
the destination. If there is no valid route in the cache, the sender initiates a
route discovery procedure by broadcasting a route request packet, which con-
tains the address of the destination, the address of the source, and a unique
request ID. As this request propagates through the network, each node in-
serts its own address into the request packet before rebroadcasting it. As a
consequence, a request packet records a route consisting of all nodes it has
visited. Unlike AODV, each packet in DSR carries route information, which
allows intermediate nodes to add new routes proactively to their own caches.
Also, DSR’s support of asymmetric links is another advantage compared to
AODV.

On the other hand, in proactive protocols, the routing tables are kept con-
stantly up-to-date and active before they are actually needed. In this way,
the delays before the actual data transmission are eliminated. However, un-
necessary routes may be established and also the time interval between the
route discovery and the actual use of the route can be very large, potentially
leading to stale information in the routing tables which leads to routing
errors. In addition, another drawback refers to the overheads involved in
building and maintaining potentially very large routing tables. A typical
proactive protocol is the Destination-Sequenced Distance Vector (DSDV)
routing protocol (Perkins and Bhagwat 1994) which is a modified version of
the classic Distributed Bellman-Ford algorithm. Each node maintains a vec-
tor (table) of minimum distance to every node via each of his neighbors and
broadcasts updates to the routing table periodically, but also immediately
whenever significant new information becomes available. This information
is stored in a routing table, along with a sequence number for each entry,
where this number is assigned by the destination node. The purpose of the
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sequence numbers is to allow nodes to distinguish stale routes from new ones
in order to prevent routing loops.

Another example of a proactive protocol is the Optimized Link State
Routing (OLSR) protocol (Clausen et al. 2001), which is based on the link
state algorithm. In this approach, nodes periodically broadcast topologi-
cal information updates to all other nodes in the network, allowing them
to obtain a complete topological map of the network and to immediately
determine paths to any destination in the network.

Some protocols exhibit characteristics of both reactive and proactive pro-
tocols and belong to the category of hybrid routing protocols.

5.3.3 Protocol Operation

Another major classification of routing protocols refers to their operation.
In the QoS-based routing protocols, the goal is to find feasible paths

between sender and destination, while satisfying one or more QoS metrics
(latency, energy, bandwidth, reliability), but also optimizing the use of the
scarce network resources. In some WSN applications, Quality-of-Service
related metrics like delay, jitter, and throughput have same importance as
energy consumption. Wireless sensor networks pose numerous challenges for
providing satisfactory QoS, including dynamic topologies, resource scarcity
(including power limitations), varying quality of the radio channels, the lack
of centralized control, and the heterogeneity of network devices.

Sequential Assignment Routing (SAR) is a multipath routing approach
that explicitly considers the QoS metrics. SAR creates multiple trees that are
rooted from one hope neighbor nodes of the sink. Trees grow outward from a
sink while avoiding those nodes that have low QoS and energy. SAR selection
for route is based on QoS metric, packet priority level, and energy. Every
node in a network is a part of multiple trees and it can select multiple routes
toward the sink. Multiple paths availability provides fault tolerance and fast
recovery from broken paths. In large networks, multiple trees establishment
and maintaining are expensive.

SPEED is a QoS based routing protocol that provides real time unicast,
multicast, and anycast communication services. Nodes in SPEED proto-
col relies on location information of sensor nodes instead of routing tables,
therefore SPEED is also a location based stateless routing protocol. SPEED
protocol based on several different components to make sure speed guaran-
tees to the packets. SPEED is scalable and efficient protocol suited for highly
dense environments where large numbers of nodes with limited resources are
deployed.

Query-based routing protocols are initiated by the receiver node. Specif-
ically, in this kind of routing, the destination nodes propagate a query for
data (sensing task) from a node through the network and a node having
this data sends the data which matches the query back to the node, which
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initiates the query. All the nodes have tables consisting of the sensing tasks
queries that they receive and send data which matches these tasks when
they receive it. Directed diffusion which was described in Section 5.3.1 is
an example of this type of routing. In directed diffusion, the BS node sends
out interest messages to sensors. As the interest is propagated throughout
the sensor network, the gradients from the source back to the BS are set up.
When the source has data for the interest, the source sends the data along
the interests gradient path.

Negotiation-based protocols aim to reduce redundant data transmissions.
The main idea of negotiation based routing in WSNs is to suppress duplicate
information and prevent redundant data from being sent to the next sensor
or the base-station by conducting a series of negotiation messages before
the real data transmission begins. Consequently, less energy is consumed
since duplicate information is avoided. The SPIN family protocols discussed
earlier is an example of negotiation-based routing protocols.

5.3.4 In-network Data Processing

Finally, routing protocols also differ in the way they support in-network
data processing.

In non coherent-based protocols, nodes may perform significant data pro-
cessing before it is forwarded to other nodes for further processing. The nodes
that perform further processing are called the aggregators.

On the other hand, coherent-based protocols perform only a minimum
amount of processing (e.g., eliminating duplicates, time-stamping) before
sensor data is sent to receivers and data aggregators. The minimum process-
ing typically includes tasks like time stamping, duplicate suppression, etc.
When all nodes are sources and send their data to the central aggregator
node, a large amount of energy will be consumed and hence this process has
a high cost. One way to lower the energy cost is to limit the number of
sources that can send data to the central aggregator node.

5.4 The Shortest Path Routing

Routing protocols decision about best route selection among multiple
routes is based on the type of route metric that is used. The main concepts
that are related with the choice of a particular routing option refer to the de-
lay, the energy (maximum battery capacity/ minimum battery cost) and the
packet error rate. However, independently with the chosen routing metric,
there is a basic way to model all these options. The shortest path algorithm
computes the path for each source-destination pair that leads to the least
cost (energy, latency). Many fast-converging techniques exist for the prob-
lem of finding the shortest routes. The shortest-path algorithm performs
well in cases of slow network changes (so that the shortest routes do not
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Figure 5.6 Basic version of shortest path optimization problem for routing
over networks.

have to be continually rediscovered), and mild loading. On the other hand,
in cases of network congestion, the algorithm may not actually be optimal
as too many packets may be dropped. This section presents the shortest
path optimization problem focusing also on the iterative generic shortest
path algorithm for the optimal path computation in a WSN. In the end of
the section, some of the most common used routing metrics based on the
shortest path problem are presented

5.4.1 The Shortest Path Optimization Problem

The shortest path optimization problem is a general optimization prob-
lem that is used to model all the existing cases for routing (used in ROLL
RPL, Wireless HART. . . ). The broad range of applications of the short-
est path problem covers project management topics, dynamic programming
as well as the paragraphing problem. In this section, its basic version is
examined, when in the network there is one source and one destination (Fig-
ure 5.6). Multiple sources or multiple destinations scenarios are a simple ex-
tension. In general, a graph is used to formulate routing problems. A graph
G = (N,A) is a set N of nodes and a collection A = (i, j) of edges/arcs,
where each arc is a pair of nodes from N . In the context of this section, ev-
ery arc length aij is a scalar number that represents the chosen routing cost
on the link between node i and node j (MAC delay, Packet Error Rate. . . ).
Based on Figure 5.6, suppose that we want to find the shortest (minimum
cost) path from source s to destination t. The shortest path optimization
problem is then formulated as follows:

min
x

∑
(i,j)∈A

aijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = si


1 if i=s
−1 if i=t
0 otherwise

xij ≥ 0 ∀(i, j) ∈ A

x = [x12, x13, ..., xin , xin+1 , ...] ,
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where xij represents a binary variable. It can be also real, but remarkably if
the optimization problem is feasible, the unique optimal solution is binary.
The optimal solution gives the shortest path between source s and destina-
tion t. Several approaches have been proposed for the solution of the shortest
path problem. Since it is an optimization problem, one could use standard
techniques of optimization theory, such as Lagrangian methods. However,
the solution can be achieved by combinatorial algorithms that do not use
optimization theory at all. Such a combinatorial solution algorithm, referred
as the Generic shortest path algorithm, is presented in the following section.

5.4.2 The Generic Shortest Path Algorithm

The Generic shortest path algorithm is the foundation of other more
advanced algorithms widely used for routing (e.g., in ROLL RPL) such as the
Bellman-Ford and Dijkstra method. The algorithm maintains and adjusts a
vector (d1, d2, ..., dN ), where each dj , called the label of node j is either a
scalar or∞. The use of labels is motivated by the Complementary Slackness
(CS) conditions which are given in the following proposition.

Proposition 1. Let d1, d2, ..., dN be scalars such that

dj ≤ di + aij , ∀(i, j) ∈ A . (5.1)

Let P be a path starting at a node i1 and ending at a node ik. If

dj = di + aij , ∀(i, j) of P (5.2)

P is a shortest path from i1 to ik.

The CS conditions (5.1) and (5.2) are considered as the foundation of
the generic shortest path algorithm. In particular, after assigning an initial
vector of labels (d1, d2, ..., dN ) to the nodes, the arcs (i, j) that violate the
CS condition dj > di + aij are selected and their labels redefined so that
dj := di + aij . In other words, if dj > di + aij for some arc (i, j), the path
obtained by extending the path Pi by arc (i, j), which has length di + aij ,
is a better path (lower cost) than the current path Pj , which has length dj .
This redefinition is continued until the CS condition dj ≤ di+aij is satisfied
for all arcs (i, j). In this way, the algorithm finds successively better paths
form the origin to various destinations.

Instead of examining arbitrarily the network nodes, the generic shortest
path algorithm maintains a list of nodes V which is called the candidate list.
In each algorithm iteration, the violation of the CS condition is checked for
all the outgoing arcs of each particular node of the set V and the vector
of labels (d1, d2, ..., dN ) is updated. Assuming that initially V = {1} and
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d1 = 0, di =∞, ∀i 6= 1, the typical iteration (assuming V is non-empty) is
as follows:

Iteration of the Generic Shortest Path Algorithm
Remove a node i from the candidate list V . For each outgoing arc (i, j) ∈ A,
if dj > di + aij , set

dj := di + aij ,

and add j to V if it does not already belong to V
The removal rule is based either on global routing algorithms or on decen-
tralized ones.

A global routing algorithm computes the least-cost path between a source
and destination using complete, global knowledge about the network. That
is, the algorithm takes the connectivity between all nodes and all link costs
as inputs. This then requires that the algorithm somehow obtain this infor-
mation before actually performing the calculation. The calculation itself can
be run at one site (a centralized global routing algorithm) or replicated at
multiple sites. The key distinguishing feature here, however, is that a global
algorithm has complete information about connectivity and link costs. In
practice, algorithms with global state information are often referred to as
link-state (LS) algorithms, since the algorithm must be aware of the cost of
each link in the network. A representative example is the Dijkstra method.
Dijkstra’s algorithm computes the least-cost path from one node (the source)
to all other nodes in the network. It is an iterative method and has the
property that after the k-th iteration, the least-cost paths are known to k
destination nodes, and among the least-cost paths to all destination nodes,
these k paths will have the k smallest costs.

On the other hand, in a decentralized routing algorithm (often referred
as distance-vector algorithm), the calculation of the least-cost path is carried
out in an iterative, distributed manner. No node has complete information
about the costs of all network links. Instead, each node begins with only the
knowledge of the costs of its own directly attached links. Then, through an
iterative process of calculation and exchange of information with its neigh-
boring nodes (that is, nodes that are at the other end of links to which it itself
is attached), a node gradually calculates the least-cost path to a destination
or set of destinations. Bellman-Ford method is representative example of a
decentralized routing algorithm. The basic idea is as follows. Each node x
begins with Dx(y), an estimate of the cost of the least-cost path from itself to
node y, for all nodes in N. Let Dx = [Dx(y) : y in N ] be node x’s distance
vector, which is the vector of cost estimates from x to all other nodes, y,
in N. With the DV algorithm, each node x maintains the following routing
information:

• For each neighbor v, the cost c(x, v) from x to directly attached neigh-
bor, v
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Iteration Candidate List V Node Labels Node out of V
1 {1} (0,∞,∞,∞) 1
2 {2, 3} (0,3,1,∞) 2
3 {3, 4} (0,3,1,5) 3
4 {4, 2} (0,2,1,4) 4
5 {2} (0,2,1,4) 2

∅ (0,2,1,4)

Figure 5.7 Illustration of the generic shortest path algorithm, from [Bert-
sekas 1991].

• Node x’s distance vector, that is, Dx = [Dx(y) : y in N ], containing
xâĂŹs estimate of its cost to all destinations, y, in N

• The distance vectors of each of its neighbors, that is, Dv = [Dv(y) :
y in N ] for each neighbor v of x.

Each node sends a copy of its distance vector to each of its neighbors. When
a node x receives a new distance vector from any of its neighbors v, it saves
v’s distance vector, and then uses the Bellman-Ford equation to update its
own distance vector as follows:

Dx(y) = minv{c(x, v)+Dv(y)} for each node y in N

If node x’s distance vector has changed as a result of this update step, node x
will then send its updated distance vector to each of its neighbors, which can
in turn update their own distance vectors. Miraculously enough, as long as
all the nodes continue to exchange their distance vectors in an asynchronous
fashion, each cost estimate Dx(y) converges to dx(y), the actual cost of the
least-cost path from node x to node y [Bertsekas 1991].

An illustration of the generic shortest path algorithm is shown in Fig-
ure 5.7. The numbers next to the arcs represent the arc lengths. It should be
noted that the order in which the nodes are removed from the candidate list
V is significant; if node 3 (instead of node 2) had been removed in iteration
step 2, each node would enter V only at once. As the iterations of the algo-
rithm increase, the vector of the labels takes monotonically non-increasing
values. The following proposition refers to the convergence of the algorithm.
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These convergence properties are based on sound theoretical analysis.

Proposition 2. Consider the generic shortest path algorithm.

(a) At the end of each iteration, the following conditions hold:

• If dj <∞, then dj is the length of some path that starts at 1 and
ends at j.

• If i /∈ V , then either di =∞ or else

dj ≤ di + aij , ∀j such that (i, j) ∈ A ;

(b) If the algorithm terminates, then upon termination, for all j with dj <
∞, dj is the shortest distance from 1 to j and

dj=

{
min(i,j)∈A(di + aij) if j 6= 1

0 if j = 1
;

(c) If the algorithm does not terminate, then there exists some node j and a
sequence of paths that start at 1, ends at j, and have a length diverging
to −∞.

(d) The algorithm terminates if and only if there is no path that starts at 1
and contains a cycle with negative length.

5.4.3 Routing Metrics

Based on the concept of the shortest path routing, the most common used
metrics for routing in WSNs are discussed in the following section. Many
other routing metrics besides the hop count and the energy are possible.
For example, each arc could be labeled with the mean transmission delay
for some standard test packet as determined by hourly test runs. With this
graph labeling, the shortest path is the fastest path rather than the path
with the fewest arcs. In the general case, the labels on the arcs could be
computed as a function of the distance, energy, mean transmission count,
measured delay, and other factors. By changing the weighting function, the
shortest path algorithm would then compute the ”shortest” path measured
according to any one of a number of criteria or to a combination of criteria.
In the following, we discuss in brief some of these commonly used routing
metrics in WSNs.

1. Minimum Hop Count: The most common metric used in routing pro-
tocols is the minimum hop (or shortest hop) where the routing proto-
col attempts to find the path from the sender to the destination that
requires the smallest number of relay nodes (hops). In this simple
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technique, every link has the same cost and a minimum-hop routing
protocol selects the path that minimizes the total cost of data propa-
gation from source to destination. The basic idea behind this metric
is that using the shortest path will result in low end-to-end delays and
low resource consumptions, because the smallest possible number of
forwarding nodes will be involved. However, since the minimum-hop
approach does not consider the actual resource availability on each
node, the resulting route is probably non optimal in terms of delay, en-
ergy, and congestion avoidance. Nevertheless, the minimum-hop metric
is being used in many routing protocols due to its simplicity and its
isotonicity, that is, its ability to ensure that the order of weights of
two paths is preserved even when they are appended or prefixed by a
common third path.

2. Energy: The most critical resource in WSNs is undoubtedly the avail-
able energy of sensor nodes. However, there is not one unique energy
metric that can be applied to the routing problem; instead, there are
various different interpretations of energy efficiency, including (Singh
et al. 1998):

(a) Minimum energy consumed per packet: This is the most natural
concept of energy efficiency, that is, the goal is to minimize the
total amount of energy expended for the propagation of a single
packet from the source node to the destination. The total energy
is then the sum of the energy consumed by each node along a
route for receiving and transmitting the packet.

(b) Maximum time to network partition: A network partitions into
several smaller subnetworks when the last node that links two
parts of the network expires or fails. As a consequence, a sub-
network may not be reachable, rendering the sensor nodes within
the subnetwork useless. Therefore, the challenge is to reduce the
energy consumption on nodes that are crucial to maintaining a
network where every node can be reached via at least one route.
For example, a minimal set of nodes, whose removal will cause
a network to partition, can be found using the max-flow/min-
cut theorem. Once a routing protocol has identified these critical
nodes, it can attempt to balance the traffic load such that prema-
ture expiration of these nodes is prevented.

(c) Minimum variance in node power levels: In this scenario, all nodes
within the network are considered equally important and the chal-
lenge is to distribute the energy consumption across all nodes in
the network as equally as possible. The goal of such an approach
could be to maximize the lifetime of the entire network, for ex-
ample, instead of some nodes expiring sooner than others and
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thereby continuously decreasing the network size, one could aim
at keeping as many nodes alive as long as possible. In the ideal
(but practically impossible) case, all nodes would expire at exactly
the same time.

(d) Maximum (average) energy capacity: In this approach, the focus
is less on the energy cost of packet propagation, but instead on
the energy capacity (i.e., the current battery charge level) of the
nodes. A routing protocol that uses this metric would then favor
routes that have the largest total energy capacity from source to
destination. A routing protocol that uses this metric must be
carefully designed to avoid the pitfall of choosing unnecessarily
long routes in order to maximize the total energy capacity. A
variation of this metric is to maximize the average energy capacity,
which can avoid this problem.

(e) Maximum minimum energy capacity: Finally, instead of maximiz-
ing the energy capacities of the entire path, the primary routing
goal could be to select the path with the largest minimum energy
capacity. This technique also favors routes with larger energy
reserves, but also protects low-capacity nodes from premature ex-
piration.

3. Expected Transmission Count (ETX): ETX, proposed by de Couto
et al (2003), is defined as the expected number of MAC layer trans-
missions necessary to successfully deliver a packet through a wireless
link. The weight of a path is defined as the summation of the ETX
of all links along the path. ETX is a routing metric that ensures easy
calculation of minimum weight paths and loop free routing under all
routing protocols. However, it never considers the energy consumption
of devices.

4. Expected Transmission Time (ETT): Expected transmission time is
an estimation of the time cost of sending a packet successfully through
the MAC layer. It takes the link bandwidth into account and it is
commonly used to express latency.

5.5 RPL Routing Protocol

This section provides a brief description of the ROLL RPL routing pro-
tocol for WSNs. The IETF Routing over Low power and Lossy network
(ROLL) working group has recently developed this IPv6 based routing pro-
tocol for Low power and Lossy Networks (LLNs). RPL is a Distance vector
routing protocol designed for low power and lossy networks and is intended
for
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Figure 5.8 The routing protocol RPL DAG topology formation through DIO
messages.

• Industrial and home automation;

• Healthcare;

• Smart grids.

RPL allows routing across multiple types of link layers. It constructs a
Destination-Oriented Directed Acyclic Graphs (DODAGs), i.e., trees sources-
destinations. The nodes build and maintain DODAGs by periodically multi-
casting messages, the so called DODAG Information Object control message
(DIO), to their neighbors. In order to join a DODAG, a node listens to
the DIO messages sent by its neighbors and selects a subset of these nodes
as its parents. In particular, nodes that receive the messages will process
these messages and make decision whether to join the graph or not and also
forward the DIO messages to its neighboring nodes. Destination Advertise-
ment Option control messages (DAO) are sent periodically to notify a parent
about the routes to its children nodes. This process continuous such that
the DAG topology is built from the sink node toward edges nodes as shown
in Figure 5.8.

A DIO control message includes the node’s rank (its level) dj and a packet
forwarding metric aij and is broadcasted to build the tree. The metrics used
to characterize the cost of each arc in the graph include the link reliability, the
packet delay, the node energy consumption, ETX etc. DODAG minimizes
the cost to go to the root (destination node) based on an Objective Function.
The Objective Function defines how nodes in RPL select the routes within
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an instance. It combines the metrics and constraints to find the best path.
For example, the objective function finds the path that has minimum delay
and that path never traverse a battery-operated node. In this example, the
path with minimum delay represents the metric and non-battery operated
nodes represent the constraint.

Problems
Problem 5.1 Shortest path routing: Bellman-Ford algorithm (Ex.8.4 in (Pottie
and Kaiser, 2005))
The network topology of Figure 5.9 is used to illustrate the Bellman-Ford algorithm
for finding the shortest route to a node. In the figure, the number beside a node
serves as the label for the node, and the number near an arc indicates the length
of the arc. For instance, the arc connecting nodes 1 and 2 has length 1. Define dij
to be the length of the direct arc connecting nodes i and j . If there is no direct
arc connecting the two nodes, we set dij =∞ . By doing this, dij has meaning for
any pair of nodes i and j in the network.

1 1

3

2 5

6

4

1

5
4 3

1

1

10

 

Figure 5.9 A simple network where finding the shortest path.

Consider node 1 as the destination node. The shortest path from node i to
node 1 that traverses at most h arcs and goes through node 1 only once is called a
shortest (≤ h ) walk, and its length is denoted by Dh

i . Note there are two special
cases. If all paths between node i and 1 consist of more then h arcs, Dh

i =∞. By
convention, Dh

1 = 0 for any h.

(a) Determine D0
i for i = 1, 2, . . . , 6. Find dij for all possible i, j = 1, 2, . . . , 6.

(b) The following iteration is used to generate the subsequent shortest walks:

Dh+1
i = min

j
[dij +Dh

j ] for all i 6= 1 .

Determine D1
i for i 6= 1.

(c) Use the iteration equation in (b) to compute D2
i , D3

i ,. . . for i 6= 1. Stop the
iteration when Dh+1

i = Dh
i , for all i 6= 1 . The minimum distance from node i

to node 1 is Dh
i in the last iteration.
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Problem 5.2 Shortest path routing: Dijkstra algorithm (Ex.8.5 in (Pottie and
Kaiser, 2005))
We will use Figure 5.9 to illustrate the Dijkstra algorithm for finding the shortest
route to a destination node. The length of the direct arc connecting nodes i and
j is defined to be dij . For a detailed description of the figure and the definition of
dij , refer to previous exercise. Denote by P the set of nodes whose shortest path
to the destination node is known, and denote by Dj the current shortest distance
from node j to the destination node. Note that only when node j belongs to the
set P can we say Dj is the true shortest distance. Choose node 1 as the destination
node. Initially, set P = {1} , D1 = 0, and Dj =∞ for j 6= 1.

(a) Update Dj for j 6= 1 using the following equation

Dj = min[Dj , dj1] .

(b) Find i such that
Di = min

j /∈P
[Dj ] ,

and update P := P ∪ {i}.

(c) Update Dj for j /∈ P by the following equation

Dj := min[Dj , Di + dji] ,

in which i is the i obtained in (b).

(d) Go back and compute steps (b) and (c) recursively until P contains all the
nodes in the network. The resulting Dj is the shortest distance from node j to
node 1.

Problem 5.3 Shortest path routing in WSNs
One way of building routing tree in WSNs is based on ETX. ETX stands for ex-
pected number of transmissions. The Idea is to make a minimum spanning tree
(MST) minimizing the expected number of transmissions for each node. This is
done based on MAC layer functionalities (e.g., PRR). With PRR for each link be-
tween (i, j) nodes have a good estimate of packet reception rate from other party
and hence can measure the temporal reliability of the link. Note that PRR is di-
rectional and the rate of packet reception for links (i, j) and (j, i) can be different.
Having the values of PRR of direct neighbors available at each node, in a recur-
sive fashion nodes can build a routing tree that minimizes the expected number of
transmissions to the sink.

(a) Develop a sketch of the algorithm and the required equations to build the
routing tree based on ETX metric.

(b) Consider Figure 5.10 and assume the PRR is bidirectional (links are undirected)
where the values of the PRR are given on the arcs. Find the MST based on
ETX metric.
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Figure 5.10 A sample WSN topology. Node 1 is the sink and link qualities
(PRR) are depicted on each arc.
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Figure 5.11 Initial graph with link probabilities annotated. Each neighbor i
of node s provides its ETX[i] to s.

Problem 5.4 Anycast routing over WSNs
In WSNs, the expected number of transmissions of a node (ETX) is a routing
metric, namely a metric used by a node to take the decision over which path the
node routes packets. Denote by ETX[s] the expected number of transmissions
required for node s to send a packet to the destination D. Let Ns, Ps and pi be the
neighbors set of s, parent set of s and probability of successful transmission from
node s to neighboring node i, respectively. Given ETX[i] and pi for all i ∈ Ns,
ETX at s is defined as

ETX[s] = min
i∈Ns

{
ETX[i] +

1

pi
,

}
and the parent set of s is defined as Ps = {i} ,where i is the neighbor that minimizes
ETX[s] above. Note that the Ps has one component.

Now we want to extend this scheme to consider multiple parents. Figure 5.11
illustrates such network. The routing scenario is as follows. Node s looks at its
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Figure 5.12 Spanning tree.

parents set Ps = {1 . . . n} as an ordered set. It broadcasts a packet to all the
parents and waits for an acknowledgement (ack) packet. If parent 1 receives the
packet (with probability p1) then node 1 will forward the packet to D (with cost
ETX[1]). Now if node 1 fails to receive the packet and node 2 receives it, then node
2 will forward it. So within this scheme node i is allowed to forward a packet if 1)
it successfully receives the packet from s with probability pi and 2) if all the nodes
with higher priority 1, . . . , i − 1 fail to get the packet. Assume that an efficient
message passing scheme handles this structure.

(a) Calculate the new ETX metric for s and a given ordered set of parents Ps =
{1 . . . n}. [hint: first you can calculate the probability that a packet from s
is received by at least one of the parents. Then, conditioned on that you are
in one of the parents (the first hop transmission is successful), calculate the
average ETX from one of the parents to the destination.]

(b) In Figure 5.11, assume that s has 3 neighbors with success probabilities (p1, p2, p3) =
(1/2, 1/3, 1) and ETX of (2, 2, 4), respectively. Calculate the ETX[s] for two
cases: with single parent and three parents with priority order (1, 2, 3).

(c) For the second case of the previous point, find the optimal parent set (note
that there are 23 − 1 possible parent sets) that minimizes ETX[s].

Problem 5.5 Spanning tree (Ex.8.7 in (Pottie and Kaiser, 2005))
Find all possible spanning trees for the two graphs in Figure 5.12 subject to the
constraint that node 1 must be the root. Determine the number of nodes N and
arcs A in each of these spanning trees. Can you see a relation between N and A?

Problem 5.6 Directed diffusion (Ex.8.8 in (Pottie and Kaiser, 2005))
Consider the situation in Figure 5.13. The solid lines represent transmission links
between nodes, and dashed lines indicate boundaries of tiers. Here node A wants to
transmit to node D. Suppose the transmission takes the branches within the same
tier with one third of the probability of branches in the next tier, and the packets
do not back-track. Determine the likelihood of packets flowing through node B and
C to reach D.
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Figure 5.13 Directed diffusion.

Figure 5.14 The graph for Exercise 5.7

Problem 5.7 Multicast Spanning Tree
Find a possible multicast spanning tree for the graph in Figure 5.14 subject to the
constraint that node C must be the root.

Problem 5.8 Bellman-Ford Algorithm
In Bellman-Ford algorithm, the initial values for the paths between the network
nodes and the destination node are set equal to ∞. For the network topology in
Figure 5.15, show that the algorithm converges for initial path values equal to 0.
Consider H as the destination node.
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Figure 5.15 Network topology for Exercise 5.8



Chapter 6

Topology Control

6.1 Introduction

Topology control is one of the relevant techniques to decrease the energy
consumption and increase the network capacity in WSNs. In this chapter we
will introduce the essential concepts of this theory. By taking as reference
(Li et al., 2013), we have chosen to split the topology control issues into two
categories: Connectivity and Coverage.

We will first describe a strict model for a WSN and then, in Section 6.1,
we formally define what we mean by topology control. In Section 6.2 we
consider the issue of connectivity and in Section 6.3 we will consider the
coverage issue.

This chapter will contain lots of graph theoretical terms and if not already
familiar with these, we encourage the reader to look in the chapter on graph
theory in the appendix.

Model

A WSN is modeled as a directed graph G = (V ,A ) where each vertex
v ∈ V represents a node and for any two nodes u, v ∈ V , (u, v) ∈ A if and
only if the transmitting range of node u is larger than the distance between u
and v. To do this in a formal way, one may think of a WSN as a pair (N , p)
where N is a set of nodes and p : N → Rd is a position function which gives
the physical positions of the nodes. Here d refers to the dimension in which
me model the WSN, i.e., d ∈ {1, 2, 3}. Throughout this chapter we will let
δ denote the euclidean distance function and if V is a set then |E | always
denotes the number of elements in E . Furthermore, for the whole chapter
we make the following assumption:

Assumption 6.1.1. For any two distinct nodes n1, n2 ∈ N , p(n1) 6= p(n2).

Definition 6.1.2. Given a WSN Np = (N , p), a range assignment for Np

is a function r : N → (0, ρmax] ⊂ R, assigning to every node v a trans-

125
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mitting range r(v) ∈ (0, ρmax], where ρmax is the maximum range of the
nodes’ transceivers. If r(v) is the same for all v ∈ V then we say that r is
homogeneous.

We also call r a range assignment for N or a range assignment for p(N )
and may even speak of a range assignment for a subset of Rn without any
underlying WSN.

Definition 6.1.3. Let Np = (N , p) be a WSN and V = p(N ) ⊂ Rn. Given
a range assignment r for N , the communication graph of Np, induced by r
is the directed graph

−→
Gr = (V ,Ar), where, for every u, v ∈ V , (u, v) ∈ Ar if

and only if r(u) ≥ δ(u, v). We denote by Gr = (V ,Er) the graph such that
{u, v} ∈ Er if and only if (u, v) ∈ Ar and (v, u) ∈ Ar. Gr = (V ,Er) is called
the undirected communication graph of Np, induced by r.

When we speak of the network topology of the WSN, we simply refer to
the arcs/edges in the communication graph. Later in this chapter, the word
topology will also include the edges in the so called coverage graph.

In WSNs, the nodes will communicate through wireless transceivers. As-
sume that a node u is transmitting a radio signal that is received by a node
v at distance δ(u, v) = d. Denote by Pt the power used by u to transmit the
signal and let Pr(d) be the power of the signal when reaching v.

A model widely used for WSN is called the log-distance path model which
can be described by the following relation.

Pr(d) ∝ Pt
dα

.

Here, α is called the distance-power gradient. In free space we have that
α = 2, however in real applications α varies depending on the environment.
In urban areas, α is often around 2.7-3.5. Indoors we may even have values
of α less than 2, due to reflections and if the conditions are bad α may be
as high as 6 (Santi, 2005).

Definition

There is no universal definition of topology control and in different litera-
ture, we may find many different versions. Topology control is often referred
to not only as the construction but also the maintenance of the network
topology. However, in this chapter we will mostly discuss the theoretical
problems arising from the construction of the topology.

We define topology control informally as follows:

Topology Control is the procedure of controlling the network topology
characteristics by deciding the nodes parameters in order to optimize some
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Figure 6.1 When a2 ≥ b2 + c2, it is more energy-efficient for node u to send
via node w to node v, then to send directly to node v.

network performance indicators. Examples of network topology character-
istics are the connectivity and coverage. Examples of node parameters are
the transmitting range and sleep/awake mode. Examples of network perfor-
mance indicators are network energy consumption and network capacity.

Motivation

In this section we will give two examples that motivates the use of topol-
ogy control from different perspectives.

Energy-Efficiency

Suppose that a node u wants to send a message to a node v, and for
simplicity, consider the nodes as points in R2. Suppose that a third node
w is located in the disc with diameter uv. Let a = δ(u, v), b = δ(u,w),
c = δ(v, w) and let φ be the angle at w in the triangle uvw (see Figure 6.1).
From basic geometry we know that a2 = b2 + c2 − 2bc cos(φ) and since w is
located in the disc with diameter uv we have that φ ≥ π/2. This implies that
cos(φ) ≤ 0 and hence a2 ≥ b2 + c2. If we assume that the distance-power
gradient α = 2 we conclude that, from an energy-efficiency point of view, it
will be better to communicate via w instead of directly from u to v.

Network Capacity

Suppose that 4 nodes, u1, u2, u3, u4, are located in R3 and that δ(u1, u2) ≤
δ(u2, u3) and δ(u3, u4) ≤ δ(u2, u3). Suppose that we are given a range as-
signment r such that r(u2) ≥ δ(u2, u3) and that u3 has a message for u4. As
u2 is transmitting to u1, u3 can not transmit the data to u4 (see Figure 6.2).
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Figure 6.2 The left figure pictures the effect of interference and the right
figure pictures a situation without interference.

Suppose one the other hand that δ(u1, u2) ≤ r(u2) ≤ δ(u2, u3) and
δ(u3, u4) ≤ r(u3) ≤ δ(u2, u3). Then both u2 and u3 can transmit messages
at the same time without causing any interference.

Application

In this section we will discuss two practical examples showing the im-
portance of topology control. These examples relate to the environmental
applications of WSN discussed in Section 1.3.

Monitoring CO2 Emission in Urban Areas

One of the main causes of global warming is the over-emission of CO2.
According United Nations Framework Convention on Climate Change, many
countries will have to reduce or limit their total emission of CO2 to stop or at
least, slow down the global warming. This has led to an increase in demand
for accurate, real-time measuring of the CO2 emission in urban areas.

A great challenge in this application is the huge size of the area to be
covered, which requires a large scale systems. Typically, a WSN covering
the area would consist of more than 1000 nodes and should support many
different services, such as link estimation, data collection, data processing,
and structure management (e.g. layering and clustering). This requires
protocols that can support many network services at the same time. A
challenge here is to implement such protocols without loosing the scalability
and energy-efficiency of the WSN.

In a project called CitySee (Mao et al., 2012), more than 1000 sensors
where deployed in an urban area of Wuxi City, China, with the objective of
monitoring CO2 emission. In this project, the focus was on node deployment
and all nodes had the same transmitting range.
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Forest Monitoring

Forest is a very important resource on Earth and researchers can make
use of data such as temperature, humidity and illumination for, e.g., forest
research, forest surveillance and fire risk evaluation.

To collect the data one can use a WSN. Since the sensors will be deployed
in the forest, the batteries should be able to last for a long time. The chal-
lenge in terms of topology control is therefore the trade-off between network
performance and network lifetime.

In a project called GreenOrbs, more than 1000 sensors of different kind
are deployed in a forest to operate for more than a year. A first application
of GreenOrbs is canopy closure estimates (Mo et al., 2009). A Canopy clo-
sure estimate is defined as an estimation of the percentage of ground area
vertically shaded by overhead foliage. The sensors are randomly deployed in
the forest to measure the illuminance and then examine whether they are in
the light or shade.

Design Guidelines

When a WSN becomes very large it is both hard and expensive to have
a centralized topology control mechanism, since this requires global infor-
mation about the WSN. Hence it necessary to introduce the concept of
distributed topology control. Instead of controlling the whole topology in
one piece, one may use a distributed control algorithm such that smaller
parts of the network are controlled separately. In this way, the nodes will
only need local information about the WSN, which is often easier to manage
than using a centralized approach. This is when the scaling property of the
communication graph becomes important.

An important aspect due to energy savings is the quality of the informa-
tion used by the nodes to build the topology. It might be easier to write a
protocol when every node knows the physical positions of its neighbors but
this might require GPS devices that are expensive in terms of energy. An
alternative might be that the nodes know only the distance or the direction
to its neighbors, or maybe just the number of neighbors or their identity.
Different quality of information is needed in different scenarios.

If the nodes can rely on lower-quality information the application range
becomes larger since the WSN are often implemented in harsh environments.
An example of this is when WSNs are used to monitor cole mines, since it
is well known that GPS devices perform badly under ground.

We will now point out some design guidelines for topology control.

1. Connectivity: The WSN must be connected, that is; have a strongly
connected communication graph.

2. Coverage: The sensors must cover the area of interest.
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3. Distributed algorithm: Unlike a centralized algorithm, a distributed
algorithm is not in need of global information, and is therefore cheaper.
This requires scalability and that the nodes can make decisions locally.

4. Small node degree: A small node degree means that the corre-
sponding vertex in the communication graph has a small degree. This
is important since it reduces the amount of interference.

5. Energy-Efficiency: One of the biggest reasons to use topology con-
trol is to save energy. Hence it is important that the topology control
mechanism does not require more energy than the energy we gain from
using it. This point is related to all other points and often the one
which puts a spoke in the wheel.

6. Low-complexity algorithms: Since the WSN devices are often very
simple, the topology control algorithm must have low computational
complexity. The simplicity of the topology control mechanism also
improves the energy-efficiency.

7. Local information: Every node need some information about its
neighborhood, for example its physical position or the position of its
neighbors. This might require some extra hardware such as GPS de-
vices etc.

8. Low-quality communication: The WSN communicates over wire-
less channels, and is often implemented in harsh environments. This
effects the quality of the signals between the nodes.

6.2 Connectivity Problems

An important characteristic of the network topology is that the corre-
sponding communication graph is strongly connected. In this section, we
will treat this problem from a few different angles.

6.2.1 Range Assignment Problems

A famous problem concerning the connectivity issue is the so called range
assignment problem. This can be described as the problem of finding a range
assignment, for a set of nodes in a WSN, which minimizes a certain sum
which corresponds to the energy needed to set up the network topology.

This approach implies a centralized control algorithm since the controller
needs global information about the WSN. In Section 6.1 we briefly discussed
the concept of distributed topology control, which on the other hand requires
only local information about the WSN.
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Problem Definition

Following the log-distance path model recalled in Section 6.1, we conclude
that, to minimize the power used by a WSN Np = (N , p) to construct a
good topology, an important criterion is to minimize

∑
v∈N

rα.

Definition 6.2.1. Given a WSN Np = (N , p) and a range assignment r for
Np, the cost of r, C(r) is defined by

C(r) =
∑
v∈N

r(v)α,

where α is defined as the distance-power gradient.

Definition 6.2.2 (The Range Assignment Problem (RA)). Given a constant
β ∈ R, let V be a finite subset of Rn. For any range assignment r for V ,
let
−→
Gr = (V ,Ar) be the communication graph induced by r. Let R be the

set of all range assignments for V such that
−→
Gr satisfies certain connectivity

conditions. The problem of finding a range assignment rmin ∈ R such that∑
v∈V

rmin(v)β = min
r∈R

∑
v∈V

r(v)β

is called the range assignment problem (RA).

We will know define 4 RA-problems with different constraints on the
communication graph

−→
Gr = (V ,Ar). Note that for these 4 problems we

assume that ρmax →∞.

Connectivity Conditions:

1. Connectivity: Gr is connected.

2. Strong connectivity:
−→
Gr is strongly connected.

3. Broadcast: Given a vertex v ∈ V (before choosing the range
assignment),

−→
Gr contains an arborescence rooted at v.

4. Symmetry:
−→
Gr is bidirectional and strongly connected.

Note that problems 1, 2, 3 are of decreasing strength, i.e. if Gr is con-
nected then

−→
Gr is strongly connected, and if

−→
Gr is strongly connected then,

for any v ∈ V ,
−→
Gr contains an arborescence rooted at v. Problem 4 is of a
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different nature and implies 1, 2 and 3. An equivalent formulation of 4 is
−→
Gr

is bidirectional and Gr is connected.
We are going to show that, with certain constraints on n and β, prob-

lems 1, 2, 3, 4 are NP-hard. For an introduction to complexity theory we
recommend Garey and Johnson’s classical: ”A Guide to the Theory of NP-
Completeness ” (Garey and Johnson, 1979).

A very quick and informal summation what NP-hard means can be given
as follows:

• A decision problem is on the form: INSTANCE: {...}, QUESTION:
{...} and the solution is either "YES" or "NO".

• NP - Class of decision problems, whose "yes"-instances could be veri-
fied in polynomial time by a non-deterministic Turing machine.

• NP-hard - "At least as hard as the hardest problem in NP".

By the last by we mean that a a solution to problem that is NP-hard can be
used to solve one of the "hardest" problems in NP.

What we typically do when we want to show that a problem A is NP-
hard is to take a problem B which is known to be NP-hard and make a
construction realizable in polynomial time such that solving problem A in
polynomial time would imply that we could also solve problem B in poly-
nomial time. This would imply that problem A is, so to speak, "at least as
hard as problem B" and hence problem A is NP-hard.

To be completely correct here, we would have to formulate the RA-
problem as a decision problem. However, we will allow ourselves to be a
bit informal on this point. It is easy to see that it would be at least as hard
to solve the RA-problem, as to solve the following RA-decision problem:

The Range Assignment Decision Problem (RAD):

Instance: Constants β, n,B ∈ R and a finite set V ⊂ Rn.

Question: Is there a range assignment r for V such that the com-
munication graph induced by r satisfies a certain connectivity condition
and ∑

v∈V

rmin(v)β ≤ B

A construction we will use in some proofs is what is called an orthogonal
grid drawing.
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Algorithm 1: Assigns a distance to each vertex in the tree rooted at
u.
Result: When making the call Search(u, y = 0) is called, every vertex

v is assigned a distance dist(v), to the root u.

Function Search(u, y):
dist(u) = y;
y = y + 1;
if {u, right(u)} ∈ ET then

Search(right(u), y);

if {u, mid(u)} ∈ ET then
Search(mid(u), y);

if {u, left(u)} ∈ ET then
Search(left(u), y);

Definition 6.2.3. Let G be a planar graph of maximum degree 4. An
orthogonal grid drawing of G is a plane graph D(G) isomorphic to G, and
such that the vertices of D(G) have integer coordinates and edges of D(G)
are orthogonal gridlines.

Lemma 6.2.4. Let G be a planar graph of maximum degree 4. There exists
an orthogonal grid drawing of G, computable in polynomial time.

Sketch of proof. Suppose that G′ = (V ,E ) is any plane graph isomorphic to
G and let F (G′) be the set of faces of G′. Pick a vertex u ∈ V and construct
a spanning tree T = (V ,ET ) rooted at u. Let fc ∈ F (G′) be the outer face
of G′.

For any face f ∈ F (G′) we denote by J(f), (jumps) the number of edges
in E \ ET that we need to cross to get from f to fc.

We will add an orientation for the edges of G′. Let w be any node in V
and let e1 be the edge at w, which is contained in the unique path in T from
u to w. If e = {w′, w}, and we move clockwise around w starting at e, will
pass maximum 3 neighboring vertices and we will call the first one right(w),
the second one mid(w) and the third one left(w). If for example, there is no
second one, mid(w) and left(w) does not exist.

For every vertex v in T we assign a distance (number of edges) from v to
the root u by Algorithm 1.

We also add a counter-clockwise order to the leafs in T .
Figure 6.3 illustrates how an orthogonal drawing of a tree is constructed

as follows:
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Figure 6.3 Spanning tree (left) and orthogonal drawing of the spanning tree
(right).

1. For each leaf v let O(v) = 3 × order(v) and for each vertex v′ let
L(v′) = 2× dist(v′). (O = order, L = level)

2. Take a grid where the number of vertical lines are greater than max
leaf v

O(v),

and the number of horizontal lines equals 1 + max
v∈V

L(v).

3. Number the vertical lines by the order of the leafs, and the horizontal
lines by levels as in Figure 6.3. This gives us a coordinate system where
each leaf v′ has a coordinate (O(v′), L(v′)).

4. Add each leaf to its coordinate in the grid. Note that, as soon as a
non-leaf vertex w is added to the grid it is assigned an order O(w).

5. Starting from the highest level, repeat the following for every level L
in the grid:

i) Suppose that three vertices v1, v2, v3 on the current level L,
with O(v1) < O(v2) < O(v3), have a common neighbor on level L− 2.
Then add this neighbor at (O(v2), L − 2) and add a vertical gridline
for each vi starting at (O(vi), L(vi)) and ending in (O(vi), L(vi) − 2),
and add a horizontal gridline starting at (O(v1), L− 2) and ending in
(O(v3), L− 2).

ii) Suppose that two vertices w1, w2 have a common neighbor w on
level L−2 and O(w1) < O(w2). Add vertical gridlines from (O(wi), L)
to (O(wi), L− 2) and add a horizontal gridline from (O(w1), L− 2) to
(O(w2), L− 2).

If deg(w) = 4 in G′ do the following: If {w, right(w)} ∈ E \ ET then
add w at (O(w2), L − 2). If {w, mid(w)} ∈ E \ ET then add w at
(d(O(w2) +O(w1))/2e , L− 2). If {w, left(w)} ∈ E \ ET then add w at
(O(w1), L− 2).

If deg(w) = 3 in G′, then add w at (O(w1), L− 2).



Chapter 6. Topology Control 135

Figure 6.4 Part of an orthogonal drawing of a spanning tree to the left and
to the right we see the same part scaled by a factor 2 and the edges of the
original graph are mapped to gridlines.

iii) Suppose that a vertex w has a neighbor w′ on level L− 2 and
that w′ is not a neighbor in T of any other vertex than w. Then add
w′ at (O(w), L− 2).

If deg(w′) ≤ 3 in G′, then add a vertical gridline from (O(w), L) to
(O(w), L− 2)

If deg(w′) = 4 in G′ and {w′, mid(w′)} ∈ ET , then add a vertical
gridline from (O(w), L) to (O(w), L− 2).

If deg(w′) = 4 in G′ and {w′, left(w′)} ∈ ET , then add a vertical
gridline from (O(w)− 1, L) to (O(w)− 1, L− 2), a horizontal gridline
from (O(w), L) to (O(w)−1, L) and a horizontal gridline from (O(w)−
1, L− 2) to (O(w), L− 2).

If deg(w′) = 4 in G′ and {w′, left(w′)} ∈ ET , then add a vertical
gridline from (O(w) + 1, L) to (O(w) + 1, L− 2), a horizontal gridline
from (O(w), L) to (O(w)−1, L) and a horizontal gridline from (O(w)+
1, L− 2) to (O(w), L− 2).

6. The gridlines added in step 5 are the edges of D(T ). No two edges in
D(T ) intersect.

Now we will add the edges in E \ ET to the orthogonal drawing as shows in
Figure 6.4. We do this is the following order preserving the orientation of
the edges: First we will add every edge e ∈ E \ ET bounding a face f with

J(f) = max
f ′∈F (G′)

J(f ′) .

Then we add every edge bounding a face f ′ with J(f ′) = J(f) − 1 and so
on, until all edges in E \ ET are added.

In this way, if we do not care about the grid for a while, we can draw the
edges in E \ ET such that no edges cross. By construction, there is always
a ”way out” in the grid from each node where an edge in E \ ET is to be
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added. Now it is not hard to see that, by scaling the grid drawing by a
proper factor, we may adjust the lines corresponding to edges in E \ET such
that they are also gridlines and we may do this without any edges crossing
(see Figure 6.4).

There are algorithms which are far more sophisticated than the one we
just showed. The purpose of this quite sketchy proof is just to give an intu-
itive feeling that every planar graph of maximum degree 4 has an orthogonal
grid drawing. For a strict proof of a stronger result see (Tamassia and Tollis,
1989).

We are ready for a first result of the RA-problem. The proof of the
following theorem follows the proof in (Fuchs, 2006).

Theorem 6.2.5. Solving Connectivity for n = 2 and β > 0 is NP-hard.

Proof. The idea of this proof is to take the problem of finding a minimal
vertex cover for a graph with maximum degree 3 (which is known to be NP-
complete) and make a construction realizable in polynomial time such that
solving the RA problem in polynomial time would imply that we could also
solve this graph problem in polynomial time. This would imply that the RA
problem is NP-hard.

Let G3 = (V ,E ) be any planar graph of maximum degree 3. We will
use a construction which is similar to a construction that Gary and Johnson
used in (Garey and Johnson, 1977) in the reduction from 3-planar vertex
cover to 4-planar connected vertex cover.

1. For each e ∈ E add two vertices ae, be (to the interior of e) to split e into
three parts. Let V1 = {ae, be : e ∈ E }, E1 =

{
{u, ae}, {ae, be}, {be, v} :

e = {u, v} ∈ E
}
and let G′3 = (V ∪ V1,E1).

2. For each u ∈ V1, let Fu be the set of faces adjacent to u. Hence
|Fu| ∈ {1, 2}. For each f ∈ Fu add one vertex vu,f , let V2 = {vu,f :
f ∈ Fu, u ∈ V1} and E2 = {{u, vu,f} : f ∈ Fu, u ∈ V1}.

3. For each x ∈ V add one vertex vx,f to any face fx adjacent to x. Let
V3 = {vx,fx : x ∈ V } and E3 = {{x, vx,fx} : x ∈ V }.

4. For each face f of G3 connect all vu,f ∈ V4 = V2 ∪V3 by a single cycle,
by adding an edge-set Ef , in such a way that the graph remains planar.
Let E4 =

⋃
f

Ef .

Figure 6.5 illustrates steps 1,2,3,4. Let G4 = {V ∪V1 ∪V4,E1 ∪E2 ∪E3 ∪
E4} be the resulting 4-planar graph. Construct a plane orthogonal drawing
D(G4) of G4 (by Lemma 6.2.4 this is possible) and scale it by a factor 3.
Now we will add vertices to D(G4) in the following way:
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Figure 6.5 Construction of G4. Red vertices corresponds to step 1, and
green vertices corresponds to steps 2 and 3.

Figure 6.6 Plane orthogonal drawing of G4 with vertices corresponding to
G′3 in orange and disconnected components corresponding to edges in G′3 in
blue.

a) For each edge corresponding to an edge in E1, place vertices at the
end-points and at points with distance 1 from each other.

b) For each edge corresponding to an edge in E2 ∪ E3 ∪ E4, place vertices
at the end-points and at points with distance 3/4 from each other.

Figure 6.5 illustrates steps a) and b)a. Now let N be the set of vertices
added in steps a) and b) and let rmin be the minimal range assignment for
N such that each n ∈ N is connected to its nearest neighbor, i.e. for any
n ∈ N , rmin(n) = min

n′∈N
δ(n, n′).

Hence, for any vertex w added in step b), rmin(w) = 3/4, and for any
vertex w′ added in step a) and such that w′ is not incident with any grid-line
in D(G4) corresponding to an edge in E2 ∪ E3 ∪ E4, rmin(w′) = 1. That is, if
w′ does not correspond to a vertex in G′3.

The undirected communication graph Grmin , induced on N by rmin, con-
sists of 1 + |E1| components. |E1| of these corresponds to the edges in E1 and
the last one corresponds to the rest of the construction.

It is not hard to see that the cheapest way to connect Grmin is to increase
the range for some vertices in N corresponding to vertices in G′3. Hence,
to connect all the |E1| components to the rest of the construction, we must
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Figure 6.7 Plane orthogonal directed drawing of G4 with vertices corre-
sponding to G′3 in orange and disconnected components corresponding to
edges in G′3 in blue.

pick a set of vertices which form a vertex cover for G′3. So if we can find a
minimal range assignment r for N such that Gr is connected, then we have
increased the range for a set of vertices which form a minimal vertex cover
of G′3. Hence, if we can prove the following claim, we are done.

Claim: G3 = (V ,E ) has a vertex cover of size k if and only if G′3 =
(V ∪ V1,E1) has a vertex cover of size k + |E |.

To prove the claim, first assume that G3 = (V ,E ) has a vertex cover C
of size k. Pick any e = {u, v} ∈ E . Then either u ∈ C or v ∈ C. In E1, e is
divided into three edges {u, ae}, {ae, be} and {be, v}. Either {u, ae} or {be, v}
is already covered by C and hence we need to add exactly one vertex (ae or
be) to C to cover {u, ae}, {ae, be} and {be, v}. This means that we must add
one vertex per edge in E and hence G′3 has a vertex cover of size k + |E |.

Conversely, suppose G′3 has a vertex cover C ′ of size k + |E |. Pick any
edge e = {u, v} ∈ E . Then e is split into {u, ae}, {ae, be} and {be, v} in E1.
We always need at least two vertices to cover {u, ae}, {ae, be} and {be, v},
but only one vertex to cover e. Hence there is a vertex cover for G3 of size
k + |E | − |E | = k.

Theorem 6.2.6. Solving Strong connectivity for n ∈ {2, 3} and β > 0
is NP-hard.

Proof. It is enough to prove the theorem for n = 2. We will use the exact
same construction as in Theorem 6.2.5. This time the situation is slightly
different since we are dealing with a directed graph (note the arrows in Figure
6.7).

For some values on β it might be more energy-efficient to increase the
range for vertices not corresponding to vertices in G′3. Still, we have to pick
one vertex per edge in G′3 and each vertex will be next to a vertex in G′3.
Hence we get a minimal vertex cover of G′3.
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Since the RA problem is NP-hard, instead of trying to find the optimal
solution, people work on finding approximations. One simple approximation
is found by constructing a MST on the set of nodes. This can be described
as follows.

Definition 6.2.7. Given a WSN Np = (N , p), the MST-approximation is
the range assignment rT defined as follows:

1. Let V = p(N ) and G = (V ,E , w) the complete edge-weighted graph
where for every {u, v} ∈ E , w(u, v) = δ(u, v)α.

2. Find a minimal spanning tree T = (V ,ET ) of G.

3. Let rT be the range assignment for Np such that for any u ∈ V ,
rT (u) = max

{u,v}∈ET
δ(u, v).

Theorem 6.2.8 ((Kirousis et al., 2000)). Let Np = (N , p), V = p(N ) ⊂
Rn and let rT be the MST-approximation. Let ropt be the optimal solution
for Strong connectivity with n ∈ {2, 3} and β = α ≥ 1. Then

C(ropt) ≤ C(rT ) < 2C(ropt).

Proof. First of all, if |V | ≤ 2, then rT = ropt and the result is obvious, so
assume that |V | ≥ 3. Let T be the MST arising in the construction of rT .
The proof will be in two steps. First we show that C(T ) < C(ropt) and
secondly we show that C(rT ) < 2C(T ).

First, let
−→
Gopt = (V ,Aropt) be the communication graph induced by ropt.

Then
−→
Gopt is strongly connected. Let

−→
T ′ be any arborescence of

−→
Gopt. Since

C(
−→
T ′) is a sum over |V | − 1 edges and C(ropt) is a sum over |V | vertices it

is easy to see that C(
−→
T ′) < C(ropt) and of course C(T ) ≤ C(

−→
T ′).

Secondly, in C(rT ) we will pick one edge for every vertex and each edge
can be picked at most twice, since every edge has two end points. This
counts to |ET |+1 edges. In the sum 2C(T ) we pick every edge exactly twice,
i.e. 2|ET | edges in total. Formally we can write this as

C(rT ) =
∑
u∈V

max
{u,v}∈ET

δ(u, v)α <
∑
u∈V

∑
{u,v}∈ET

δ(u, v)α = 2C(T ).

This concludes the proof.

Symmetric range assignments

Even though it is technically possible to implement unidirectional links
in WSNs this might often not be the best solution. According to (Marina
and Das, 2002), marginal benefit of using a high-overhead routing protocol
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to utilize unidirectional links is questionable. It seems easier to achieve good
performance by simply avoiding unidirectional links.

In Connectivity we require that the nodes can communicate only via
bidirectional links whereas in Symmetry, we allow only bidirectional links.
A range assignment of the later kind is called symmetric.

Theorem 6.2.9. Solving Symmetry for n ∈ {2, 3} and β = 2 is NP-hard

For a proof of Theorem 6.2.9, see for example (Santi, 2005) page 78-85.

6.2.2 Unicast and Broadcast Topologies

Another approach to the problem of finding an energy-efficient topology
is to focus on the communication in the network. We will study this in two
different ways:

1. Unicast: Pick two arbitrary nodes at a time and see how they com-
municate.

2. Broadcast: Pick one arbitrary node at a time and see how it commu-
nicates with all other nodes.

Starting out with the topology, obtained when all nodes transmit at maxi-
mum power, we will give some tools to analyze how well a reduced topology
performs compared to the original topology in the view of unicast versus
broadcast.

Definition 6.2.10. Given a WSN, Np = (N , p) and a range assignment
rmax such that for any v ∈ N , rmax(v) = ρmax. The max-power graph,−→
Gmax = (V ,Amax), is the communication graph of Np induced by rmax. The
undirected max-power graph Gmax is the undirected communication graph
corresponding to

−→
Gmax.

Unicast and Proximity Graphs

Suppose that we are given a WSN Np = (N , p) and the communication
graph

−→
Gr = (V ,Ar), with V = p(N ). When a node n ∈ N is sending a

message to a node n′ ∈ N , this induces a directed path P = n0n1 . . . nk,
where n0 = n and nk = n′.

Suppose now that we are given the max-power graph
−→
Gmax and a sub-

graph
−→
G . A way to measure if

−→
G is a good communication graph for Np

is to check how much we loose in energy-efficiency, when sending a message
from one node to another, in the worst case.



Chapter 6. Topology Control 141

Definition 6.2.11. Let
−→
G be a directed graph and P = n0n1 . . . nknk+1 a

directed path in
−→
G . The power cost of P is defined by

C(P ) =

k∑
i=0

δ(ni, ni+1)α ,

i.e. C(P ) is the cost of the graph P with arc-weight w((u, v)) = δ(u, v)α for
any arc (u, v) in P .

Definition 6.2.12. Let
−→
G = (V ,A ) be a directed graph. Given u, v ∈ V ,

a minimal power path from u to v, denoted by PGmin(u, v), is a directed path
from u to v such that for any directed path P , from u to v, we have that
C(PGmin(u, v)) ≤ C(P ).

Definition 6.2.13. Let
−→
G be any subgraph of the max-power graph

−→
Gmax.

The power stretch factor of
−→
G with respect to

−→
Gmax, denoted by E(

−→
G), is

defined by

E(
−→
G) = max

u,v∈V

C(P
−→
G

min(u, v))

C(P
−→
Gmax

min (u, v))
.

In Section 6.1 we discussed the importance of having a distributed con-
trol algorithm. Proximity graphs originates from computational geometry
and are built only concerning the nearest neighbors of each node (which
explains the name proximity graphs). Hence, these can be constructed in
a fully distributed and localized way. Examples of proximity graphs are
the Relative neighbor Graph (RNG), the Gabriel Graph (GG), the Delaunay
Graph/Triangulation (DG/DT ) and the Yao Graph with parameter k (Y Gk)
(for formal definitions of these graphs, see Section E.2 in the Appendix).

These four graphs have been shown be to be good graphs for WSNs,
especially when it comes to low power stretch factor, low average node degree
and low maximum node degree.

To get a little familiar with the proximity graphs mentioned above, we
will show some relations between then. These are stated in Proposition
6.2.14 and Proposition 6.2.15.

Proposition 6.2.14. EMST ⊆ RNG ⊆ GG ⊆ DG.

Proof. EMST ⊆ RNG: Given a set V of vertices and the complete graph
Gc = (V ,Ec), we want to show that if T = (V ,E ) is a minimal spanning
tree of Gc, then {u, v} ∈ E implies that lune(u, v) contains no vertices in its
interior.

Suppose to get a contradiction that there is a c ∈ V such that c ∈
lune(u, v). Since T is a tree and {u, v} ∈ E , there is a unique path P ,
starting at c and ending in either u or v. Assume, without loss of generality,
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Algorithm 2: Constructs the Gabriel Graph on a set of nodes.
Data: N - set of nodes

For any node u, Emax(u) are the edges in Gmax at u and
EGG(u) are the edges in GG(Gmax) at u.
For any two nodes u, v, disc(u, v) is the disc with diameter uv.

Result: For each u ∈ N a set EGG(u) with all edges at u of the
Gabriel Graph on N .

Initialize;
for u ∈ N do

u broadcast message (IDu, (xu, yu)) at maximum power;
Emax(u) = EGG(u) = ∅;
if u recieves message (IDv, (xv, yv)) then

Emax(u) = Emax(u) ∪ {v};
if ¬∃w ∈ N such that {u, v} ∈ Emax(u) and w ∈ disc(u, v)
then

EGG(u) = EGG(u) ∪
{
{u, v}

}
;

for {u,w′} ∈ EGG(u) do
if v ∈ disc(u, v′) then

EGG(u) = EGG(u) \
{
{u, v′}

}
;

that P ends in v. Then if we remove {u, v} from E and add {v, c}, we get a
spanning tree of smaller cost. This is a contradiction.

RNG ⊆ GG: For any two vertices u, v, the disc with diameter uv is
contained in lune(u, v).

GG ⊆ DG : This is an obvious consequence of part 2 of Theorem E.2.11.

Proposition 6.2.15. RNG ⊆ Y Gk, for k ≥ 6.

Proof. Let V be a set of vertices. Let Y Gk(V ) = (V ,E ) be the Yao graph of
V and suppose that {u, v} ∈ E . Let D be the disc of radius δ(u, v) centered
at u. Suppose that D is divided into k sectors, each with angle 2π/k. Let Sv

be the sector having v on its boundary. It is easy to see that Sv ⊆ lune(u, v)
if k ≥ 6.

Algorithm 2 is found in (Song et al., 2004) and constructs the Gabriel
graph on a set of nodes in a fully distributed and localized way, assuming
that each node knows its physical position.
If Gmax = (V ,E ), let GG(Gmax) denote the intersection between GG(V )

and Gmax, and use the same notation for any proximity graph. The results
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Graph Power stretch factor
RNG(Gmax) n− 1
GG(Gmax) 1
DT (Gmax)

(
1+
√

5
2 π

)α
Y Gk(Gmax) 1

1−(2 sinπ
k

)α

Table 6.1 Power stretch factor for proximity graphs.

presented in Table 6.1 are showed in (Li et al., 2003). Here we will only
prove one of then, stated in Proposition 6.2.16

Proposition 6.2.16. If α ≥ 2 then E(GG(Gmax)) = 1.

Proof. Let Gmax = (V ,E ) and let u, v be any two vertices in V . Let P be
minimal power path in Gmax from u to u′ and let {v, v′} be any edge in P .
Then vv′ is a minimal power path from v to v′ and hence the disc with vv′
as diameter can not contain any other vertices.

Broadcast and Arborescences

When a node n is broadcasting a message in a WSN Np with a range
assignment r, this induces an arborescence

−→
T , rooted at n. By analyzing

−→
T

we get a clue how energy-efficient the broadcasting is in
−→
Gr compared to in

the max-power graph
−→
Gmax of Np.

Definition 6.2.17. Given an arborescence
−→
T = (V ,A ), we define a func-

tion Cb : V → R in the following way:

1. If u ∈ V is a leaf, then Cb(u) = 0,

2. If v ∈ V is not a leaf, then Cb(v) = max
(v,v′)∈E

δ(v, v′)α.

The broadcast cost of
−→
T is defined by

∑
v∈V

Cb(v) and denoted by Cb(
−→
T ).

Suppose that we are given the max-power graph
−→
Gmax and a subgraph−→

G ⊆ −→Gmax. We will now define the broadcast stretch factor which measures
the energy-efficiency of broadcast communication in

−→
G compared to

−→
Gmax

in the worst case.

Definition 6.2.18. Let
−→
G be any subgraph of the max-power graph

−→
Gmax =

(V ,Amax). The broadcast stretch factor of
−→
G with respect to

−→
Gmax, denotes
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as ε(
−→
G), is defined by

ε(
−→
G) = max

u∈V

Cb(
−→
T
−→
G
u )

Cb(T
−→
Gmax
u )

,

where
−→
T
−→
G
u is any arborescence of

−→
G , rooted at u, of minimal broadcast cost,

and
−→
T
−→
Gmax
u is any arborescence of

−→
Gmax, rooted at u, of minimal broadcast

cost.

Finding the broadcast stretch factor involves finding an arborescence of
the max-power graph. This problem was proved to be NP-hard in (Cagalj
et al., 2002). Finding an arborescence is related to the RA problem Broad-
cast. In Theorem 6.2.19 we state that Broadcast is NP-hard. This result
was formally proved in (Clemeniti et al., 2001) and in (Cagalj et al., 2002).
Observe that we have β > 1. This is because for 0 < β ≤ 1, the optimal
solution is just for the broadcasting node to have a range larger than the
distance to the farthest node, and all other nodes have range zero.

Theorem 6.2.19. Solving Broadcast for n ∈ {2} and β > 1 is NP-hard.

Since it is NP-hard to compute an arborescence of minimal broadcast
cost, it is necessary to find algorithms to approximate the optimal solution.
Several such algorithms have been presented and one such algorithm is the
so called Broadcast Incremental Power (BIP) algorithm (see Algorithm 3)
proposed in (Wieselthier et al., 2000). The BIP-algorithm is a modification
of the famous Prim’s algorithm for finding the MST.

For the BIP-algorithm we need Definition 6.2.20.

Definition 6.2.20. LetNp = (N , p) be a WSN. Let r be a range assignment
for a subset N ′ of N , which induces a communication graph H =

−→
Gr(N ′)

on N ′. For any u ∈ N \N ′ let ru be the range assignment for N ′ such
that for any v ∈ N ′, ru(v) = δ(p(u), p(v)). Then the incremental cost of u
with respect to H, denoted by ICH(u), is defined by

ICH(u) = min
v∈N ′

(ru(v)− r(v)) .

Unfortunately, the BIP-algorithm is a centralized algorithm and requires
that every node has global knowledge about the network.

6.3 Coverage Problems

Coverage problems refers to how well the area of interest is monitored.
Sometimes it might not be necessary to use all the sensors in the network to
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Algorithm 3: Broadcast Incremental Power (BIP) Algorithm
Data: N - set of nodes;

u - broadcasting node;
C - set of nodes that are covered so far;
T - spanning tree under construction;

Result: T - Arborescence rooted at u

Initialize;
C = {u};
T = {u};
while C 6= N do

for v ∈ N \ C do
compute ICT (v);

choose vmin ∈ N \ C such that for any v ∈ N \ C ,
ICT (vmin) ≤ ICT (v);
C = C ∪ {vmin};
add vmin to T resulting in extra cost ICT (vmin);

achieve full coverage, in which case it is more energy-efficient to switch off
the radio of the redundant sensor nodes.

In a general case, the area that is monitored by a sensor node need
not have the shape of a ball (3D) or a disc (2D). However, to simplify the
situation, we will assume that this is the case and throughout this section
we say that a point p is within the sensing region of a node n whenever the
distance between p and n is less than or equal to the sensing range of n.

Definition 6.3.1. Given a WSN Np = (N , p), a sensing assignment for
Np is a function s : N → (0, smax] ⊂ R, assigning to every node n ∈ N a
sensing range s(n).

Definition 6.3.2. Given a WSN Np = (N , p) such that p(N ) ⊂ Rd, we
say that a point x ∈ Rd is covered by n ∈ N if δ(x, p(n)) ≤ s(n). We say
that x is k-covered if it is covered by at least k distinct nodes.

Note that we also say that x is covered by Np if δ(x, p(v)) ≤ s(v) for any
node v ∈ N and we may also say that x is covered by p(n) when we mean
that x is covered by n.

The coverage problem is typically divided into three parts:

1. Full coverage: every point in the area of interest is covered;

2. Barrier coverage: given a belt-like region, each crossing path is cov-
ered;
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Figure 6.8 A Coverage Graph on a set of nodes.

3. Sweep coverage: mobile sensors cover the area/points of interest
periodically.

Both full coverage and barrier coverage requires that the coverage criteria is
satisfied all the time which we call static coverage, whereas sweep coverage
is in the category of dynamic coverage.

Definition 6.3.3. Let Np = (N , p) be a wireless sensor network, p(N ) ⊂
Rd, d ∈ {1, 2, 3} and let s be a sensing assignment for Np. The subset of Rd,
covered by a node n ∈ N is called the sensing region of n and denoted by
Ds(n). The boundary of Ds(n) will be denoted by Cs(n).

The choice of letter D becomes obvious when d = 2, where d is as in
Definition 6.3.3. We will now define what we call the coverage graph and we
do this in a slightly different manner than for the communication graph.

Definition 6.3.4. Let Np = (N , p) be a WSN, p(N ) = V and s a sensing
assignment for Np. The coverage graph of Np with respect to s, is the graph
Gs = (V ,E ) such that for any two vertices u, v ∈ V , {u, v} ∈ E if and only
if Ds(u) ∩Ds(v) 6= ∅.

6.3.1 Full coverage

Full coverage means that every single point in the area of interest is
covered by the network.

In this section, we review some of the work done in (Huang and Tseng,
2005).

Suppose that we want to cover a set R ⊂ R2 by a set N of sensors
with sensing range s. The sensing regions of N will divide R into a number
of subregions and each subregion will be bounded by a number of circular
segments, each belonging to some Cs(n), n ∈ N .

Definition 6.3.5. Let R ⊂ R2 and Np = (N , p) a WSN such that p(N ) ⊂
R. R subregion R′ of R is a subset of R such that for any two points
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Figure 6.9 Subregions induced by a set of nodes. The number in each
subregion tells how many nodes are covering the subregion.

x, y ∈ R′ there exists a curve l ⊂ R between x and y such that for all
n ∈ N , Cs(n) ∩ l = ∅.

Definition 6.3.6. Let n, n′ ∈ N be two nodes in a WSN Np = (N , p) and
s a sensing assignment for Np. A point x in Cs(n) is said to be perimeter-
covered by n′ if x ∈ Ds(n

′).

Definition 6.3.7. A node n is said to be k-perimeter-covered if and only
if every point in Cs(n) ∩R is perimeter-covered by at least k distinct nodes
other than n. Similarly, a segment L of Cs(n) is said to be k-perimeter-
covered if and only if every point in L is perimeter-covered by at least k
distinct nodes other than n. Here R is the area to be covered.

For Lemma 6.3.8 and Theorem 6.3.9, let Np = (N , p), p(N ) ⊂ R ⊂ R2

and let s be a sensing assignment for Np.

Lemma 6.3.8. Let n ∈ N and let Ln be a segment of Cs(n), which divides
two subregions Ri,Ro of R, where Ri ⊂ Ds(n) and Ro 6⊂ Ds(n). If Ln is
k-perimeter-covered, then Ro is k-covered and Ri is (k + 1)-covered.

Theorem 6.3.9. R is k-covered if and only if each n ∈ N is k-perimeter-
covered.

Proof. First we prove the ’if part’. Any subregion Rj in R is bounded by
at least one segment of some Cs(n). Hence by Lemma 6.3.8, Rj is either
(k + 1)-covered or k-covered.

For the ’only if part’, let Ri,Ro be any two subregions divided by a
segment Ln corresponding to a node n ∈ N . Assume also that Ri ⊂ Ds(n)
and Ro 6⊂ Ds(n). Since Ro is k-covered and Ri is also covered by n, Ri must
be (k + 1)-covered. Hence each point in Ln is covered by k distinct nodes
other than n.
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In (Huang and Tseng, 2005) Huang et. al. shows an algorithm which
determines whether all nodes in N are perimeter covered or not and by
Theorem 6.3.9 this also determines whether or not R is fully covered.

Coverage vs. Connectivity

A question that arises from the full coverage problem is whether there is
a relation between coverage and connectivity. The following result (except
for the part concerning DG(V )) is showed in (Wang et al., 2003).

Proposition 6.3.10. Let Np = (N , p) be a WSN with a homogeneous range
assignment r, a homogeneous sensing assignment s and let V = p(N ) ⊂ Rd,
d ∈ {1, 2, 3}. Suppose that Np fully covers a convex region R and that r ≥ 2s.
Then the undirected communication graph Gr = (V ,E ) is connected. If d = 2
then DG(V ) ⊆ Gr, where DG(V ) is the Delaunay graph of V .

Proof. Suppose that r ≥ 2s. Let V (v) denote the Voronoi region of a vertex
v. First we will show that if u, v ∈ V and V(u)∩V(v) 6= ∅, then {u, v} ∈ E .
Let x be any point in V(u) ∩ V(v). Then x is covered by both u and v. But
this means that δ(u, v) ≤ δ(u, x) + δ(x, v) ≤ 2s ≤ r and hence {u, v} ∈ E .

Now let u′, v′ be any two vertices in V . We must show that there exists a
path from u′ to v′. Let L be the straight line segment from u′ to v′ and sup-
pose that L intersects the Voronoi regions V(u′) = V(v1),V(v2), . . . ,V(vk) =
V(v′) and that V(vi) ∩ V(vi+1) 6= ∅, for every 1 ≤ i ≤ k − 1. Then the path
P = u′v2v3 . . . vk−1v

′ exists is Gr.
To show that DG(V ) ⊆ Gr, let DG(V ) = (V ,E ′) and let {u, v} be any

edge in E ′. Let w ∈ V such that the disc with u, v and w on its boundary
contains no vertices in its interior. This implies that V(u)∩V(v)∩V(w) 6= ∅
and hence, by the first part, {u, v} ∈ E .

Corollary 6.3.11. Let Np = (N , p) be a WSN with a range assignment r
and a sensing assignment s. Suppose that N fully covers a convex region
R and that for any two nodes u, v covering a common point, we have that
r(u) ≥ s(u) + s(v) and r(v) ≥ s(u) + s(v). Then Gr is connected.

6.3.2 Barrier coverage

Suppose that you are given the task to monitor a border to a forbidden
area. To ensure detection of anyone crossing the border, you should place
the sensors such that at least one point in each crossing path is covered by
the "sensor barrier". Figure 6.10 illustrates this.

Barrier coverage has an obvious application in surveillance, when the goal
is to detect any intruder crossing a border to a forbidden area. We will now
show a model and some basic results showed by Kumar et. al in (Kumar
et al., 2005).
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Figure 6.10 Barrier coverage

Figure 6.11 a belt B(l1, l2, b)

Model

We will assume that the area of interest is a subset of R2 and that all
sensors have a sensing area which has the shape of a disc. Furthermore, the
sensing range s is the same for all nodes and hence we may refer to s as a
real number.

Definition 6.3.12. A curve l ⊂ R2 is said to be k-covered by N if l∩Ds(u) 6=
∅ for at least k distinct nodes u ∈ N .

Definition 6.3.13. If l ⊂ R2 is a curve and p ∈ R2, the distance from l to
p, δ(l, p), is defined by

δ(l, p) = min
x∈l

δ(x, p) .

Definition 6.3.14. A set B(l1, l2, b) ⊂ R2 is called a belt if it is bounded
by two curves l1, l2 such that δ(l1, y) = δ(l2, x) = b for all x ∈ l1 and for all
y ∈ l2, for some b ∈ R.

An example of a belt is a rectangle, which we will later define as an open
belt. Another example of a belt is the set {x̄ ∈ R2 : 1 ≤ |x̄| ≤ 2}, which we
will define as a closed belt. The belt in Figure 6.12 is an open belt.

Definition 6.3.15. Let B(l1, l2, b) ⊂ R2 be a belt. A crossing path γ ⊂
B(l1, l2, b), is a curve which starts in l1 and ends in l2.
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Figure 6.12 A barrier graph where v1 and v2 are 1-connected.

Definition 6.3.16. Let Np be a WSN, p(N ) ⊂ R2 and B ⊂ R2 a belt.
B is said to be k-covered by N if and only if every crossing path in B is
k-covered by N .

Definition 6.3.17. A belt B ⊂ R2 is called open if and only if for any two
points x, y ∈ R2 \B, there is a curve l between x and y such that B ∩ l = ∅.
A belt that is not open is said to be closed.

We will make a quite informal construction of a graph that can be used
for the barrier coverage problem. Let Np = (N , p) be a WSN with sensing
range s and p(N ) = V ⊂ B = B(l1, l2, b) where B is an open belt. Let
Gs = (V ,E ) be the coverage graph of Np with respect to s. There are two
straight lines of length b between endpoints of l1 and l2. We denote these
two by l′1 and l′2. Now choose two points v1, v2 not in B but close to l′1, l′2
respectively and for any u ∈ V add {u, vi} to E if and only if Ds(u)∩ l′i 6= ∅,
i ∈ {1, 2}. Call this new edge-set E ′ and let V ′ = V ∪ {v1, v2}. If v1 and
v2 are such that any crossing path in B intersects any path from v1 to v2 in
Gmax = (V ′,Emax), where Emax is the edge-set of the complete graph on V ,
then we call G′ = (V ′,E ′) the barrier graph with respect to v1, v2.

Theorem 6.3.18. Let Np = (N , p) be a WSN with sensing range s and
V = p(N ) ⊂ B where B is an open belt such that the following condition
holds: If n, n′ ∈ N is any two nodes such that Ds(n) ∩ Ds(n

′) 6= ∅, then
(Ds(n) ∪Ds(n

′)) ∩B is a non-empty connected subset of B.
Then B is k-covered if and only if v1 and v2 are k-connected in the corre-
sponding barrier graph G = (V ∪ {v1, v2},E ).

Proof. For the ’if part’, assume v1 and v2 are k-connected. By definition,
there are k node-disjoint paths from v1 to v2. Hence, by construction of the
barrier graph, each crossing path γ intersects k node-disjoint paths from v1

to v2 which means that there are at least k distinct nodes covering at least
one point xk ∈ γ each. Hence, B is k-covered.

To prove ’only if’, assume B is k-covered. To derive a contradiction,
assume that v1 and v2 are not k-connected. Then by Menger’s theorem
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(Theorem E.1.26), there is a subsetW ⊂ V of (k−1) vertices which separates
v1 from v2. Hence, by removing W from V , we can find a crossing path
γ′ that is not covered and by adding W to V again we see that γ′ is at
most (k − 1)-covered. This is a contradiction since B was assumed to be
k-covered.

6.3.3 Sweep covarage

Full coverage and barrier coverage requires a static and continuous cov-
erage all the time. In sweep coverage, mobile sensors are used to cover the
points in the area of interest periodically.

The concept of sweep coverage originates in robotics and was introduced
for WSNs in (Li et al., 2012). The model we will use in this section is the
same as in (Li et al., 2012) and the points to be covered are called points
of interest (POIs). Every POI is visited at a certain time interval τ which
guaranties event detection within a delay bound corresponding to τ .

Model

As before we will denote a WSN by Np = (N , p) where p(N ) ⊂ Rd,
d ∈ {1, 2, 3}. The difference is that the nodes are now mobile and hence p
also depends on the time t, i.e. p(N ) = p(N , t). We will denote a set of
POIs by P ⊂ Rd and P will always be finite. For a given set P of POIs, we
will associate a function τ : P → [0,∞) ⊂ R which tells how often each POI
should be visited. We call τ a coverage time-interval.

Definition 6.3.19. Let Np = (N , p(t)) be a mobile WSN, P a set of POIs
and τ : P → [0,∞) ⊂ R, a coverage time-interval. Suppose that the WSN is
set up to monitor the POIs during the time interval [0, tend]. A POI x ∈ P
is said to be sweep covered by Np if and only if for every t ∈ [0, tend − τ(x)]
there is a t′ ∈ [t, t+ τ(x)] and an n ∈ N such that p(n, t′) = x.

In other words, Definition 6.3.19 says that p is sweep covered by n if and
only if the node/sensor n is at the position p at least once every τ time unit.

Suppose know that we are given a set N of nodes and want to find a
position function p(t) for N such that P is sweep covered byNp = (N , p(t)).
Suppose that all the nodes move with the same given speed v. Then we may
ask for the minimum number of nodes |N |, for which there exists a function
p(t) such that P is sweep covered by Np = (N , p(t)). The following theorem
was proved in (Li et al., 2012).

Theorem 6.3.20. Let P = {x1, x2, . . . , xn} be a set of POIs, τi a coverage
time-interval for each POI and v the speed of sensors. The problem of de-
termining the minimum number |N | of sensors N , for which there exists
a position function p(t) such that P is sweep covered by Np = (N , p(t)), is
NP-hard.
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Proof. We will show a reduction from the TRAVELING SALESMAN PROB-
LEM (TSP) stated as follows:
INSTANCE: A finite set C = {c1, c2, . . . , cn} ⊂ R2 of "cities" and a constant
L ∈ R+.
QUESTION: Is there an ordering cσ(1), cσ(2), . . . , cσ(n) of the cities in C such
that

δ(cσ(n), cσ(1)) +
n−1∑
i=1

δ(cσ(i), cσ(i+1)) ≤ L?

Take any instance of TSP and let the cities be POIs to be covered. For every
ci ∈ C set τi = L/v. Let m be the least number of sensors needed to sweep
cover C. Now it is easy to see that the TSP instance has a "yes answer" if
and only if m = 1. Hence, if we find m, we solve the TSP-problem.

6.4 Contents

In Section 6.1, some of the material is based on (Santi, 2005). Section
1.1.4 is taken from (Mao et al., 2012), (Mo et al., 2009) and (Li et al., 2013).
Section 6.2.1 is mainly based on (Fuchs, 2006). Some material is based on
(Kirousis et al., 2000) and (Garey and Johnson, 1979). Section 6.2.2 is based
on (Santi, 2005), chapter 8. Section 6.3: the choice of content is similar to
the coverage section in (Li et al., 2013), and the material is mainly based
on three articles. Section 6.3.1 is based on (Huang and Tseng, 2005) and
the last part from (Wang et al., 2003). Section 6.3.2 is based on (Kumar
et al., 2005) and Section 6.3.1 introduces the work made in (Li et al., 2012).
The first part of the appendix on Graph Theory is mainly based on (Diestel,
2005) and the section about proximity graphs is based on (de Berg et al.,
2008).

6.5 Exercises
Problem 6.1 Connectivity
(a) Given a set N of nodes at positions

V = {(4, 3), (6, 2), (1, 4), (10, 2), (11, 7), (9, 1), (5, 6), (7, 3), (6, 4), (2, 6), (9, 6)} ,
use the MST-approximation algorithm and find rT (u) for every node n ∈ N .
Furthermore, compute the cost of rT .
Hint: A MST is constructed by time after time adding the shortest edge con-
necting disconnected components (the Greedy algorithm).

(b) Prove whether or not the cost of rT depends on what minimal spanning tree
T you choose.

(c) Suppose that a set of nodes are randomly distributed in a region. Suppose that
we are given a connected topology that minimizes the maximum vertex degree
in the induced communication graph G = (V ,E ). What is the highest possible
value of this maximum vertex degree? (i.e. a worst-case scenario).
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Problem 6.2 Proximity Graphs

Consider the set V = {(2, 6), (5, 3), (6, 4), (7, 3), (9, 6), (10, 2)}.

(a) Find the set of edges in GG, RNG, EMST and DG.

(b) Check that EMST ⊆ RNG ⊆ GG ⊆ DG holds.

(c) Assuming that each node knows its position, propose an algorithm to construct
the RNG(Gmax) on a set N of nodes.

Problem 6.3 Coverage

(a) Let B ⊂ R2 be a rectangular belt and Np = (N , p) a WSN deployed in B, i.e.
p(N ) = V ⊂ B. Let G = (V ∪ {v1, v2},E ) be a barrier graph (v1, v2 /∈ B).
Suppose that k is the minimum number of vertices in V that have to removed
from V to disconnect v1 from v2. Show that B is k-covered.

(b) Prove Corollary 6.3.11.

Problem 6.4 Algorithms for Proximity Graphs

Suppose that a set N of nodes are distributed in a plane area. Each node is
equipped with a high precision directional antenna such that, if a node u transmits
a message that reaches a node v, v can tell exactly from what direction the message
was sent. Suppose further that every node v1 ∈ N has a node v2 ∈ N within
its transmitting range. No node knows it’s coordinate. Consider whether this
information enough to determine the edge-set of the following cases:

(a) RNG(Gmax);

(b) GG(Gmax);

(c) Y G6(Gmax).

For (a), (b), and (c), explain how you concluded the answer and if the answer is
affirmative do the following: for a given node v ∈ N , propose an algorithm to
determine the edges at v (the algorithm need not be fast).

Problem 6.5 NP-hardness
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We formulate a decision problem called ARBORESCENCE as follows:

INSTANCE: A directed graph G = (V ,A ), a root vertex u ∈ V and n ∈ N.
QUESTION: Does G contain an arborescence T = (V ,A ′) rooted at u and such
that |A ′| ≤ n?

A problem that is known to be NP-hard is SET COVER:

INSTANCE: A collection C of subsets of a finite set S and a positive integer
K ≤ |C|.
QUESTION: Is there a sub-collection C ′ ⊆ C such that every element of S is con-
tained in some member of C ′ and such that |C ′| ≤ K.

SET COVER can be represented by a directed bipartite graph GSC = (VSC ,ASC)
with vertex-set VSC = C ∪ S. The arc-set ASC of GSC is constructed as follows:
for any S′ ∈ C and any v ∈ S, (S′, v) ∈ ASC if and only if v ∈ S′.

Use the graph GSC to show that ARBORESCENCE is NP-hard.
Hint: add a root vertex u to VSC and connect it in a smart way. Let {G =
(VSC ∪ {u},ASC), u, n = K + |C|} be an instance for ARBORESCENCE.



Chapter 7

Distributed Detection

In WSNs, one of the most important tasks is detecting correctly some
event that is being sensed. There is a large variety of problems where we
need to detect events, e.g., checking whether a specific event happened or
not, presence or absence of noise is some measurements, whether delays are
shorter or longer than a threshold, whether there have been collisions among
messages, just to mention a few. On of the main challenges is that noise
is often present in the sensor measurements, which may significantly alter
them and give mistaken data interpretation.

Detection theory has been substantially developed in the last years so
as to cope with this uncertainties, both in centralized settings and in dis-
tributed and networked setting. Recently, the theory has been extended
to WSNs. Compared to classic detection theory, in WSNs there are more
challenges since some sensor nodes are characterized by resource limitations,
e.g., battery life, low transmission power, low processing capacity. To design
an efficient WSN detection systems in WSNs, it is imperative to understand
the essential detection theoretical results. This will allow to characterize the
interplay between data compression, resource allocation, and overall perfor-
mance in WSNs.

7.1 Basic Theory of Detection

The detection of events in WSNs is normally done by measuring signals.
In this context, detection theory allow to quantify the ability to discern
between information-bearing energy patterns of the signals, e.g. electrical
signals, and random energy patterns that correspond to source of noise.
Detection theory is a statistical technique to locate a signal against a back-
ground of noise.

It is important, to correctly detect signals, to distinguish between some fi-
nite number of possibilities of the signal’s values and then define an algorithm
that makes the best decision between these alternatives. This algorithm has

155
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Figure 7.1 Hypothesis spaces: binary (left), and multiple (right).

to cope with the presence of uncertainties, such as white noise, based on
some hypothesis from any prior knowledge, e.g., probability of some value
of the signal, the mean value and the variance of the probability density
function, among others.

The simplest instance of detection theory is binary hypothesis testing.
Here, there are two hypothesis for detection, whether or not a signal is
present. This is also called binary case of hypothesis. A more complex
instance of detection theory is when multiple hypotheses are allowed and
one has to decide which one among them is true. The goal of detection
theory is to provide analytical tools to minimize the probability of error in
the decision process. In what follows, we give a formalization of the basic
theoretical results.

Consider the measurement y(t) from a sensor, which is a noisy signal
associated to an event we wish to detect. We assume that y(t) is the outcome
of a random variable, where the randomness comes from the measurement
error. Such an error may be induced by the noises in the measurement
devices or uncertainties about the phenomena. For example, when a node
does a clear channel assessment in IEEE 802.15.4 MAC protocols, there is
an uncertainty as to whether the channel is busy or free due to the random
nature of the wireless propagation. Assuming y(t) ∈ R2, the cases of binary
and multiple hypotheses are shown in Figure 7.1.

7.2 Detection from Single Sensor in Additive Noise

In this section, we study the case of detection from one single sensor.
Later, we consider a WSN.

A sensor measures a signal y(t) at time t from a physical phenomenon.
In absence of any error in the measurement, the phenomenon gives a signal
of value either 0 or µy. Consequently, there are two hypotheses:{

H0 for hypothesis 0 (S0 signal)
H1 for hypothesis 1 (S1 signal) .

(7.1)
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However, the measurement is perturbed by additive white Gaussian error of
zero mean and variance σ2. It follows that y(t) is modeled as

y(t) =

{
n(t) if H0 happened
µ+ n(t) if H1 happened .

(7.2)

The question is this: if we measure y(t), how can we decide whether H0 or
H1 happened?

In order to decide between the two hypotheses, there are several criteria
available. Before proceeding to their formalization, we need to define some
important probabilities. Let y be a realization of y(t), the probability that
H0 or H1 happened is called a posteriori probability. It is denoted by
Pr(H0|y)/Pr(H1|y). If the system detects correctly the signal, we define
the probability of detection, Pr(s1|H1) = PD. If there is no signal and
we obtain a positive observation, then it means it was a false alarm, with
probability Pr(s1|H0) = PF . On the other hand, if there is a signal and it was
not observed, then we have probability of miss-detection, Pr(s0|H1) =
PM . These probabilities will be very useful to define the criterion to decide
which hypothesis happened.

Several criteria may be defined so as to detect the value of a signal. Let
us start with the maximum a posteriori (MAP) criterion. By MAP, the hy-
pothesis is decided based on the highest conditional probability (given the
observations). Specifically, in this criteria, the MAP probability is maxi-
mized after a set of measurements. In the case of binary hypothesis, the
criterion consists in deriving a decision if a value is greater than or less than
a previously defined threshold, namely, in MAP we decide for{

H0 if Pr(H0|y) > Pr(H1|y)

H1 if Pr(H1|y) > Pr(H0|y) ,
(7.3)

and by using Bayes’ rule we obtain

Pr(H0|y) =
Pr(y|H0)Pr(H0)

Pr(y)
(7.4)

Pr(H1|y) =
Pr(y|H1)Pr(H1)

Pr(y)
. (7.5)

Therefore MAP criterion is defined as,{
H0 if Pr (y|H0) · Pr (H0) > Pr (y|H1) · Pr (H1)

H1 if Pr (y|H0) · Pr (H0) ≤ Pr (y|H1) · Pr (H1) .
(7.6)

The inequalities in (7.6) can be rearranged so to define the Likelihood
Ratio Test (LRT)

Pr (y|H1)

Pr (y|H0)
≷

Pr (H0)

Pr (H1)
. (7.7)
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MAP and LRT are therefore identical. In general, let the probabilities of H0

and H1 be p0 and p1, respectively. Then the LRT tests is

Pr (y|H1)

Pr (y|H0)

H1

≷
H0

p0

p1
. (7.8)

However, MAP take a special name, Maximum Likelihood (ML), when H0

and H1 are equally probable, i.e., Pr(H0) = Pr(H1) = 1/2.

If
Pr (H0)

Pr (H1)
= 1 ⇒ Maximum likelihood detection (ML)

Under the assumption that the probabilities ofH0 andH1, namely p0 and
p1, are known beforehand, and recalling that the phenomenon is associated
to the two signals, 0 and µ, with a Gaussian measurement error, we have

Pr(y|H0) =
1

σ
√

2π
e
−(y−0)2

2σ2 Pr(y|H1) =
1

σ
√

2π
e
−(y−µy)2

2σ2 (7.9)

and the LRT is

p1

�
�

��1

σ
√

2π
e
−(y−µy)2

2σ2 > p0

�
�

��1

σ
√

2π
e
−y2

2σ2 , (7.10)

which is equivalent to check if

y > γ =
µ2
y − 2σ2 ln

(
p1

p0

)
2µy

. (7.11)

Here we see that LRT reduced so checking is y(t) is larger or smaller than
a threshold γ. Based on this, we can define the probability of false alarm
and miss detection as follows. The probability of false alarm and that of
miss-detection are

PF (γ)
∆
= Pr (H1|H0) =

+∞∫
γ

1√
2π
e
−
z2

2 dz = Q (γ) , (7.12)

PM (γ)
∆
= Pr (H0|H1) =

γ∫
−∞

1√
2π
e
−

(z − µ)2

2 dz = Q (µ− γ) . (7.13)

In these last two equations, we see that for a γ given by Equation (7.11), the
probability of false alarm and of miss detection assume specific values. These
values might not be adequate for some applications, where for example we
may tolerate a high probability of false alarm, but we need to have a low
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probability of miss detection. One natural question is, instead, to choose a
different γ from Equation (7.11), so to have another desired false alarm and
of miss detection probabilities.

To answer the question above, it can be noticed that both PM and PF

change with γ, but if we try to decrease one of these two probabilities the
other increases, namely the probability of false alarm and of miss detection
are in opposition when varying γ. This leads to an optimization based ap-
proach to select a desired γ. Different optimization techniques can be used
for this purpose such as Fast-Lipschitz optimization, Pareto optimization,
etc. One optimization approach is to search for γ that minimizes PM such
that PF is lesser than or equal to a constant value P̄F . This will allow to
set a specific optimal value of the threshold γ∗:

min
γ

PM (γ)

s.t. PF (γ) ≤ P̄F

(7.14)

Since PM (γ) decreases with γ, and since PF (γ) increases with γ, we deadly
obtain the solution to this optimization problem γ∗ as the solution to the
following equation

Q (γ∗) = P̄F . (7.15)

We conclude this section with some observations. Both MAP and ML
criteria can be extended to a multi-hypotheses situation by choosing the most
likely of the M hypotheses, given the observations. Another useful criterion
in detection is to try minimize the Bayes risk function, where the cost of false
detection and miss is minimized and thus the results are more reliable. ML
criterion which is used when prior probabilities are unknown can give similar
decision probabilities as of MAP at high SNR. So it can be concluded that
both criteria yield same results at high SNR while substantial difference in
performance can be observed at low SNR.

7.3 Detection from Multiple Sensors

In a typical WSN scenario, several low-power and low-cost sensors are de-
ployed to collect measurements and observations. The sensor nodes may pre-
process or may not the measurements. These measurements (pre-processed
or not) are then communicated to other nodes over the network to have
a detection of the phenomena. For example, in a star network, there is a
fusion center or cluster head that is responsible for processing information
arriving from sensor nodes and making a global decision about the measured
phenomena.

There are two alternatives for detection with multiple sensors over a star
network. In the first approach, complete measurements or observations are
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Figure 7.2 A distributed detection system with a data fusion center.

sent to the data fusion centre which processes the received messages to take
a decision. This is called centralized detection system, which may require
large communication bandwidth and low delay for transmission. The second
alternative is to carry out all the signal processing at the sensor node level
and to compute locally the result of the decision process. These results are
then communicated to the fusion center which takes global decision based on
the local decisions. This is known as distributed detection system. Such a
distributed detection requires less communication bandwidth, which makes
it useful for many WSNs applications. However, it may have the drawback of
being less accurate as compared to sending all the measurements to a fusion
center. A distributed system with data fusion is shown in Figure 7.2.

Let us now find an optimal detection system in a WSNs (Chair and
Varshney, 1986) with a star topology where each node takes first its own
decision on the phenomenon and then transmit such a decision to a fusion
center. With this goal in mind, let us consider some preliminaries. Consider
the binary hypothesis testing problem as defined in the previous section(H0

means signal is absent, H1 means signal is present). The a priori probabil-
ities of the two hypotheses are denoted by Pr(H0) = P0 and Pr(H1) = P1.
Assume that there are n sensor nodes in the star network, then the measure-
ments from these sensors are denoted by yi, i = 1, ..., n. We further assume
that the measurements at the individual detectors are statistically indepen-
dent from each other, and that the conditional probability density function
is denoted by p(yi|Hj), i = 1, ..., n, j = 1, 2. Coherently with the results of
the previous section, each sensor employs a decision rule gi(yi) to make a
decision ui, i = 1, ..., n, where

ui =

{
0, if H0 is detected
1, if H1 is detected .

(7.16)

Also denote the probabilities of miss-detection and false alarms of each sensor
by PMi and PF i, respectively. Recalling that each sensor in distributed
detection system process its measurements, make local decision ui and then
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transmit its decision to the data fusion center, this saves communication
bits, as opposed to sending many bits associated to the quantization of the
measured data. Based on the local decisions, the data fusion center calculates
the global decision, i.e.,

u = f(u1, . . . , un) . (7.17)

Now we will consider the optimization of the data fusion algorithm.
Data fusion rules are often based on counting and are implemented as

"k out of n logical functions. This means that if k or more detectors decide
hypothesis H1, then the global decision is H1, i.e.,

u =

{
1, ifu1 + u2 + · · ·+ un ≥ 2k − n
0, otherwise .

(7.18)

The data fusion problem can be viewed as a two-hypothesis detection prob-
lem where the decisions from the individual detectors u serves as the “mea-
surement”. The optimum decision rule is given by the following likelihood
test:

Pr(u1, ..., un|H1)

Pr(u1, ..., un|H0)

H1

≷
H0

P0(C10 − C00)

P1(C01 − C11)
. (7.19)

The left-hand side of the equation shows the likelihood ratio while the quan-
tity on the right-hand is Bayes optimum threshold. If we assume the mini-
mum probability of error criterion, that is, C00 = C11=0, and C10 = C01=1.
Therefore we can write

Pr(u|H1)

Pr(u|H0)

H1

≷
H0

P0

P1
. (7.20)

The above equation can be simplified by using Bayes rule,

Pr(u|H1)

Pr(u|H0)

H1

≷
H0

1 . (7.21)

The corresponding log-likelihood ratio test is

log
Pr(u|H1)

Pr(u|H0)

H1

≷
H0

0 . (7.22)

An expression for implementation of the data fusion rule can be established
and the result is presented by the following theorem.

Theorem. Given n detectors and the corresponding quantities as defined
previously, we have

log
Pr(H1|u)

Pr(H0|u)
= log

P1

P0
+
∑
S+

log
1− PMi

PF i
+
∑
S−

log
PMi

1− PF i
. (7.23)
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Problems
Problem 7.1 Binary choice in Gaussian noise
A signal voltage z can be zero (hypothesisH0) or k (hypothesisH1), each hypothesis
with a probability 1/2, The voltage measurement is perturbed by additive white
Gaussian noise (AWGN) of variance σ2. Compute the decision threshold for MAP
criterion, and the error probabilities Pr(D1|H0) and Pr(D0|H1), where D1 means
that H1 was decided, and D0 means H0 was decided.

Problem 7.2 Binary hypothesis test and SNR (Ex.5.2 in (Pottie and Kaiser,
2005))
Consider the binary choice in Gaussian noise, as shown in previous exercise with
the threshold of k/2, the SNR is also maximized at the decision point. Since
the possible signal values are known, the maximization of SNR means that the
hypothesized noise power E[n2(t)] is minimized when the decision boundaries are
optimally chosen. Prove that SNR is maximized when the threshold is k/2.

Problem 7.3 MAP and the LRT (Ex.5.4 in (Pottie and Kaiser, 2005))
Show that the MAP decision rule is equivalent to the likelihood ratio test.

Problem 7.4 Binary decisions with unequal a priori probabilities( Ex.5.5 in
(Pottie and Kaiser, 2005))
For the binary choice in Gaussian noise in Exercise 1, compute the threshold when
the probabilities of H0 and H1 are 1/3 and 2/3 respectively.

Problem 7.5Detection of known mean in Gaussian noise (Example D.1 in (Gustafs-
son, 2012))
The simplest possible problem is to decide whether there is a known mean A in an
observed signal or not:

H0 : yk = ek ,

H1 : yk = sk + ek .

Suppose to detect a general known signal sk observed with Gaussian noise as yk =
sk + ek. Using a matched filter defined as

ȳ =
1

N

N−1∑
k=0

yksk = A+ ē ,

show that

A =
1

N

N−1∑
k=0

s2
k

and ē ∼ N (0, σ2/N). Here we assume that
∑
sk = 1.



Chapter 7. Distributed Detection 163

Problem 7.6 Fault detection
Suppose to detect a signal sk observed with Gaussian noise as yk = sk + ek, where
ek ∼ N (0, σ2). Assume there exist fault alarms for the signal, that is, the alarms
occur when the measurement of signal beyond the interval [−3σ, 3σ]. Here assume
that sk equals 0 with p0 = 0.9, and t = 3σ as fault with pt = 0.1. Find the
probability of the correct fault alarms.

Problem 7.7 Optimal Data Fusion in Multiple Sensor Detection Systems (Chair
and Varshney, 1986)
Let consider a binary hypothesis problem with the following two hypotheses: H0

signal is absent, H1 signal is present. The priori probabilities of the two hypotheses
are denoted by Pr(H0) = P0 and Pr(H1) = P1. Assume that there are n detectors
and the observations at each detector are denoted by yi, i = 1, . . . , n. Furthermore,
assume that the observations are statistically independent and that the conditional
probability density function is denoted by p(yi|Hj), i = 1, . . . , n, while j = 1, 2.
Each detector employs a decision rule gi(yi) to make a decision ui, i = 1, . . . , n,
where

ui =

{
−1 if H0 is declared
+1 if H1 is declared

.

We denote the probabilities of the false alarm and miss of each detector by PFi

and PMi
respectively. After processing the observations locally, the decisions ui are

transmitted to the data fusion center. The data fusion center determines the overall
decision for the system u based on the individual decisions, i.e., u = f(u1, . . . , un).

1. Show that

log
Pr(H1|u)

Pr(H0|u)
= log

P1

P0
+
∑
S+

log
1− PMi

PFi

+
∑
S−

log
PMi

1− PFi

,

where S+ is the set of all i such that ui = +1 and S− is the set of all i such
that ui = −1.

2. Find the optimum data fusion rule using likelihood ratio.

Problem 7.8 Counting Rule (Niu and Varshney, 2005)
Consider the same situation in Exercise 7. An alternative scheme would be that
the fusion center counting the number of detections made by local sensors and then
comparing it with a threshold T :

Λ =
∑
S+

ui
H1

≷
H0

T ,

which is called “counting rule”. Now assume that each sensor has the same PFi
= Pf

and PMi
= Pm, find the probability of false alarm PF and detection PD at the fusion

center level.
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Figure 7.3 A grid of sensor nodes.

Problem 7.9 Distributed detection, MAC, and routing

Sensor nodes are laid out on a square grid of spacing d, as depicted in Figure 7.3.
Ever sensor wants to detect a common source.

(a) Suppose that the source signal has a Gaussian distribution with zero mean
and with variance σ2

S . Moreover, every sensor measures such a signal with
an additive Gaussian noise of zero average and variance σ2

n. If the measured
signal is positive, the sensor decides for hypothesis H0, otherwise the sensor
decides for hypothesis H1. Based on the measured signal, characterize the
probability of false alarm and the probability of miss detection per every
sensor.

(b) Now, suppose that the source signal is constant and has a power S. Such
a signal power is received at every sensor with an attenuation given by r2

i ,
where ri is the distance between the source and sensor i. Sensor node 1 is
malfunctioning, producing noise variance 10σ2

n . The two best nodes in terms
of SNR will cooperate to provide estimates of the source. Characterize the
region of source locations over which node (1) will be among the two best
nodes.

(c) The grid depicted in Figure 7.3 is also used for relaying. Assume it costs two
times the energy of a hop among nearest neighbors (separated by distance
d) to hop diagonally across the square (e.g. node 2 to 5) and eight times the
energy to go a distance of 2d in one hop (e.g. node 2 to 3). Let p be the
packet loss probability. Characterize p for which it is better to consider using
two diagonal hops to move around the malfunctioning node.

(d) Under the same assumption of the previous item, suppose that there is an
ARQ protocol, but the delay constraints are such that we can only tolerate
three retransmission attempts. Let 0.99 be the probability of having up to
three retransmissions. Assuming packing dropping events are independent,
characterize the constraint that probability of packet losses per transmission
should satifsy.

Problem 7.10 Matched filter and SNR (Ex.5.12 in (Pottie and Kaiser, 2005))
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Prove the matched filter maximizes the output SNR and compute the maximum
output SNR as a function of the energy of the signal s(t) and N0.

Problem 7.11 Binary hypothesis testing and mutual information (Ex.5.3 in
(Pottie and Kaiser, 2005))
Consider the binary choice in Gaussian noise, as shown in Exercise 1. When k = 1
and the variance of the Gaussian distribution is 1, show numerically that the mutual
information is maximized when γ = 0.5.





Chapter 8

Distributed Estimation

Distributed estimation plays an essential role in many networked appli-
cations, such as communication, networked control, monitoring and surveil-
lance. Motivated by this, the chapter provides an overview on some of the
fundamental aspects of distributed estimation over networks together with
an investigation of the computational complexity and communication cost.
A phenomenon being observed by a number of sensors in networks having a
star and a general topology are considered. Under the assumptions of noises
and linear measurements, the resulting distributed estimators are derived re-
spectively. The limited bandwidth, communication range and message loss
in the communication are considered. Distributed estimators can provide
accurate estimates of the parameters of the phenomenon, while the less the
limitations are in networks, the lower complexity of the estimator is.

8.1 Optimal Mean Square Estimate of a Random
Variable

We will be interested in MinimumMean Square Error (MMSE) estimates.
Given a random variable Y that depends on another random variable X,
obtain the estimate X̂ such that the mean square error given by E [X− X̂]2

is minimized. The expectation is taken over the random variables X and Y .

Proposition 8.1.1. : The minimum mean square error estimate is given by
the conditional expectation E [X|Y = y].

Proof. The arguments are standard. Consider the functional form of the es-
timator as g(Y ). Let fX,Y (x, y) denote the joint probability density function
of X and Y . Then the cost function C is given by

E
[
X − X̂

]2
=

∫
x

∫
y
(x− g(y))2fX,Y (x, y)dxdy

=

∫
y
dyfY (y)

∫
x
(x− g(y))2fX|Y (x|y)dx.

167
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Now consider the derivative of the cost function with respect to the function
g(y).

∂C

∂g(y)
=

∫
y
dyfY (y)

∫
x

2(x− g(y))fX|Y (x|y)dx

= 2

∫
y
dyfY (y)(g(y)−

∫
x
xfX|Y (x|y)dx)

= 2

∫
y
dyfY (y)(g(y)− E [X|Y = y]).

Thus the only stationary point is g(y) = E [X|Y = y] . Moreover it is easy
to see that it is a minimum.

The result holds for vector random variables as well.
MMSE estimates are important because for Gaussian variables, they co-

incide with the Maximum Likelihood (ML) estimates. Of course, for non-
Gaussian random variables, other notions of optimality may be better.

It is also a standard result that for Gaussian variables, the MMSE esti-
mate is linear in the state value. Proof was given in the lecture on Kalman
filtering. So we will restrict our attention to linear estimates now. Also, from
now on we will assume zero mean values for all the random variables. All
the results can however be generalized. The covariance of X will be denoted
by RX and the cross-covariance between X and Y by RXY .

Proposition 8.1.2. The best linear MMSE estimate of X given Y = y is

x̂ = RXYR
−1
Y y,

with the error covariance

P = RX −RXYR−1
Y RY X .

Proof. Let the estimate be x̂ = Ky. Then the error covariance is

C = E
[
(x−Ky)(x−Ky)T

]
= RX −KRY X −RXYKT +KRYK

T .

Differentiating C w.r.t. K and setting it equal to zero yields

−2RXY + 2KR−1
Y = 0.

The result follows immediately.

In the standard control formulations, we are also interested in measure-
ments that are related linearly to the variable being estimated (usually the
state).
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Proposition 8.1.3. Let y = Hx + v, where H is a matrix and v is a
zero mean Gaussian noise with covariance RV independent of X. Then the
MMSE estimate of X given Y = y is

x̂ = RXH
T
(
HRXH

T +RV
)−1

y,

with the corresponding error covariance

P = RX −RXHT
(
HRXH

T +RV
)−1

HRX .

Proof. Follows immediately by evaluating the terms RXY and RY and sub-
stituting in the result of Proposition 8.1.2.

8.2 Network with a Star Topology

In this section, we assume that the network is organized as a star, where
multiple sensors make measurements that are transmitted with no messages
losses to a fusion center, which is assumed to be the star of the network. The
fusion center is responsible for processing the data sent from all the sensors
to arrive at an estimation of the measured quantity. Much of this section
will focus on how to move as much as possible of the processing from the
Fusion center out to the sensors doing the measurements. For this to be
useful we have to assume that the sensors can do some computation, but
that is a reasonable assumption.

An example of the star topology is illustrated by Fig. 8.1. Note that
all the algorithms can be used for other connected topologies if routing of
messages is possible. In that case every node that is not connected directly
to the fusion center will still be able to send messages to the center with the
help of interconnecting nodes.

8.2.1 Static Sensor Fusion

Here we study the problem of estimating a static phenomenon that is
observed by a number of sensors. The observations of the sensors are reported
to a central unit that fuses them with the aim of extracting an estimate of
higher accuracy. Since the value that we are trying to estimate is constant
in time each sensor will also be able to preform multiple measurements in
order to get a better estimate. Thus the techniques are useful even when
using only a single sensor. The main purpose of the procedures described
in the section is to reduced the amount of processing required at the fusion
center and reduce the amount of data that the sensors need to transmit. The
approach to reduce the processing required at the fusion center is based on
reducing the size of the matrices involved in the final estimation by using
local estimates from the sensors instead of the actual measurements.
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Figure 8.1 An example of star topology network with nodes and links (solid
lines indicating that there is message communication between nodes). In
this network, the fusion center can receive information from all other nodes.

Different estimators

When doing estimations there are many different approaches with differ-
ent properties and it is important to choose a scheme that suits what the
application needs. Some approaches put the focus on quick converges with
a small amount of data but with a possibility of large errors while other ap-
proaches (such as the maximum likelihood estimator) can be inefficient for
small data sets but becomes extremely accurate for large data sets. Choos-
ing a different estimator based on the situation can thus improve the results
significantly.

One of the most common ways to form estimates is the maximum likeli-
hood estimator that is defined as

x̂ = arg max
x

p(y|x). (8.1)

This should be understood as for measurements y and a known (a prior)
distribution p(·) the estimate of x should be chosen in such a way that the
measurements y where the most likely given that p(·) has the expected value
x̂. Since the estimate is based on a distribution that is already known it
is rather easy to include extra information about the variable that is be-
ing estimated. It is however not as easy to see how one would handle the
case where there is no information about the prior distribution. Another
disadvantage with Maximum likelihood estimation is that no simple formula
for Distributed estimation applies for all distributions. To counter act this
special tailored approaches are used for different common distributions and
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numerical methods for the remaining cases. There are however some cases
where a maximum of the likelihood function does not exist making the ML-
estimator useless in those cases. The biggest advantage to the ML estimator
is that it attains the lower bound on the variance asymptomatically with the
size of the data set. (Gustafsson, 2012)

Based on this we will instead focus on another type of estimator in this
chapter namely the Minimum Mean Square Error (MMSE) estimator that
is very useful for distributed estimation. It also has the nice property that
it is identical to the ML estimator for the common case of a Gaussian dis-
tribution so accuracy is guaranteed in such a case. We recall the results
from centralized linear estimators from proposition ?? that we reiterate in
proposition 8.2.1. We will use this form to get an expression that makes
distributed estimation possible.

Proposition 8.2.1. Let y = Hx + v, where H is a matrix and v is a zero
mean Gaussian noise with covariance matrix RV independent of X. Then
the MMSE estimate of X given Y = y is

P−1x̂ = HTR−1
V y,

with P as the corresponding error covariance given by

P−1 =
(
R−1
X +HTR−1

V H
)
.

For the above proposition P−1 will act as a normalizing factor to the
weights formed by HTR−1

V . That P−1 acts as a normalizer will also be true
for the distributed case later on. In the special case of no prior information
the combination of the values will simply become a weighted least square
problem for the equation Hx = y which can be used to get a better feeling
for how the system acts. Example 8.2.3 on page 174 also gives insight into
how this representation behaves in the scalar case.

The fact that X is treated as a stochastic variable makes it possible to
include extra information in the estimation even before any measurements
have been done by including the available information in the probability
distribution. An example on how such information effects the error is given
in figure 8.2. The proposition above assumes that the expected value of X
is 0. The estimate can however be generalised in the following way where x̄
denotes the expected value of X

P−1(x̂− x̄) = HTR−1
V (y −Hx̄).

For the rest of the chapter we will continue to work under the assumption
that x̄ = 0 to save space since the generalization is quite straight forward.
It is also worth noting that in the case where no information about X is
available it is still treated as a stochastic variable and not a constant. This
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Figure 8.2 Effect on the error by including a prior distribution with 40 times
lower variance than each measurement. As expected the effects of the prior
is most significant with few measurements.

can be understood by thinking of the variance of X. If X is a constant the
variance is 0 and we know what value it will attain, doing an estimation
would thus be pointless. This is not the situation we want to model, in fact
it is the exact opposite. We will thus in most cases have to consider X to
have a variance that approaches infinity resulting in that R−1

X goes towards
0.

We will now manipulate this alternate form to get a way to construct the
global estimate at the fusion center from the local estimates at the sensors.
This is called static sensor fusion.

Static Sensor Fusion for Star Topology

In this section we will show how a group of sensors can work together to
get a better estimation of a time-invariant variable, the concept is illustrated
in figure 8.3. The process distributes work normally required by the fusion
center to the different sensors and then gathers the results in a way that has
no loss of precision compared to the centralized version.

Proposition 8.2.2. Consider a random variable x being observed by K sen-
sors that generate measurements of the form

yk = Hkx+ vk, k = 1, · · · ,K,

where the noises vk are all uncorrelated with each other and with the variable
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Fusion CenterX

yk = Hkxk + vk

Sensor 1

Sensor 2

...

Sensor K

x̂
Estimated
Parameters

Figure 8.3 Illustration of the static fusion. Each sensor makes a noisy mea-
surement of X. It then sends some quantity to the fusion center that forms
the final estimate.

x. Denote the estimate of x based on all the n measurements by x̂ and
the estimate of x based only on the measurement yk by x̂k. Then x̂ can be
calculated using

P−1x̂ =
K∑
k=1

P−1
k x̂k,

where P is the estimate error covariance corresponding to x̂ and Pk is the
error covariance corresponding to x̂k. Further

P−1 =
K∑
k=1

P−1
k − (K − 1)R−1

X .

Proof. Denote y as the stacked vector of all the measurements yk’s, H the
corresponding measurement matrix obtained by stacking all the Hk’s in a
block diagonal way and v the noise vector obtained by stacking all the noises
vk’s. The global estimate x̂ is given by

P−1x̂ = HTR−1
V y.

But all the vk’s are uncorrelated with each other. Hence RV is a block diag-
onal matrix with blocks RVk . Thus the right hand side can be decomposed
as

HTR−1
V y =

K∑
k=1

HT
k R
−1
Vk
yk.

But each of the termsHT
k R
−1
Vk
yk can be written in terms of the local estimates

P−1
k x̂k = HT

k R
−1
Vk
yk.

Thus

P−1x̂ =
K∑
k=1

P−1
k x̂k.
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The proof for the expression for the global error covariance is similar.

This result is useful since it allows the complexity of calculation at the
fusion center to go down considerably1. The form of the global estimator
shows that what we really want is a weighted mean of the local estimates.
Each estimate is weighted by the inverse of the error covariance matrix.
Thus the more confidence we have in a particular sensor, the more trust
do we place in it. In the following example the concept is illustrated for a
possible real case.

Example 8.2.3. Suppose we have two sensors that measure the resistance of
two different materials with the ultimate goal of measuring the temperature
in the room. The measurements contains unbiased Gaussian noise v1 and v2

with the variances R1 and R2 respectively.
The relation between the measured resistance and temperature is given by

the equation:

Ri(T ) = Ri(T0)(1 + αi∆T ) + vi, i = 1, 2.

What will the fused estimate be and how will the error change?

The equation for the temperature dependence can be manipulated in the fol-
lowing way

Ri(T )−Ri(T0)(1− T0α) = αiRi(T0)T + vi

Since the measurement Ri(T ) and the constants are known we can with the
following substitutions state this on the standard form of yi = HiT +vi. The
substitutions are

yi = Ri(T )−Ri(T0)(1− T0α),

Hi = αiRi(T0).

We can now use the result from proposition 8.2.2 to answer the questions.
First we have for the error the following

P−1 = P−1
1 + P−1

2 − (K − 1)R−1
T = P−1

1 + P−1
2

= H2
1R
−1
1 +H2

2R
−1
2 =

H2
1

R1
+
H2

2

R2
.

The reason that R−1
T vanishes is because we have no a priori information

about T . Thus the variance of T can be considered to be infinite and R−1
T

becomes 0. Since the variance is scaler HT = H and H commutes, we can
also get the explicit expression for the error covariance in the scalar case

P =
R2R1

H2
1R2 +H2

2R1
,

1As an exercise, compare the number of elementary operations (multiplications and
additions) for the two algorithms.
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this is obviously smaller than both P1 and P2.
The estimate is also given by proposition 8.2.2 and is

x̂ =
R2R1

H2
1R2 +H2

2R1

(
H1

R1
y1 +

H2

R2
y2

)
.

Sequential Measurements from One Sensor

The same algorithm can be extended to the case when there are multiple
measurements from one sensor in order to gain a higher accuracy in the
estimate. Furthermore, the processing can be done in a sequential manner
so the memory requirements are constant in time. This is essential for the
algorithm to be useful since the memory available for each sensor is limited.
Consider a random variable evolving in time as

x̂n
Estimated
Parameters

Xn =
CXn−1 + wn−1

The sensor
t = n

x̂n−1

Estimated
Parameters

Xn−1 =
CXn−2 + wn−2

The sensor
t = n − 1

...
...

...

x̂0
Estimated
Parameters

X0
The sensor
t = 0

Figure 8.4 Illustration of fusion of multiple measurements in one sensor.

Xn+1 = AXn + wn,

where wn is white zero mean Gaussian noise with covariance matrix Q. The
sensor generates a measurement at every time step according to the equation

Yn = CXn + vn,

where vn is again white zero mean Gaussian noise with covariance ma-
trix R. We wish to obtain an estimate of Xn given all the measurements
{Y0, Y1, . . . , Yn}. Suppose we divide the measurements into two sets:

1. The measurement Yn.

2. The set Y of the remaining measurements Y0 through Yn−1.
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Now note that the two sets of measurements are related linearly to Xn and
further the measurement noises are independent. Thus we can combine the
local estimates to obtain a global estimate. First we calculate the estimate
of Xn based on Yn in the same way as in the previous section. It is given by

M−1X̂ = CTR−1Yn,

where M is the error covariance given by

M−1 = R−1
Xn

+ CTR−1C.

Let X̂n−1|n−1 be the estimate of Xn−1 based on Y and Pn−1|n−1 be the
corresponding error covariance. Then the estimate of Xn given Y is given
by

X̂n|n−1 = AX̂n−1|n−1,

with the error covariance

Pn|n−1 = APn|n−1A
T +Q.

Thus the estimate of Xn given all the measurements is given by the combi-
nation of local estimates and can be seen to be

P−1
n|nX̂n|n =P−1

n|n−1X̂n|n−1 +M−1X̂ = P−1
n|n−1X̂n|n−1 + CTR−1Yn.

The corresponding error covariance is

P−1
n|n = P−1

n|n−1 +M−1 −R−1
Xn

= P−1
n|n−1 + CTR−1C.

This can be seen as a fusion of measurements from two different sensors as
seen in figure 8.4. The measurements in the set Y form a local estimate
that is treated in the same way as if it originated from another sensor in the
situation described in the previous case. The local estimate from Y is thus
fused with the new measurement Yn to from the global estimate.

These equations also form the time and measurement update steps of
the Kalman filter. Thus the Kalman filter can be seen to be a combination
of estimators. This also forms an alternative proof of the optimality of
the Kalman filter in the minimum mean squared sense under the stated
assumptions. We will give more detail on Kalman filtering, and in particular
on distributed Kalman filtering below.

8.2.2 Dynamic Sensor Fusion

Suppose a combination of the previous two cases where there are multiple
sensors present that generate measurements about a random variable that
is evolving in time. We can again ask the question about how to fuse data
from all the sensors for an estimate of the state Xn at every time step n.
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This is the question of dynamic sensor fusion. It arises in many different
situations, such as tracking rotations and observing osculating phenomena.
A concrete example is temperature tracking at a shoreline, the tide will in
such a situation oscillate in a very predictable way. This oscillation will
cause the height of the water to change and thus effect the temperature of
the water, the concept in illustrated in figure 8.5. We will now begin by
seeing why this question is difficult in general.

S2S1 S3 S4 S5

Beach map

Fusion center
t = n

Previous
information

Next timestep

Estimated
temperature

Data Processing layer

Figure 8.5 Illustration of measurements taken in a real world scenario, and
how the data processing works. The cyan colored area represents land that
can be covered with water during a high tide and Si represents a sensor in
the water.

To begin with, the problem can be solved if all the sensors transmit their
measurements at every time step. The central node in that case implements
a Kalman filter (which we will refer to from now as the centralized Kalman
filter). However, there are two reasons why this may not be the preferred
implementation.

1. The central node needs to handle matrix operations that increase in
size as the number of sensors increases. We may want the sensors to
shoulder some of the computational burden.

2. The sensors may not be able to transmit at every time step. Hence we
may want to transmit after some local processing, rather than transmit
raw measurements.

Having a fusion center that does not need to handle a lot of computations
allows for a cheaper fusion center that is also easier to replace. The fact that
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sensors may not be able to transmit at every step corresponds to message loss
and other disturbances which is a ever present problem when dealing with
wireless communication. Obtaining a process that is stable and accurate
under these condition is greatly desirable.

We will initially assume that the sensors can transmit at every time step
and concentrate on reducing the computational burden at the central node.

Transmitting Local Estimates

Our first guess would be to generate a local estimate at each sensor that
extracts all the relevant information out of the local measurements and then
to combine the estimates using methods outlined above. However, in general,
it is not possible to use the above method. Consider K sensors being present
with the k-th sensor generating a measurement of the form

yn,k = Ckxn + vn,k.

and with the time steps related trough

xn+1 = Axn + wn

Suppose we denote by Yk the set of all the measurements from the sensor k
that can be used to estimate the state xn, i.e., the set {y0,k, y1,k, . . . , yn,k}.
We wish to see if the local estimates formed by the sets Yk’s can be combined
to yield the optimal global estimate of xn. We can think of two ways of doing
this:

1. We see that the set Yi is linearly related to x(k) through an equation
of the form

yn,k
yn−1,k

...
y0,k

 =

 Ck
CkA

−1

...

xn +

 vn,k
vn−1,k − CA−1wn−1

...

 .
However we notice that the process noise w appears in the noise vector.
Thus even though the measurement noises vn,k’s may be independent,
the noise entering the sets Yk become correlated and hence the esti-
mates cannot be directly combined. Of course, if the process noise is
absent, the estimates can be combined in this fashion (see, e.g, (Will-
sky et al., 1982) where the optimality in this special case was estab-
lished. For a general discussion about the effects introduced by the
process noise see, e.g. (Bar-Shalom, 1981; Bar-Shalom and Campo,
1986; Roecker and McGillem, 1988; Chang et al., 1997; Mori et al.,
2002)).
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2. We see that xn can be estimated once the variables x0, w0, . . . , wn−1

are estimated. Now Yk is linearly related to these variables through
yn,k
yn−1,k

...
y0,k

 =

 CkA
n CkA

n−1 · · · C
CkA

n−1 · · · C 0
...




x0

w0
...

wn−1

+


vn,k
vn−1,k

...
v0,k

 .
Now the measurement noises for different sensors are uncorrelated and
the estimates can be combined. However, the vector being transmitted
from either of the sensors is increasing in dimension as the time step
n increases. Moreover the computation required is increasing since a
matrix of size growing with time needs to be inverted at every time
step. Hence this is not a practical solution.

Thus we see that it is not straight-forward to combine local estimates to
obtain the global estimate. We can ask the question if it is possible at all
to obtain the global estimate from the local estimates. Thus imagine that
the local estimates x̂n,k were being combined in the optimal fashion. Is it
possible to generate the global estimate x̂n? As noted above, for the special
case when there is no process noise, this is indeed true. However, in general,
it is not possible.

Proposition 8.2.4. (From (Chong, 1979)) Suppose two sets of measure-
ments Y1 and Y2 are used to obtain local estimates x̂1 and x̂2. Let[

x̂1

x̂2

]
= L

[
Y1

Y2

]
4
= LY.

Then the global estimate x̂ can be obtained from the local estimates x̂1 and
x̂2 if and only if

RY Y L
T
(
LRY Y L

T
)−1

LRY X = RY X .

Proof. The global estimate generated from the measurements is with the
help of proposition 8.1.2 given by

x̂ = RXYR
−1
Y Y Y.

If it is generated from the local estimates, it is given by

x̂ = RX,LYR
−1
LY,LY LY,

⇓

x̂ = RXY L
T
(
LRY Y L

T
)−1

LY.

The result is thus obvious.
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If L is invertible, the condition is satisfied and hence the global estimate
can be generated from the local estimates. In general, however, L would be
a fat matrix and hence the condition will not be satisfied. We thus have two
options:

1. Find the best possible global estimator from the space spanned by the
local estimates. This is left as an exercise.

2. Find the extra data that should be transmitted that will lead to the
calculation of the global estimate. We will now describe some such
schemes. For these and more such strategies see, e.g., (Willsky et al.,
1982),(Mori et al., 2002)–(Chong et al., 2000).

Distributed Kalman Filtering

For this section we will assume that the sensors are able to transmit
information to the central node at every time step. We will use the following
information form of the Kalman filter update equations.

Proposition 8.2.5. Consider a random variable evolving in time as

xn+1 = Axn + wn.

Suppose it is observed through measurements of the form

yn = Cxn + vn.

Then the measurement updates of the Kalman filter can be given by this
alternate information form.

P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 + CTR−1yn

P−1
n|n = P−1

n|n−1 + CTR−1C.

Proof. The equations were derived in section 8.2.1.

The basic result about the requirements from the individual sensors can
be derived using the above result.

Proposition 8.2.6. The global error covariance matrix and the estimate are
given in terms of the local covariances and estimates by

P−1
n|n = P−1

n|n−1 +

K∑
k=1

(
P−1
n,k|n − P

−1
n,k|n−1

)
P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 +
K∑
k=1

(
P−1
n,k|nx̂n,k|n − P

−1
n,k|n−1x̂n,k|n−1

)
.
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Proof. Proof follows by noting that the global estimate is given by

P−1
n|nx̂n|n = P−1

n|n−1x̂n|n−1 + CTR−1yn

P−1
n|n = P−1

n|n−1 + CTR−1C.

Since R is block diagonal, the terms CTR−1yn and CTR−1C are decomposed
into the sums

CTR−1yn =
K∑
k=1

CTk R
−1
k yn,k

CTR−1C =
K∑
k=1

CTk R
−1
k Ck.

Noting the for the k-th sensor, the estimate and the error covariance are
given by

P−1
n,k|nx̂n,k|n = P−1

n,k|n−1x̂n,k|n−1 + CTk R
−1
k yn,k

P−1
n|n = P−1

n|n−1 + CTk R
−1
k Ck,

the result follows immediately by rearranging the expressions.

Based on this result we now give two architectures for dynamic sensor
fusion.

1. In the first, rather obvious, architecture, the individual sensors trans-
mit the local estimates x̂n,k|n. The global fusion center combines the
estimates using the theorem given above. Note that the terms x̂n|n−1

and x̂n,k|n−1 can be calculated by the fusion node by using the time
update equation

x̂n|n−1 = Ax̂n−1|n−1.

Similarly all the covariances can also be calculated without any data
from the sensor nodes. This method is simple, especially at the sensor
level. However, the fusion node has to do a lot of computation.

2. This method makes the computation at the fusion node simple at the
expense of more data transmitted from the sensor node. The essential
point is the observation as developed, e.g., in (Gupta et al., 2007;
Gupta et al., 2009) that the term P−1

n|n−1x̂n|n−1 can be written in terms
of contributions from individual sensors, i.e.,

P−1
n|n−1x̂n|n−1 =

K∑
k=1

zn,k. (8.2)
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This can be proved using straight-forward algebraic manipulation as
follows.

P−1
n|n−1x̂n|n−1 =P−1

n|n−1Ax̂n−1|n−1

=P−1
n|n−1APn−1|n−1P

−1
n−1|n−1x̂n−1|n−1

=P−1
n|n−1APn−1|n−1

(
P−1
n−1|n−2x̂n−1|n−2

+

K∑
k=1

(
P−1
n−1,k|n−1x̂n−1,k|n−1 − P−1

n−1,k|n−2x̂n−1,k|n−2

))
.

Thus zi(k) evolves according to the relation

zn,k = P−1
n|n−1APn−1|n−1 (zn−1,k

+
(
P−1
n−1,k|n−1x̂n−1,k|n−1 − P−1

n−1,k|n−2x̂n−1,k|n−2

))
, (8.3)

which depends only on the k-th sensor’s data in a recursive way. The
covariances do not depend on the data and can be calculated anywhere,
hence each sensor transmits the quantity

γn,k =
(
P−1
n,k|nx̂n,k|n − P

−1
n,k|n−1x̂n,k|n−1

)
+ zn,k, (8.4)

and the fusion node just calculates the sum of these quantities to ar-
rive at the result of proposition 8.2.6. Thus at expense of more data
transmitted from the sensor nodes, we have made the central node very
simple.

8.3 Non-ideal Networks with Star Topology

In this section, we will give some strategies or algorithms for sensors to
perform distributed estimation if the communication network suffers from
limited bandwidth or message loss. These limitations are highly interesting
to study since they arise commonly in the world. If we limit the bandwidth
required to communicate the local estimates we can greatly reduce the re-
quired energy to transmit the estimates giving us more efficient systems. It
also turns out that an implementation that highly limits the required band-
width is easily modified to avoid any centralized administration. Avoiding
centralized administration makes it possible to establish a robust ad-hoc net-
work that may use any sensor as a fusion center that also allows for seamless
modification of the number of sensors. The message loss which we will look
at first is also interesting since communication is required even in high noise
environments where message losses are highly likely.
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8.3.1 Sensor Fusion in Presence of Message Loss

This research direction considers the following problem. Consider mul-
tiple sensors as above with a central fusion center. The sensors transmit
data to the fusion center across an analog erasure link that drops messages
stochastically. More formally, an analog erasure link accepts as input a real
vector i(n) ∈ Rt for a bounded dimension t. At every time n, the output
o(n) is given by

o(n) =

{
i(n) with probability 1− p
∅ otherwise.

• The case when o(n) = ∅ is referred to as an erasure event. It implies
that the channel drops the messages and the receiver does not receive
any information apart from that an erasure event has occurred.

• This model assumes that the erasure events occur according to a Bernoulli
process with erasure probability 1 − p. Other models, in which such
events occur according to a Markov chain or other more general pro-
cesses, can be considered.

• If the transmitter also knows that an erasure event has occurred, then
we say that the receiver transmits an acknowledgement to the trans-
mitter. Such an acknowledgement may always be available, may itself
be transmitted across an erasure channel so that it is stochastically
available, or may not be available at all.

The basic effect of the sensors transmitting across such channels is that
information from the sensors is not available at the fusion center at every
time step. This fact also requires some care in how the performance of
the estimator is defined. Consider a realization of the erasure process such
that at time n, the last transmission from sensor k was received at the
fusion center at time nk. Obviously, there is no algorithm that can provide
a better estimate than the MMSE estimate of x(n) given measurements
{y0,1, · · · , yn1,1}, {y0,2, · · · , yn2,2}, · · · , {y0,K , · · · , ynK ,K} (where we assume
K sensors are present). Denote the error covariance of this estimator by
P opt
n . Due to the stochastic erasure process, it may be more convenient to

consider the expected value of this covariance E[P opt
n ] where the expectation

is taken with respect to the erasure processes. Several questions arise:

1. What information should the sensors transmit to enable the fusion
center to achieve the covariance P opt

n at every time step?

2. If this covariance is not achievable, what is the best covariance that
any algorithm can achieve?
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3. Clearly, the error covariance at the fusion center degrades as the era-
sure probabilities increase. What are the conditions on the erasure
probabilities so that any algorithm can achieve stability of the esti-
mate error covariance, i.e., ensure that the expected error covariance
remains bounded as n→∞?

It should be made clear that an algorithm may lead to stability of the
error covariance without being optimal in the sense of achieving the covari-
ance P opt

n . In other words, the requirement in the third question is a weaker
statement than the first two.

These questions are still fresh in research and only the third question has
been answered (Gupta et al., 2009) generally. We will thus present the re-
quirements needed for a bounded error and present a algorithm that achieves
this, the theory will thus be useful for both designing and implementing sys-
tems. Recent developments and some special cases for questions one and two
will then be described.

We now present the result below for the case when two sensors trans-
mitting data to the fusion center across individual analog erasure links with
Bernoulli erasures with erasure probabilities 1− pk, k = 1, 2. Various other
generalizations are available in the cited reference.

Theorem 8.3.1 (From (Gupta et al., 2009)). Consider a process evolving
as

xn+1 = Axn + wn

being observed using two sensors that generate measurements of the form

yn,k = Ckxn + vn,k, k = 1, 2 ,

where wn and vn,k are white zero mean independent noises. Let the sen-
sors transmit information through a real vector with bounded dimension to
a fusion center across analog erasure channels with Bernoulli erasures with
erasure probabilities p1 and p2 respectively. Denote by ρ(Ak) the spectral ra-
dius of the unobservable part of matrix A when the pair (A,Ck) is written
in the observer canonical form and by ρ(Aobs) the spectral radius of matrix
Aobs that corresponds to the modes observable by both sensors. Assume that
the pair (A, [CT1 , C

T
2 ]T ) is observable.

1. Irrespective of the information transmitted by the sensors, and the al-
gorithm used by the fusion center, the quantity E[P opt

n ] is not bounded
as n→∞ if at least one of the following inequalities is not satisfied:

p1ρ(A2)2 < 1 (8.5)

p2ρ(A1)2 < 1 (8.6)

p1p2ρ(Aobs)
2 < 1. (8.7)
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2. Conversely, if the inequalities (8.5)–(8.7) are satisfied, then there is an
algorithm such that the corresponding expected error covariance at the
fusion center is bounded as time increases.

The full proof of this theorem is out of the scope of this text. It is
important to note that the necessity of the inequalities (8.5)–(8.7) holds
irrespective of the availability of acknowledgements at the sensors. The ne-
cessity part of the result follows from system theoretic considerations. The
sufficiency part of the result is proved by constructing an algorithm that
guarantees stability of the estimator error covariance, even though the er-
ror covariance is not P opt

n . Perhaps somewhat surprisingly, the algorithm is
based on the sensors transmitting local estimates of the process state based
on their own measurements. The algorithm is illustrated in figure 8.6 and
works as follows:

Fusion center

Sensor 1

Sensor 2

x̂1n,1

x̂3n,1

x̂2n,2

x̂3n,2

Hardware

Estimated
Parameters

x̂

Error
Covariance

P

x3

x1

x2

The world

Figure 8.6 Illustration of the whole process of estimation in the presence of
erasure links.

The vector being estimates consists of three parts x1, x2 and x3 where
the numbers are indexes and not exponents. The parts are observable from
sensor 1, sensor 2 and both sensors respectively. The sensors will form and
transmit local estimates in the following way

x1 x2 x3

Sensor 1 x̂1
n,1 ∅ x̂3

n,1

Sensor 2 ∅ x̂2
n,2 x̂3

n,2

where x̂in,k should be understood as the estimate of the i-th part of x, at
sensor k and time n. The fusion center will now form the global estimate in
the following way
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x̂1
n =

{
x̂1
n,1 transmission successful from sensor 1
A2x̂

1
n−1 otherwise

x̂2
n =

{
x̂2
n,2 transmission successful from sensor 2
A1x̂

2
n−1 otherwise

x̂3
n =


x̂3
n,1 transmission successful from sensor 1
x̂3
n,2 transmission successful from sensor 2 but not from sensor 1
Aobsx̂

3
n−1 otherwise.

The estimate of the state xn can be formed from the three components
x̂kn. Given this algorithm, the sufficiency of the inequalities (8.5)–(8.7) for
stability of the expected error covariance can then be proved.

Given Proposition 8.2.4, it is not surprising that this algorithm cannot
lead to the calculation of the optimal global estimate at the fusion center,
this can also be realised from the combination rule of x3

n that discards the
second sensors data if it has already received data. The algorithm focuses
on having updated measurements and not the most accurate estimates. In
fact, the optimal information processing algorithm at the sensors remains
unknown in most cases. Something that is worth noting for the stability
theorem is that it is quite easy to decrease the the erasure probabilities by
sacrificing bandwidth if the stability constraints are not achieved. Simply
sending the data twice will give an erasure probability of p2 instead of p.

For the problem of finding the optimal stable estimate most recent ad-
vances (e.g. (Gupta et al., 2007)–(Gupta and Martins, 2009)) build from the
basic algorithm identified in equations (8.2)–(8.4). Thus the sensors trans-
mit the quantity γn,k at every time step and the fusion center sums these
quantities to generate the estimate x̂n. If there are no erasures, this estimate
is indeed the global estimate with the optimal error covariance P opt

n . How-
ever, if there are erasures, then the calculation of γn,k requires some global
knowledge. In particular, the quantity Pn−1|n−1 in (8.3) at each sensor re-
quires the knowledge of the last time step at which the transmission from
every sensor to the fusion center was successful. Notice that the data trans-
mitted by other sensors is not required, merely the confirmation of successful
transmission is enough.

One mechanism for such global knowledge can be acknowledgements
transmitted from the fusion center. If such acknowledgements are available,
then it was shown in (Gupta et al., 2009) that minor modifications of the
algorithm outlined in equations (8.2)–(8.4) will generate the optimal global
estimate at the fusion center. Depending on the problem scenario, such
an assumption may or may not be realistic. If acknowledgements are also
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transmitted across an analog erasure link, (Gupta and Martins, 2009) pre-
sented some further modifications to the algorithm that guaranteed that the
estimation error covariance degraded continuously as a function of the prob-
ability of loss of acknowledgement. However, the optimal algorithm when
acknowledgements are not available, or only available intermittently, is not
known. Other special cases where such global knowledge is available can be
if only one of the sensors transmits across an analog erasure link (Gupta
et al., 2007) or if only one sensor transmits at any time (Hovareshti et al.,
2007). Once again, in these cases, the optimal global estimate can be calcu-
lated. However, it remains unknown if the optimal global estimate can be
calculated outside of these cases, or if it cannot be calculated, then what is
the best performance that is achievable.

8.3.2 Sensor Fusion with Limited Bandwidth

We will now describe how to limit the bandwidth required to preform
a distributed estimation to just a few bits. Optimally one would want to
achieve the lower limit of communication with a single bit while still having
a small error. We will show that it is possible to attain arbitrary precision
while only sending a single bit from each processor given a large enough
amount of sensors. This is possible for known noise distributions as well
as completely unknown noise distributions something that makes it highly
adaptable.

Static Sensor Fusion

Consider a limited bandwidth communication network, in which K sen-
sors measure an unknown parameter θ ∈ [−U,U ]. The measurement xk,
from k-th sensor, is corrupted by noise nk, which is assumed independent,
zero mean, and with a pdf p(u), namely Pr(nk = u) = p(u).

xk = θ + nk for k = 1, 2, . . . ,K . (8.8)

Depending on the distribution of the noise, and on the amount of information
that it is transmitted, there can be the cases studied in the following sub-
sections:

An ε-estimator with known noise pdf Here an ε-estimator is defined
as an estimator providing estimates with MSE lower than ε2. Assume the
limited bandwidth forces each sensor to send just one bit messages mk(xk)
to the fusion center. The message is defined as

mk(xk) =

{
1, if xk ∈ Sk
0, if xk 6∈ Sk

, (8.9)
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where Sk is a subset of R and is independent of the noise pdf. Let R+ denote
the subset of R for all positive real number. The following example illustrates
how this works for a uniform noise distribution.

Example 8.3.2. (From (Luo, 2005b)) Suppose that the noise is uniformly
distributed over the interval [−U,U ]. Let Sk = R+ for all k. Suppose a linear
fusion function that gives the estimator θ̂ as

θ̂ := f(m1, . . . ,mk) = −U +
2U

K

K∑
k=1

mk .

Then, the estimator is unbiased:

E [θ̂] = −U +
2U

K

K∑
k=1

E [mk] = −U +
2U

K
K
U + θ

2U
= θ .

Furthermore, since mk’s are independent,

E [θ̂ − θ]2 =
4U2

K2
E

[
K∑
k=1

(
mk −

U + θ

2U

)]2

=
4U2

K2

K∑
k=1

E [mk − E [mk]]
2 ≤ U2

K
,

where we used that the variance of a binary random variable is bounded above
by 1/4. It indicates that, even with the binary message constraint, a total
number of K = U2/ε2 sensors are still sufficient to perform an ε-estimator
for θ.

This can be generalized to all known noise distributions. If the p(u) is
given, we can still choose the message function as Eq.(8.9) with Sk = R+ for
all k. Then

Pr(mk = 1) = Pr(nk > −θ) =
∫∞
−θ p(u)du ,

Pr(mk = 0) = Pr(nk ≤ −θ) =
∫ −θ
−∞ p(u)du .

Then the expectation value for E [mk] is obtained by

E [mk] =

∫ ∞
−θ

p(u)du = 1− F (−θ), k = 1, 2, . . . ,K ,

where F (·) is the cumulative distribution function (cdf) of the noise. If one
chooses the final fusion function for θ̂ as introduced in (Luo, 2005b), then

θ̂ := f(m1, . . . ,mk) = −F−1

(
1− 1

K

K∑
k=1

mk

)
, (8.10)
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where F−1 is the inverse of F . By the strong law of large numbers, it follows

lim
K→∞

θ̂ = −F−1

(
1− lim

K→∞

1

K

K∑
k=1

mk

)
= −F−1(1− E [mk]) = −F−1(F (−θ)) = θ .

Suppose the noise pdf p(u) is known and bounded over [−U,U ], then θ̂ ob-
tained by Eq.(8.10) is an ε-estimate of θ implying a total number of O(1/ε2)
sensors, by the following theorem:

Theorem 8.3.3. (From (Luo, 2005b)) Suppose the noise pdf p(u) is known
and bounded from below by µ > 0 over [−U,U ]. Let K ≥ 1/(4µ2ε2). Then
the decentralized estimation scheme (8.9) and (8.10) produces an ε-estimator
of θ.

Proof. Notice that

|F (−θ)− F (−θ′)| = |1− F (−θ)− (1− F (−θ′))|

=

∣∣∣∣∣
∫ −θ′
−θ

p(u)du

∣∣∣∣∣ ≥ µ|θ − θ′| ∀θ, θ′ ∈ [−U,U ]

⇒ |F−1(v)− F−1(v′)| ≤ 1

µ
|v − v′| ∀v, v′ ∈ [0, 1] ,

Then,

|θ̂ − θ| =
∣∣∣∣∣−F−1

(
1− 1

K

K∑
k=1

mk

)
+ F−1(1− E (mk))

∣∣∣∣∣
≤ 1

µ

∣∣∣∣∣ 1

K

K∑
k=1

mk − E (mk)

∣∣∣∣∣
⇒ E [θ̂ − θ]2 ≤ 1

µ2
E

[
1

K

K∑
k=1

mk − E (mk)

]2

≤ 1

4µ2K
.

Thus, the variance of the estimator given by Eq.(8.10) is lower than ε2 as
long as

K ≥ 1

4µ2ε2
.

which concludes the proof.

This results verifies the result in example 8.3.2.
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A universal ε-estimator for unknown noise pdf The ε-estimator in-
troduced in Section 8.3.2 needs the explicit pdf p(u) for the noise. However,
sometimes for a large number of sensors, to characterize the measurement
noise distribution would cost too much, or could be even impossible in a dy-
namic environment. To cope with these situations, a distributed estimator
providing accurate estimates regardless the noise pdf under the bandwidth
constraint is required. In this subsection, we summarize a universal dis-
tributed estimator for unknown noise pdf.

The idea, proposed in (Luo, 2005b), is to represent the estimates in bi-
nary form by quantizing the sensor measurements into the corresponding bit
positions. Specifically, it tries to quantize 2−i of the sensors’ measurements
into the i-th most significant bit (MSB), 1

2 of the sensors quantize their mea-
surement into the first MSB, 1

4 of the sensors quantize their measurement to
the second MSB etc. Then it can be shown that a slight modification of the
statistics average of these message functions (m1 + m2 + · · · + mK)/K is a
unbiased estimator for θ, while its MSE is upper bounded by 4U2/K. The
fact that the first MSB has the highest probability to be transmitted is quite
reasonable and easy to motivate. The MSB will have the biggest impact on
the value of the estimate and thus getting that bit correct will thus have the
biggest impact in minimizing the error. It is however not obvious that the
probability to be used should be 2−i but it can be proven that this minimizes
the upper bound on the estimated MSE by preforming proof 8.3.5 with an
arbitrary probability and then minimizing the result. Arbitrary probabilities
will however still attain unbiased estimates although with larger errors then
the one chosen here.

The procedure of this distributed estimation scheme is illustrated in fig-
ure 8.7 and is described as follows (Xiao et al., 2006; Luo, 2005a):

1. Each measurement, xk, in node k is quantized into the i-th MSB with
probability 2−i, being converged to a binary message. That is the
sensor will select the i-th most interesting bit and transmit its value
to the fusion center. This step can be described as following

Pr(a = i) =

{
2−i i = 1, 2, 3, . . .
0 otherwise (8.11a)

mk(x, a) =

[
b(2U + x; a)

a

]
, (8.11b)

where the value of the random variable a indicates the position for
the MSB, the notation b(z; i) denotes the i-th MSB of a real number
z and each sensor transmit both the values of the i-th MSB as well
as which bit is sent. This information will be combined in equations
(8.12)–(8.14) to get an estimate of θ.

2. The fusion center recursively computes the average of all received bi-
nary messages that are distinct (determined by, say, the sender’s ID),
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Sensor 1 1 0 1 1 2U + x1 = 11

Sensor 2 1 0 1 0 2U + x2 = 10

Sensor 3 1 0 0 0 2U + x3 = 8

Sensor 4 0 1 1 0 2U + x4 = 6

Sensor 5 1 1 0 0 2U + x5 = 12

Sensor 6 1 0 0 1 2U + x6 = 9

Sensor 7 1 0 0 0 2U + x7 = 8

Constrained
estimator

3
4

1
2

0
1

1
2 2U + θ̂bit = 8.5

Complete
estimator

6
7

2
7

3
7

2
7 2U + θ̂avg = 9.1

Figure 8.7 The principle used for estimation with limited bandwidth. Each
sensor transmits information about one measurement made from observing
θ = 3 with uniform measurement noise on the interval [−3, 3]. The shaded
bits are transmitted in the limited estimation and all bits are used in the
complete estimation that calculates the mean of the measurements.

and uses it as estimator of θ.

Suppose the fusion center, which also has measurement capability, has
received a total of j independent messages. Based on these messages,
it can first form the sets

Ni = {k|ak = i, 1 ≤ k ≤ j}, i = 1, 2, 3, . . . . (8.12)

Then, based on the received messages and its own observation x, the
center can be proceed to form

yi = b(2U + x; i) +
∑
k∈Ni

b(2U + xk; ak), i = 1, 2, 3, . . . , (8.13)

and perform the estimate of θ

θ̂j = fj(x,m(x1, a1), . . . ,m(xj , aj)) = −2U + 4U

∞∑
i=1

2−i

|Ni|+ 1
yi .

(8.14)

One might think it would be more efficient to transmit b(x; a) and not
b(2U + x; a) in order to reduce the amount of calculations required to be
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done. This would however require that additional information about x would
be needed at the fusion center since x can be both negative and positive.
By adding 2U to x we guarantee that the information sent is positive and
the sign of the information will thus always be the same. From this one can
understand that if the sign of all measurements are known to be the same the
algorithm can be simplified. This can be seen in figure 8.7, the information
there could easily have been from observations on the interval [0,12] instead
of [-6,6], if this would have been the case no corrections for 2U would be
required. Figure 8.7 also gives insight into algorithms for weaker constraints
of the bandwidth. It is easy to see that transmitting more bits would improve
the accuracy without changing the fusion algorithm. The normal averaging
estimation is simply a special case of this where every bit is transmitted. In
fact we can think of the described algorithm as a combination of averaging
estimation for all the different bits.

For this estimator to be useful we need it to be accurate as well and
not only limit the required bandwidth. Theorems 8.3.4 and 8.3.5 show that
this distributed estimator is unbiased and has an expected MSE of 4U2/K,
where K is the number of sensors in the network:

Theorem 8.3.4. Let fj(x,m(x1, a1), . . . ,m(xj , aj)) be defined by Eq.(8.14).
Then for all 0 ≤ j ≤ K − 1

E [fj(x,m(x1, a1), . . . ,m(xj , aj))] = θ, ∀θ ∈ [−U,U ], ∀p ∈MU ,
(8.15)

where the expectation is taken with respects to the distribution of a and un-
known noise, and where

MU =

{
p(u) :

∫ U

−U
p(u)du = 1,

∫ U

−U
up(u)du = 0, p(u) ≥ 0,

Supp(p) ⊆ [−U,U ]} . (8.16)

Proof. From Eq.(8.13) and (8.14), using that xk is i.i.d to each others, we
obtain

E [fj(x,m(x1, a1), . . . ,m(xj , aj))]

= −2U + 4U

∞∑
i=1

E

 2−i

|Ni|+ 1

b(2U + x; i) +
∑
k∈Ni

b(2U + xk; ak)


= −2U + 4U

∞∑
i=1

2−iE [b(θ + 2U + n; i)]

= −2U + E [θ + 2U + n] = θ ,

where note that every number u in [0, 4U ] can be represented in binary as

u = 4U

∞∑
i=1

2−ib(u; i) ,
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which concludes the proof.

Theorem 8.3.5. Let θ̂ be the distributed estimator of Eq.(8.14). Then

E [θ̂j − θ]2 ≤
4U2

j + 1
.

Proof. Similarly, from Eq.(8.13) and (8.14), using that xk is i.i.d to each
others,

E [(θ̂j − θ)2|a1, . . . , ai]

= 16U2
∞∑
i=1

Var

 2−i

|Ni|+ 1

b(2U + x; i) +
∑
k∈Ni

b(2U + xk; ak)


= 16U2

∞∑
i=1

2−2iVar[b(2U + x; i)]

|Ni|+ 1
≤ 4U2

∞∑
i=1

2−2i 1

|Ni|+ 1
,

where in the last step follows from that the upper bound of var(b(2U +x; a))
is 1/4. Furthermore, notice that

Pr(Ni = r) =

(
i
r

)
2−ir(1− 2−i)(j−r), 0 ≤ r ≤ j ,

and

E

[
1

|Ni + 1|

]
=

j∑
r=0

1

r + 1

(
j
r

)
2−jr(1− 2−j)(i−r)

=
1

j + 1

1− (1− 2−i)j+1

2−i
.

Therefore, the MSE is

E [θ̂j − θ]2 = E [E [(θ̂j − θ)2|a1, . . . , ai]] ≤ 4U2
∞∑
i=1

2−2iE

[
1

|Ni|+ 1

]
≤ 4U2

j + 1
,

which concludes the proof.

This also proves that this estimator is an ε-estimator since the right hand
of the inequality can be made arbitrarily small with a large enough number
of sensors. It is also possible to compare this value to values for a estimator
that is not bandwidth constrained. For such an estimator the fundamental
lower limit on the variance is given by the Cramér-Rao lower bound (CRLB)
that in our case states:

E [θ̂j − θ]2 ≥
σ2

j + 1
.
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Since the variance σ2 for a random variable on the interval [−U,U ] is upper
bounded by U2 and the error of the limited bandwidth estimator is as a
worse case only a factor 4 from the CRLB case.

Remark 8.3.6. The average message length is
∑∞

i=1 2−i(1 + dlog(i)e) and
this sum is upper bounded by 2.5078 (Luo, 2005a).

A 1-bit ε-estimator for unknown noise pdf It turns out that it is
possible to limit the bandwidth even further than the average of about 2.5
bits per sensor down to a single bit per sensor. The algorithm is very similar
to the previous one. The difference lies primarily in the combination of the
received signals and in the fact that the sensors only transmits the i-th MSB
and not its location. The algorithm is as follows:

1. The sensors all transmit the i-th MSB with the probability 2−i. This
can be summarized as

Pr(a = i) =

{
2−i i = 1, 2, 3, . . .
0 otherwise

mk(x, a) = b(2U + x; a),

2. The sensors that receive the estimates mk form the estimate

θ̂j :=fj (x,m(x1, a1),m(x2, a2), ...,m(xk, ak))

=
−2jU + x

j + 1
+

4U

j + 1

j∑
i=1

m(xi, ai) .

This estimate does not make any distinction between which sensor that trans-
mits the data which makes it very easy to update when new data arrives. The
sensor doing the estimate only needs to store U , j and the sum

∑j
i=1m(xi, ai)

in order to easily update the estimate when new data arrives. The memory
requirement is thus constant for a fixed maximum number of sensors. It is
also optimal in a bandwidth sense for the star topology (a more efficient
communication strategy could possible be utilized in another topology with
the concept of recursive doubling).

The error of this estimator is quite surprisingly no worse than that of the
previous case as proven by (Luo, 2005a). One additional requirement for the
error bound of

E (θ̂j − θ)2 ≤ 4U

j + 1

is that the number of sensors is large enough that Nj can be approximated
with i2−i. This can simple be understood as the sensor network having
enough nodes to attain the actual probability distribution. We will now
prove that the estimator is unbiased.
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Theorem 8.3.7. The distributed estimator

θ̂j =
−2jU + x

j + 1
+

4U

j + 1

j∑
i=1

m(xi, ai)

is unbiased.

Proof. First we look at the expected value of mk.

E (m(xk, ak)) = E (b(2U + xk; aK)) = E

( ∞∑
i=1

2−ib(2U + xk; i)

)

using that same reasoning as in the proof of Theorem 8.3.4 we have the
following

E

( ∞∑
i=1

2−ib(2U + xk; i)

)
=

2U + θ

4U
.

This gives that the expected value of the estimator is

E (θ̂j) =
−2jU + θ

j + 1
+

4U

j + 1

j∑
i=1

E (m(xi, ai))

=
−2jU + θ

j + 1
+

4U

j + 1

j∑
i=1

2U + θ

4U
= θ

That this estimator is unbiased depends solely on the probability distri-
bution for which bit should be transmitted. If another probability is selected
the expected value of mk will not be usable.

Dynamic Sensor Fusion: Sign of innovations-KF

An alternative solution in the presence of limited bandwidth is based on
the Kalman filter and the idea to send information about which direction the
estimate should be corrected. This approach has the advantage of also being
able to handle linear estimations. First, recall that generally distributed
Kalman filter includes a prediction step and a correction step. Consider the
system

xn = Anxn−1 + wn

yn,k = CTn,kxn + vn,k ,

where the driving input wn is normally distributed with zero mean and
variance Qn and the observation noise vn,k is zero mean Gaussian noise and
independent across sensors with noise R (Xiao et al., 2006). In this case, we
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have R = σvI. Suppose that x̂n−1|n−1 and Pn−1|n−1 are available at time
n, the predicted estimate x̂n|n−1 and its corresponding covariance matrix
Pn|n−1 are given by

x̂n|n−1 = Anx̂n−1|n−1 (8.18a)

Pn|n−1 = AnPn−1|n−1A
T
n +Qn . (8.18b)

The innovation sequence

ỹn := yn − CTn x̂n|n−1 ,

is chosen to obtain the corrected estimate x̂n|n. To deal with the limited
bandwidth, the sign of the innovation (SOI) is used to ensure that the re-
quired exchange of information among sensors is possible under one bit mes-
sage constraint.

m(n) := sign[ỹn] = sign[yn − ỹn|n−1] . (8.19)

Due to the sign non-linearity, p[xn|m0:n−1] is non-Gaussian and compu-
tation of the exact MMSE is unfeasible for most real applications. However,
it is possible to decide how the estimate should be changed given the error
covariances (Ribeiro et al., 2006):

x̂n|n = x̂n|n−1 +mn

(
√

2/π)Pn|n−1Cn√
CTn Pn|n−1Cn + σ2

v

(8.20a)

Pn|n = Pn|n−1 −
(2/π)Pn|n−1C

T
n Pn|n−1

CTn Pn|n−1Cn + σ2
v

. (8.20b)

These update equations will thus always change the estimate although always
with a smaller change. Since these equations are based on simplification and
approximations it is possible that the estimate becomes unstable for small
C. The algorithm is two part since it requires the previous estimate x̂n−1

is order to form the SOI. For this reason the SOI-KF technique is highly
suitable in an ad-hoc network where every sensor acts as a fusion center
with the help of routing.

It is of interest to know how the error is affected by the SOI approach.
Even at a minimal communication cost, the SOI-KF is strikingly similar to
the regular KF (Xiao et al., 2006). To prove it, let us rewrite the SOI-KF
correction as

x̂n|n = x̂n|n−1 +
Pn|n−1Cn

CTn Pn|n−1Cn + σ2
v

m̃n|n−1 , (8.21)

where
m̃n|n−1 :=

√
(2/π)E [ỹ2

n|n−1]mn .
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Notice that the units of m̃n|n−1 and ỹn|n−1 are the same, and

E [m̃n|n−1] = E [ỹn|n−1] = 0

E [m̃n|n−1]2 =
2

π
E [ỹn|n−1]2 ,

which indicates that Eq.(8.21) is identical to the KF update if replacing
m̃n|n−1 with the innovation ỹn. It is not difficult to show that the MSE
increases when using the SOI-KF is as much as the KF would incur when
applied to a model with π/2 higher observation noise variance (Xiao et al.,
2006; Ribeiro et al., 2006). The algorithm is thus highly useful.

8.4 Network with Arbitrary Topology

The results above assumed the presence of a star topology in which one
central node had access to local estimates from every other node. It was
essentially a two step procedure: first all the nodes transmit local estimates
or local measurements to the central node and then the central node calcu-
lates and transmits the weighted sum of the local estimates back. However,
what is required is a weighted average. Thus, we can generalize the ap-
proach to an arbitrary graph at the expense of more time being employed.
The generalization is along the lines of average consensus algorithms that
have been recently considered by many people (see, e.g., (Olfati-Saber and
Murray, 2004)–(Jadbabaie et al., 2003)). An example of arbitrary topology
networks is illustrated in Fig 8.8. For now, we will only cover the basics for
static sensor fusion. There exists deeper and more refined theories in con-
sensus algorithms that are easily applicable to allow for better performance
in respect to convergence speed and stability when erasure links are applied.
There also exists theory on how to chose the communication network to im-
prove convergence since it turns out that simply adding more connections
can in fact worsen the convergence.

8.4.1 Static Sensor Fusion with Limited Communication
Range

Due to the limited communication range, some of the sensors can not
send message to the fusion center. In such cases, we can treat the networks
as the static sensor fusion for arbitrary graphs without a fusion center. We
can still achieve good estimates and each extra sensor that belongs to the
same connected graph will improve the accuracy of the estimate.

Consider K nodes each with access to a scalar value being connected
according to an arbitrary (but time-invariant) connected graph. Suppose we
want each node to calculate the average of all the local estimates. One way
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Figure 8.8 An example of arbitrary topology network with nodes and links
(solid lines indicating that there is message communication between nodes).
In this network, there is no node acting as fusion center.

to do that is if each node implements the dynamical system

xn+1,k = xn,k + h
∑
j∈Ni

(xn,j − xn,k) ,

where xn,k is the value for state xk at time n, and h is a small positive
constant. On stacking the states of all the nodes, the entire system evolves
as

Xn+1 = (I − hL)Xn,

where Xn = [xn,1, . . . , xn,K ]T , and L is the Graph Laplacian matrix. If the
underlying graph is connected, L has the following properties:

1. It is a symmetric positive-definite matrix. Thus the dynamics is stable
(assuming h is small enough) and reaches a steady-state.

2. Each row sum is 0. Thus any vector with identical components is an
equilibrium and corresponds to a eigenvalue of 0.

3. Each column sum is 0. Thus the sum of entries Xn is conserved at
every time step.

Because of these three properties together with the fact that there exist
no other equilibrium than that given by fact 2 (Olfati-Saber et al., 2007),
it is easy to see that each entry must converge to the average of the sum
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of the initial conditions. This algorithm can then be readily extended for
calculating weighted averages of vectors (Spanos et al., 2006; Xiao et al.,
2005). If the initial values are given by the vectors x0,k, each node calculates
the following:

xn+1,k = xn,k + hW−1
k

∑
j∈Ni

(xn,j − xn,k) ,

where Ni denotes the set of sensors connected to i-th sensor. In our case, we
let x0,k to be the local estimate values and W−1

k to be inverse of the local
estimation error covariance, and obtain the required weighted average. Since
both the weighted and standard version converges to the same estimate as
forming the corresponding averages with global information the error for the
averages will be the same as in the global case and standard techniques for
calculating the variance can be applied.

8.5 Computational Complexity and Communication
Cost

The efficiency of implementation of estimation algorithms can be char-
acterized in terms of computational complexity and communication cost.
Conventionally, the computational complexity of an algorithm is measured
by the amount of basic operations such as float-point arithmetic performed.
The computational complexity is commonly expressed by using the O nota-
tion, which describes the limiting behaviour of a function. The O notation
suppresses the multiplicative constants and lower order terms. For example,
if the time running requirement for an algorithm is at most 5n3 + 100n2,
then we say that the computational complexity is O(n3). In the multivari-
ate case it is important to keep the highest order term from all the involved
parameters in order to get a usefull representation of the system. On the
other hand, communication cost of an algorithm refers to the communication
resources required in terms of amount and size of the exchanged messages in
bytes or bits. We express the communication cost by using the O notation
as well.

It is important to analyze the computational complexity and communica-
tion cost for distributed estimation algorithms, especially when one designs
algorithms for a sensor network. In these networks, larger computational
complexity requirement and communication cost always entail the high risk
of slower response speed, smaller transmit rate and thus poorer performance
in practice, though the theoretical performance for the algorithm might be
much better. In fact, due to the limited computational capability of sensors,
we sometimes have to redesign Aalg, or implement an approximate algo-
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rithm Ãalg which has lesser computational complexity but may still provide
acceptable performance.

8.5.1 On Computational Complexity

Before deploying an algorithm for sensors networks, it is desirable to
check whether the sensor nodes have enough computational capability to
perform the computation as designed. Suppose that the sensors are designed
to produce their estimates using some algorithm Aalg. We analyse Aalg’s
worst-case computational cost requirements as a function of the size of its
input (in terms of the O-notation). Here we assume that arithmetic or
basic operation with individual elements has complexity O(1). Thus, the
computational complexity of a matrix addition, multiplication, and inversion
are O(m2), O(m3) and O(m3) respectively, where m ×m is the size of the
matrix.

Example 8.5.1. Consider the combining estimator of Section 8.2.1. Ac-
cording to Proposition 8.2.1, some matrix inversions and multiplications to
find the MMSE estimate of X are needed. Denote the largest size of the
vector Y and X is M . Then the computational complexity of the estimators
is O(M3).

Example 8.5.2. Consider the static sensor fusion of Section 8.2.1. Ac-
cording to Proposition 8.2.2, similarly to Example 8.5.1, we need to perform
the matrix inversions and multiplications. Notice that in this case, we need
K times matrix inversions and multiplications in each iteration. Thus the
computational complexity of the static sensor fusion is O(KM3).

Example 8.5.3. Consider the local estimator of Section 8.2.2. According
to the method, we need to perform the matrix inversions and multiplications.
Notice that in this case, the size of the matrix is not M , but nM , where
n is the time step. Thus the computational complexity of the estimator is
O(n3M3).

Example 8.5.4. Consider the Kalman Filtering of Section 8.2.2. According
to the method, we need to perform the matrix inversion and multiplications.
Similar to Example 8.5.2, we need K times matrix inversions and multipli-
cations per iteration. Thus computational complexity of distributed Kalman
filtering is O(KM3).

8.5.2 On Communication Cost

Due to the limited communication resources for the network, before im-
plementing a distributed estimator, we need to analyze the communication
cost as well. We define the number of messages exchanged by the sensors as
the communication cost.
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Table 8.1 Summary of the time complexity and communication cost. In
the table, M is the at most size of the tracked signal, n is the time step,
while K is the number of the sensors in the network. R represents the extra
communication cost for the routing.

Topology Signal Algorithm Complexity Cost

Star

RM Different Estimators
in Section 8.2.1 O(M3) O(K) +R

RM Static Sensor Fusion
in Section 8.2.1 O(KM3) O(K) +R

RM Transmission Local
in Section 8.2.2 O

(
(n+M)3

)
O(K) +R

RM Distributed Kalman Filter
in Section 8.2.2 O(KM3) O(K) +R

Arbitrary R1 Static Sensor Fusion
in Section 8.4.1 O(N 3

k ) O(K)

Example 8.5.5. In the network with star topology mentioned in the Sec-
tion 8.2.2, every sensor need sharing sending messages to the center fusion.
Thus the total communication cost is O(K) for each iteration, where K is the
number of sensors in the network. If the star topology relies on routing we
also have a maximum routing length R that is added to the communication
cost.

Example 8.5.6. In the network with arbitrary topology mentioned in the
Section 8.4.1, every sensor needs sending its messages with its neighbors.
Since via wireless communication channels, sensor can broadcast its messages
to all sensors inside its communication range, the total communication cost
is O(K) per iteration.

8.5.3 Summary of the computational complexity and com-
munication cost

In this section, we have studied the computational complexities and com-
munication cost for the distributed estimation methods summarized in the
preceding sections. Now, we summarize the result in Table 8.1.

In Table 8.1, Signal represents the signal tracked by the sensors net-
work, Complexity represents the computational complexity, whereas Cost
represents the communication cost. It is worth mentioning that the R in the
Cost represents the extra communication cost used for routing when the
sensors only have limited communication range.

The table shows that without considering routing, the communication
costs are approximately same for the networks with star and arbitrary topol-
ogy. However, the computational complexities vary for different algorithms.
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Generally, transmitting local estimation (in Section 8.2.2) needs most run-
ning time compared to other algorithms used in star topology. Moreover,
dynamic sensor fusion (in Section 8.2.2) needs more running time than the
static sensor fusion. Considering both the computational and communica-
tion complexities are important when designing systems in order to limit
the impact of any bottlenecks. If the available hardware have good proces-
sors but bad sensors with low bandwidth going with heavy computational
algorithms is desirable.

8.6 Conclusion

This chapter introduced basic notions of distributed estimation theory,
and some implications for the applications with and without considering the
limitations in the networks. Moreover, an analysis of the computational
complexity and communication cost of these distributed algorithms was per-
formed. Generally, the less the limited capability of the network and the
greater the knowledge of the physical phenomenon, the lower the complex-
ity of the resulting estimators. Nevertheless, it is often possible to establish
accurate distributed estimators in the networks. We remark that, this study
we gave here is an essential overview on some key aspects of distributed esti-
mation. Much more can be summarized (e.g., the convergence or consensus
properties of the distributed estimators).

Problems
Problem 8.1

Given a vector of random variables Y that is related to another vector of random
variables X, describe briefly what is the best linear estimator of X if one observes
an outcome of Y .

Problem 8.2 Mean square (MS) estimation (Ex.5.21 in (?))

Let X be a real-valued RV with a pdf of fX(x) . Find an estimate x̂ such that the
mean square error of x by x̂ is minimized when no observation is available.

Problem 8.3 ML estimates of mean and variance of Gaussian random variables

Consider n independent random samples from a Gaussian distribution N(µ, σ2) .
Let θ = (µ, σ) , that is θ1 = µ and θ2 = σ. Find the Maximum-Likelihood (ML)
estimates of µ and σ.
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Problem 8.4 MMSE estimator

In many situations, one has to estimate x from some noisy measurements y that
are a linear function of x plus some noise. Let X be a vector of random variables
having zero mean. Suppose that Y is a vector of random variables related to X
such that if x is an outcome of X, then an outcome of Y is y = Hx+ v, where H is
a constant matrix and v is a zero mean Gaussian noise having covariance Rv, with
v independent of X. Then, the MMSE estimate of X is given that Y = y is

P−1x̂ = HTR−1
v y

with error covariance
P−1 = R−1

X +HTR−1
v H .

Now, consider a network of n sensors. Let X be a random variables observed by
each sensor by the noisy measurement yi = Hix+ vi and i = 1, . . . , n, where all the
noises are uncorrelated with each other and with X. Let the estimate based on all
the measurement be x̂ and let x̂i the estimate based on only the measurement yi.
Then,

P−1x̂ =
n∑
i=1

P−1
i x̂i

where P is the estimate error covariance corresponding to x̂ and Pi is the estimate
error covariance corresponding to x̂i, with

P−1 =

n∑
i=1

P−1
i − (n− 1)R−1

X .

The above estimators, by the assumption that Hi is the i-th row of the matrix H,
give the same estimate. Assume that RX and Rv are diagonal matrixes. Motivate
wether the first estimator requires more computations than the second estimator
and suggest which one is best for a sensor network.

Problem 8.5 Distributed MMSE estimator

We would like to estimate a vector of unknown constant parameters x ∈ Rm using
a network of n distributed sensors. Each sensor makes a noisy measurement

yi = Hix+ vi i = 1, . . . , n.

Where Hi is an known matrix relating the unknown parameter to the measurement,
vi is a Gaussian noise with zero average and covariance matrix Rvi . Moreover vi’s
are assumed statistically independent noises. In vector notation one can formulate
y = Hx + v, where y, H and v are n × 1 vectors of yi, Hi and vi. Show that the
maximum likelihood (or MMSE) estimate of x given y is

x̂ =

(
n∑
i=1

HT
i R
−1
vi Hi

)−1 n∑
i=1

HT
i R
−1
vi yi .
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Problem 8.6 Unknown mean in Gaussian noise (Example C.1 in (Gustafsson,
2012))
Consider an unknown mean in Gaussian noise,

yk = x+ ek, ek ∈ N (0, σ2) .

Find the mean and variance of the sample average. Show that the sample average
is the minimum variance estimator.

Hint: use the CRLB.

Problem 8.7 Moments method (Example C.9 and C.10 in (Gustafsson, 2012) )
The method of moments is general not efficient and thus inferior to the ML method.
However, in many cases it is easier to derive and implement. For Gaussian mixtures,
the MLE does not lead to analytical solutions so numerical algorithms have to
applied directly to the definitions, where whole data vector has to be used. Using
the method of moments, closed expressions can be derived as functions of reduced
data statics.

The key idea is to estimate the first p moments of data, and match these to the
analytical moments of the parametric distribution p(y|x):

µi =E[yik] = gi(x) , i = 1, 2, . . . , p

µ̂i =
1

N

N∑
k=1

yik , i = 1, 2, . . . , p

µ =g(x) ,

x̂ =g−1(µ̂) .

Now consider a Gaussian mixture

p(y|x) = αN (y; 0, σ2
1) + (1− α)N (y; 0, σ2

2),

where
x = (α, σ2

1 , σ
2
2)T .

Assume that those σ are known. Using the method of moments, find the estimation
of α. If the variances are unknown, find the estimation of x.

Problem 8.8 Estimating reflectance
We want to measure the reflectance of a surface, for this task we are given three
lasers and three sensors that are suitable for the different lasers wavelength. The
lasers operate at the wavelengths 416nm, 543nm and 611nm with output powers at
0.05W, 0.1W and 0.075W respectably. The sensors has measurement variance of
0.005W2, 0.02W2 and 0.01W2.

The measured values are 0.0459 W, 0.0809 W and 0.0682 W.

(a) Assume all the measurements are sent to a fusion center. Express the relation
between the reflectance and the measured values.
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(b) Assume you have no information about the value of the reflectance. Calculate
what each sensor should transmit to the fusion center and form the estimate
of the reflectance and the error using this information.

(c) Repeat the calculations done in (b) but now include the fact that the re-
flectance must be a value between 0 and 1. Did the error change? Explain
any changes.

Problem 8.9 Error for 1-bit estimator

Prove that E (θ̂j − θ)2 is upper bounded by
4U

j + 1
when θ̂j is the 1-bit estimator

given by

θ̂j =
−2jU + x

j + 1
+

4U

j + 1

j∑
i=1

m(xi, ai) .

Problem 8.10 Distributed detection/estimation
A set of N nodes is randomly deployed on a field. Every node makes observations on
an unknown parameter θ ∈ [−1, 1]. The observations are corrupted by an additive
noise

xk = θ + vk, k = 1, 2, . . . , N ,

where vk is the noise, which is modeled as a random variable. These random
variables are assumed to be independent and identically distributed and with zero
mean. In particular, they are uniformly distributed over [−1, 1], with a probability
distribution function (pdf)

p(v) =
1

2
, if v ∈ [−1, 1] .

To get an accurate estimate of the parameter θ, each node reports its observations
to a fusion centre. However, due to message losses and medium access control
protocol, each node is allowed to transmit a message composed only by one bit.
In other words, each node reports a message mk(xk) ∈ {0, 1} to the fusion center.
The bit of the message is chosen as

mk(xk) =

{
1 , if xk ≥ 0
0 , if xk < 0 .

(a) Find the expectation E(mk) and variance of the one-bit message E(mk −
E(mk))2 for node k.

(b) Prove that E(mk −E(mk))2 is bounded above. Find the upper bound.

(c) Suppose that the fusion center uses a final fusion function f and estimator θ̂
to decide upon the parameter given by

θ̂ := f(m1, . . . ,mN ) =
2

N

N∑
k=1

mk − 1 .

Find E(θ̂) and E(θ̂ − θ)2.
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(d) Suppose we want the variance of estimate θ̂ less than ε. What is the minimum
number of nodes N to deploy so that such a variance bound is satisfied?



Chapter 9

Distributed Learning

Sensor nodes offer wide possibilities for distributed learning. In this
chapter we will explore different techniques of using learning algorithms in
WSNs. One of the reasons for using WSNs is that we are interested in
learning something about a phenomenon that they are sensing. There are
many phenomena, both natural and man made, that we do not know how
they work and WSNs allow us much greater freedom and autonomy than
other sensing equipment. Thus robust and precise techniques for distributed
learning using WSNs are desired. Towards this goal, we will in this chapter
study some general techniques for learning including the supervised learning
model and some time series models. We then reshape and remodel these
techniques to suite WSNs, while considering both the case of star networks
and the more general topologies. Special consideration is given to meet the
strict demands on energy conservation ever present in WSNs and we work
towards minimizing the required communication needs.

9.1 Learning in General

Learning is a very broad concept and in this chapter we are only going to
consider some prominent methods among the many learning methods that
are available. The type of learning we are interested in is the kind where
from some data or observations, we develop some way of giving information
of how the phenomena looks outside the given data. In other words, the
goal is to predict something. This could for example be predicting future
behavior by using data from the past or classifying a new object given data
on other similar ones. It could also be predicting the value of something
like the temperature in a spot given some measurements at other places and
times. The possible scope is very wide, here we are going to limit us to the
cases of classification and estimation in supervised learning and prediction
of future behavior using ARMA-time series.

207
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9.1.1 Supervised Learning

In supervised learning we are interested in finding a so called decision
rule, i.e., a function, g that can tell us how something behaves given some
input. Let X and Y be X -valued and Y-valued random variables, respec-
tively. The set X is known as the feature, input or observation space and
the set Y is known as the label, target or output space. These sets can in
general be complicated but for our need in this chapter we will restrict us
to the cases of classification and estimation problems. These correspond to
binary classification, Y = {0, 1}, and regression, Y = R, respectively. We
also restrict the input space to X ⊆ Rd.

We seek to find a decision rule g that can couple X and Y, or more
explicitly, given a X we want to find what Y corresponds to it. To quantify
how well the decision rule works we introduce a loss function l : Y ×Y → R
and seek a decision rule that minimizes the expected loss,

E {l(g(X), Y )}. (9.1)

In the case of classification we will use the zero-one loss function defined as

l(y, y′) :=

{
0 if y = y′

1 if y 6= y′
. (9.2)

In the case of estimation we will use the squared error:

l(y, y′) := ‖y − y′‖2 . (9.3)

Example 9.1.1. Consider the classification loss function in (9.2). In this
example we will explain how this loss function can tell us how well a certain
decision rule performs. Say that we are interested in predicting whether or
not a person’s cancer tumor is benign. We assume that we get some data
about the person and the tumor to give our decision rule. Then we can let
our decision rule predict if a group of persons have benign cancer or not. For
each person the loss function will tell if the decision rule was right, giving
us a 0, or wrong, giving us a 1. If we sum these number for all persons we
arrive at a measure of how well the decision rule does that can be compared
to other decision rules.

Example 9.1.2. Consider the classification loss function in (9.3). Now
assume we want to predict the temperature at some location in a room. We
have some decision rule to do this but want to know how well it performs.
This can be done by measuring the temperature at different locations and
letting the decision rule predict the outcome of these measurements given
their position. Then the results are compared using the loss function. If
the measurement said 20.4◦C and the decision rule predicted 19.7◦C we for
example get l(20.4, 19.7) = ‖20.4 − 19.7‖2 = ‖0.7‖2 = 0.49. By summing
these numbers up for all the measurements we get a number that tells how
good the decision rule does and helps us compare different decision rules.
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If we were to know the joint probability distribution, PXY , we could
simply minimize (9.1) for the estimation problem by choosing

g(x) := E {Y |X = x},

and for the classification problem:

g(x) :=

{
1 if P{Y = 1| X = x} > P{Y = 0| X = x}
0 otherwise

.

We will denote the minimum loss achievable by

L? := min
g
E {l(g(X), Y )}.

However, we rarely know PXY beforehand, which makes the solutions above
impractical. In supervised learning we assume no knowledge of PXY . The
idea in supervised learning is instead to use a collection of training data, i.e.,
a set of input-output pairs that are used to find g. We denote this training
data by

Sm := {(xi, yi)}mi=1 ⊂ X × Y .
We will assume that this data arises from some stochastic process and that
Sm = {(xi, yi)}mi=1 are independently and identically distributed (i.i.d.) with
(Xi, Yi) ∼ PXY .

We define a learning algorithm as the sequence {gm}∞m=1 of data de-
pendent decision rules gm : X × (X × Y)m → Y where we do not assume
anything regarding PXY . In each step of this learning algorithm a decision
rule gm(·, Sm) is constructed, this process is called training and the method
used is called a training algorithm. Given this learning algorithm {gm}∞m=1

we get the expected loss at step m given the random training data Sm by

Lm = Lm(Sm) = E {l(gm(X,Sm), Y )| Sm}.

Ideally we would like our learning algorithm to perform just as well as if we
would have know PXY beforehand. To quantify this wish, we introduce the
notion of universally consistent in the following definition:

Definition 9.1.3. A learning rule {gm}∞m=1 is universally consistent if and
only if E {Lm} → L? for all distributions PXY with E {Y 2} <∞.

Example 9.1.4. To understand how how a learning rule might be universally
consistent we consider the k-nearest neighbor rule. Here we have the decision
rule according to

gm(x, Sm) =
m∑
i=1

W i
m(x, Sm)yi
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with

W i
m(x, Sm)


1

k
if xi is among the k nearest neighbors to x

0 otherwise.

This learning rule will average the output form the k nearest training sam-
ples to estimate Y . Assuming that E {‖Y ‖} < ∞ this learning rule will be
universally consistent if

k →∞, k/m→ 0.

This means that we consider an ever larger number of nearest neighbors but
an ever decreasing fraction of the total training sample number. This gives
us an ever bigger number of samples to average and an ever smaller part of
the input space to consider. Thus it is reasonable that this decision rule will
perform well.

To continue our exploration of the supervised learning we will stat looking
at a special class of learning algorithms called kernel methods.

Kernel Methods

Kernel methods are a popular class of learning algorithms developed for
the supervised learning problem. It works by using so called kernel functions,
i.e., positive semi-definite functions κ : X×X → R. By positive semi-definite
function we mean that for all n ∈ N and for all x1, x2, ..., xn ∈ X , denoting
the n × n matrix K = (kij) where kij = κ(xi, xj), we have that K is a
symmetric and positive semi-definite matrix.

These kernel functions help measure similarity between input data. The
decision rule then associates each input x ∈ X to a weighted average of
training data outputs depending on the inputs similarity to training data
inputs. One popular decision rule is depicted below:

gm(x) := gm(x, Sm) =


∑m

i=1 κ(x, xi)yi∑m
i=1 κ(x, xi)

if
∑m

i=1 κ(x, xi) > 0

0 otherwise.
(9.4)

As stated now (9.4) works fine for the estimation problem but produces
unavailable values of Y for the classification problem. Most certainly the
obtained value will not be 0 or 1. By rounding to which ever of these is
closer however we get the right results.

There are infinite possibilities in the choice of the kernel function κ(·, ·).
How to make the specific choice for an application is not an easy task and is
in its own a big field. Here we will not restrict us to some specific case but
to get a feel for how they might look some commonly used kernel functions
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Table 9.1 Common kernels

κ(x, x′) Name

1 if ‖x− x′‖2 < r2
m

0 otherwise

}
Naive kernel

xTx′ Linear kernel

(1 + xTx′)d Polynomial kernel

e−‖x−x
′‖2/σ Gaussian kernel

1− ‖x− x′‖2 if > 0

0 otherwise

}
Epanechnikov kernel

1/(1 + ‖x− x′‖d+1) Cauchy kernel

can be found in Table 9.1. In the case of the naive and the Gaussian we
have an unknown parameter, rm and σ respectively. These are there to give
kernel more flexibility by modifying the kernels’ reach.

To show how we can use (9.4) and the kernels in Table 9.1 there follows
two examples below. One handles the case of classification and the other
estimation.

Example 9.1.5. To show how we can use the (9.4) for the classification
problem we consider the data set in Figure 9.1. Here the input space is
the two dimensional position in the x1x2-plane, x1, x2 ∈ [0, 5]. The points
marked with an X are negative results (0) and the points marked with an O
are positive (1). We now seek a decision rule to classify all points in the
plane. we can think of the measurements as whether or not there exists oil
under the ground at a given location in an area. To be able to predict where
we have oil and where it is absent we use the decision rule in (9.4) and use
a modified Gaussian kernel from Table 9.1:

κ(x, x′) = e−‖x−x
′‖2/0.3 .

Using this kernel and the underlying data we get a decision rule that give
the results in Figure 9.2. Here we have rounded the results from (9.4) to
the closer of 0 or 1. The grey area shows where the decision rule predicts
a positive outcome, in other words an O. The white area represents a nega-
tive outcome, i.e., an X. We can see that the decision rule classifies all our
training data in the right way indicating good performance.

Example 9.1.6. To show how we can use the (9.4) for the estimation prob-
lem we consider the data set in Figure 9.3. Here the input space is the two
dimensional position in the x1x2-plane, x1, x2 ∈ [−2.5, 2.5]. The blue cir-
cles with a number in are measured points. The lines in the background are
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Figure 9.1 Data for Example 9.1.5. Figure 9.2 Solution for Example
9.1.5.

contour lines with marked values of the measured quantity. It follows the
function y = 4x2

1 + 6x2
2. We now seek a decision rule to estimate all points

in the plane. We can think of the measurements as the height at different
locations on a piece of land. To estimate we use the decision rule in (9.4)
and, as in Example 9.1.5, use a modified Gaussian kernel from Table 9.1:

κ(x, x′) = e−‖x−x
′‖2/0.3 .

The result can be seen in Figure 9.4. The measured points are still visible
but in the background we now have the decision rule contour map. It ranges
from dark blue, 0-5, all the way to dark red, 35-40. As we can see the overall
shapes look quite similar, although the decision rule has not got as smooth
ellipse contours. The big differences can mostly be found at the places that
are most distant from the training data inputs. This makes sense as we have
less information at these places.

There can for example be shown that both the naive and the Gaussian
kernels can enable universally consistent learning by using (9.4). This is part
of the very general Stone’s theorem which however is beyond the scope of
this book. We merely take this as an indicator that these methods can give
us very good results.

Principle of Empirical Risk Minimization

Now returning to the task at hand, finding the minimizer of (9.1). This is
a bit tricky since we have no information on PXY . The principle of empirical
risk minimization requires the learning rule to minimize a data dependent
approximation of (9.1). If we have a big sample of training data the average
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Figure 9.3 Data for Example 9.1.6.
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Figure 9.4 Solution for Example
9.1.6.

of the losses given the individual samples should give a good approximation
of (9.1). This motivates the following equation:

gλm = arg min
f∈F

[
1

m

m∑
i=1

l(f(xi), yi) + λ‖f‖2F

]
. (9.5)

Here the first term is the empirical loss of the decision rule and the second
term acts as a complexity controller and thus regularizes the optimization.
λ ∈ R is a parameter that governs the trade off between the two. We have
also restricted the optimization variable, i.e., function, to be in a Hilbert
space F with the norm ‖ · ‖F . Now if we let m → ∞ and λ → 0 we should
arrive at a good approximation of (9.1). Equation (9.5) will be used in the
next section and we shall see that we can find an analytic solution to the
problem for certain functions using the squared error loss function. For now
let us look at Example 9.1.7.

Example 9.1.7. To see how (9.5) can be used let us consider the data set
found in Figure 9.5, we use the same notations as in Example 9.1.5. Let us
say we want to find a line to split the x1x2-plane, x1, x2 ∈ [0, 5], into two
parts, telling the algorithm how to classify the points. We choose this type
of function for its simplicity and the fact that it can not give to good results,
which benefits the demonstration of how empirical risk minimization works.
We seek a decision rule as follows:

g(x) =

{
1 if ax1 + x2 < b

0 otherwise.
(9.6)

The problem therefore lies within finding the values of the coefficients a and
b. To specify the empirical risk in this function we let λ = 0, use the zero-one
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Figure 9.5 Data for Example 9.1.7. Figure 9.6 Solution for Example
9.1.7.

loss function in (9.2) and restrict F to the functions of the form (9.6). The
problem has now boiled down to finding the line that classifies the points with
the least number of errors. As we can see not classifying any of the points
wrong will be impossible. By using a computer and varying a and b we can
find optimal solutions. One of these are a = −0.35, b = 2.25, depicted in
Figure 9.6. Here we have made two classifications which are wrong, which
have been encircled in orange. This is as good as a function of the form in
(9.6) can perform for this data set.

Reproducing Kernel Methods

Reproducing kernel methods generalize the simple kernel rule in (9.4),
while employing the principles of empirical risk minimization. To be more
exact the reproducing kernel methods follow (9.5) using F = HK , i.e., the
reproducing kernel Hilbert space, or simply RKHS given a kernel κ(·, ·). We
can, given a kernel κ(·, ·), construct a unique collection of functions HK such
that

κxi = κ(·, xi) ∈ HK ∀ xi ∈ X ,
m∑
i=1

αiκxi ∈ HK ∀ {αi}mi=1 ⊂ R, m <∞. (9.7)

If we equip HK with an inner product defined by 〈κxi , κxj 〉HK = κ(xi, xj),
extend HK using linearity to all the functions of the form (9.7), and include
the point-wise limits, then HK is called an RKHS. From this follows that

f(x) = 〈f, κx〉HK
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for all x ∈ X and all f ∈ HK . This is the reproducing property that has
given the name. The norm associated with HK can now be denoted by
‖ · ‖HK .

Let us return to the learning using kernel methods. The inner product
structure of HK implies the following theorem. The proof complexity goes
behyond the scope of this book, but can be found in (Schölkopf and Smola,
2002).

Theorem 9.1.8 (Representer Theorem). The minimizer gλm ∈ HK of
(9.5) admits a representation of the form

gλm(x) =
m∑
i=1

cλm,iκ(x, xi) , (9.8)

for some cλm ∈ Rm.

Theorem 9.1.8 is very important since it highlights that while the opti-
mization in (9.5) is defined over a possibly infinite dimensional Hilbert space,
the minimizer must lie in a finite dimensional subspace. It also shows us how
the RKHS method generalizes the simple kernel method described in (9.4),
owing to the fact that (9.8) reduces to (9.4) for a particular choice of cλm. The
significance of the Representer Theorem can perhaps most clearly be seen if
we consider the least-square estimation where we can find the solution for
cλm in analytic form. This is done in Example 9.1.9.

Example 9.1.9. We are seeking the function on the form (9.8) that mini-
mizes (9.5) with l(·, ·) according to (9.3). In other words finding

fo = arg min
f∈HK

F (f) ,

where we denote

F (f) =
1

m

m∑
i=1

‖f(xi)− yi‖2 + λ‖f‖2HK .

Now we use the optimal function fo and consider the new function:

F̃ (ε) = F
(
fo + εf̃

)
,

where ε ∈ R and f̃ ∈ HK . The minimum is obtained with ε = 0 and thus we
have that

d

dε
F̃ (ε)

∣∣∣∣
ε=0

=
d

dε
F
(
fo + εf̃

)∣∣∣∣
ε=0

= 0, ∀ f̃ ∈ HK .
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Expanding F (f) we get
d

dε
F
(
fo + εf̃

)∣∣∣∣
ε=0

=

=
d

dε

(
1

m

m∑
i=1

‖fo(xi) + εf̃(xi)− yi‖2 + λ‖fo + εf̃‖2HK

)∣∣∣∣∣
ε=0

=
2

m

m∑
i=1

(fo(xi) + εf̃(xi)− yi)f̃(xi) + 2λ〈fo + εf̃ , f̃〉HK

∣∣∣∣∣
ε=0

=
2

m

m∑
i=1

(fo(xi)− yi)f̃(xi) + 2λ〈fo, f̃〉HK = 0 .

This is true for all f̃ ∈ HK and in particular f̃ = κx giving us

1

m

m∑
i=1

(fo(xi)− yi)κ(x, xi) + λ〈fo, κx〉HK =

1

m

m∑
i=1

(fo(xi)− yi)κ(x, xi) + λfo = 0 . ⇒

fo =

m∑
i=1

1

λm
(fo(xi)− yi)κ(x, xi) =

m∑
i=1

cλm,iκ(x, xi) .

We conclude that the minimizer fo ∈ HK of F (f) can be represented on the
form

fo(x) =

m∑
i=1

cλm,iκ(x, xi)

and further that the coefficients are implicitly given by

cλm,i =
1

λm
(fo(xi)− yi) =

1

λm

 m∑
j=1

cλm,jκ(xi, xj)− yi

 .⇒

yi =
m∑
j=1

cλm,jκ(xi, xj) + λmcλm,i .

This can be written on matrix form as y = (K + λmI)cλm, giving us

cλm = (K + λmI)−1y . (9.9)

Here K = (kij) is the kernel matrix, with kij = κ(xi, xj). We thus have
proven the Representer theorem for the case of squared error loss function
and shown how the coefficients cλm can be found by solving a system of m
linear equations.

The method discussed in Example 9.1.9 is well understood and has been
highly successfully implemented in applications ranging from bioinformatics,
see (Scholkopf et al., 2003) and (Ben-Hur and Noble, 2005), to hand-written
character recognition, see (Bahlmann et al., 2002) and (Zhang et al., 2008).
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9.1.2 ARMA-time Series

Auto-Regressive and Moving-Average time series, or short ARMA-time
series, is a very versatile method for understanding how natural phenomena
work. The strategy requires the phenomena of interest to be bounded and
vary around a constant value. This makes the approach perfect for studying
phenomena that vary around some equilibrium point. The main focus for
ARMA-time series is in predicting how a system will behave in the future
given how it has behaved in the past. As it is a time series it uses discrete
time samples and relates these different time steps to each other. The ARMA
model considers how the system has looked in the past time steps but also
how disturbing forces has looked in these steps. The model considers only
a certain number of past steps, which may be different for the system state
and disturbances parts however.

ARMA-time series can be used for predictions in lots of different sys-
tems, e.g., whether, population monitoring, climate, pollution monitoring,
economy and different natural phenomena like earthquakes and volcano erup-
tions. The possibilities are practically infinite and many areas to which
ARMA can be applied are probably still waiting to be found. As we shall
see many processes that we know to be described by ordinary differential
equations, ODEs, can approximately be described by ARMA-time series as
well.

Auto-Regressive Model

The AR part of an ARMA process handles how earlier states of the
system influence the next state according to

d(n) = v(n) + β1d(n− 1) + β2d(n− 2) + ... + βMd(n−M), (9.10)

or in a more compact form

d(n) =
M∑
m=1

βmd(n−m) + v(n), (9.11)

where d(n) is the state of the system at time n, βm are the weights deter-
mining the systems behavior, M is the number of time steps back that the
model considers, and v(n) is some stochastic white noise, which contains
disturbances to the system. If we denote

uA(n) = [d(n− 1) d(n− 2) ... d(n−M)],

ωoA = col{β1, β2, β3, ..., βM}, (M × 1),

where col{·} is the column vector containing the given arguments, we can
then write

d(n) = uA(n)ωoA + v(n). (9.12)
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Example 9.1.10. Here we familiarize ourselves with the concept of an AR-
time series. To do this we consider a simple AR(1) process, i.e., where we
have M = 1. We then have

d(n) = βd(n− 1) + v(n) .

In this example we are going to consider the development of oil price. To do
this we assume that d(n) is the difference from the average oil price in some
arbitrary currency, at month n. v(n) is the price change originating from
disturbances in the oil supply at month n. We will restrict restrict ourselves
to 0 < β < 1, here choosing β = 0.5. We demand a positive value for the
model to be feasible and a value less than one for the process to be stationary.
Let us say that we start at the equilibrium of d(0) = 0. We assume that we
have a decrease in oil supply at month n = 1 resulting in v(1) = 100, could
be a oil rig explosion. We hence have

d(1) = βd(0) + v(1) = 0.5 · 0 + 100 = 100 .

So at month n = 1 we will have a higher price than usually. This is to expect
since we have had a decrease in supply. If we assume no other disturbances,
at month n = 2 we will have

d(2) = βd(1) + v(2) = 0.5 · 100 + 0 = 50 .

By this logic the price difference d(n) will half every month, and return to the
initial value after infinite time. This is assuming no further disturbances, of
course. This model makes sense, since a decrease in oil supply will discourage
investors, giving the system an investor inertia which will increase prices.
As the investors gradually return, the price will approach the initial one,
assuming no further changes in supply. This behavior can be seen in Figure
9.7.

Moving-Average Model

The MA part of an ARMA process handles how earlier interference, or
disturbances, to the system, {un}n−∞, influence the current state and is de-
scribed by

d(n) = v(n) + β0u(n) + β1u(n− 1) + ... + β(M−1)u(n−M + 1), (9.13)

or again in the more compact form

d(n) =

M−1∑
m=0

βmu(n−m) + v(n), (9.14)

where d(n) is the state of the system at time n, u(n) the interference at time
n, βm are the weights determining the systems behavior, M is the number
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of time steps that interference has an effect on the system, and v(n) is some
stochastic white noise, no longer containing the disturbances since these are
accounted for. If we denote

uM (n) = [u(n) u(n− 1) ... u(n−M + 1)],

ωoM = col{β0, β1, β2, ..., β(M−1)}, (M × 1),

we can then write

d(n) = uM (n)ωoM + v(n). (9.15)

Example 9.1.11. Here we familiarize ourselves with the concept of an MA-
time series. To do this we consider a simple MA process, where we have
M = 2. We have

d(n) = β0u(n) + β1u(n− 1) + v(n) .

In this example we are going to consider the development of sales of big pack
ice cream. To do this we assume that d(n) is the difference from the average
sold number of big packs at a particular store on day n. u(n) is the on
day n change in temperature from the day before. v(n) is some white noise
parameter, which we here neglect (v(n) = 0 ∀ n). We will use β0 = 100 and
β1 = −50. We start at the equilibrium of d(0) = 0 and u(0) = 0. We assume
that we have an increase in temperature on day n = 1, u(1) = 3. We hence
have

d(1) = β0u(1) + β1u(0) = 100 · 3− 50 · 0 = 300 .

So on day n = 1 we will have more sales than usually. This is to expect since
we have had an increase in temperature, making ice cream more tempting.
If we assume no further changes in temperature, on day n = 2 we will have

d(2) = β0u(2) + β1u(1) = 100 · 0− 50 · 3 = −150 .

The sales are now lower than usual, which can be explained by the higher
sales the day before. Because people bought ice cream yesterday, most have
not finished the big pack the next day and will not need to buy another that
day. As the series looks now the sales would be back at usual in the next day
if no further temperature changes occur. This behavior can be seen in Figure
9.8. By involving a higher order MA process the model could consider more
steps, and thus have a longer lasting outcome.

The Complete ARMA Model

The AR and MA models are very similar and can be combined in the
ARMA model. With un = [uM (n) uA(n)] and ω = col{ωM , ωA} we get the
complete model as

d(n) = unω
o + v(n), (9.16)
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where un is a row vector, of length M = MAR +MMA, containing all the in-
formation on the history of the system and the interference it has experienced
and ω is a column vector of equal length containing the system model. v(n)
is now though to contain factors that have not been considered and mea-
surement noise. If one knows the ω of the system one knows exactly how it
works and can therefore predict future behavior based on the knowledge of
un.

Example 9.1.12. Here we familiarize ourselves with the concept of an
ARMA-time series. To do this we consider a simple ARMA(1,1) process,
i.e., where we have MAR = 1, MMA = 2. We then have

d(n) = β0u(n) + β1u(n− 1) + β2d(n− 1) + v(n) .

In this example we are going to consider the development of monthly sales at
a company store. To do this we assume that d(n) is the difference from the
average sales during month n. u(n) is the difference in advertisement for the
company during month n as opposed to the usual. v(n) is some white noise
parameter, which we here neglect (v(n) = 0 ∀ n). We will use β0 = 100,
β1 = 70 and β2 = 0.5. We start at the equilibrium of d(0) = 0 and u(0) = 0.
We assume that we have an increased advertisement during month n = 1
giving us u(1) = 10. We hence have

d(1) = β0u(1) + β1u(0) + β2d(0) = 100 · 10 + 70 · 0 + 0.5 · 0 = 1000 .

So during month n = 1 we will have more sales than usually. This is to
expect since we have advertised more for the products we sell. If we assume
that all future advertisement is at the usual level, giving u(n > 1) = 0, on
day n = 2 we will have

d(2) = β0u(2) + β1u(1) + β2d(1) = 100 · 0 + 70 · 10 + 0.5 · 1000 = 1200 .

The sales of month n = 2 are slightly higher than those of month n = 1. This
can be explained by the still lasting effects of the advertisement, the MA-
part, in combination with the loyalty that costumers get to the store after
shopping there last month, the AR-part. The coming months, the effects
of the advertisement will be gone, but the loyalty effect will keep costumers
buying goods, keeping the sales higher, although decreasingly, for a long time.
This behavior can be seen in Figure 9.9.

Applied to Differential Equations

Many phenomena are mathematically described by differential equations
and it would therefore be very useful if ARMA-series could be applied to
these phenomena. By using discrete approximations for the derivative one
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ends up with terms that can be fit into the ARMA-framework. Here we
merely consider the simple Euler Backwards method of approximating the
derivative whereas other more accurate methods, e.g., Tustin’s Formula,
could certainly be applied. Here however we just want to show that ARMA-
time series and differential equations can be two means of describing the
same thing.

The Euler Backwards method for the first and second derivative are given
by:

D

Dt
d(n) ≈ 1

T
(d(n)− d(n− 1)) , (9.17)

D2

Dt2
d(n) ≈ 1

T 2
(d(n)− 2d(n− 1) + d(n− 2)) . (9.18)
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Using these equations many differential equations can be written on the
ARMA-form. In Example 9.1.13 we show how an electric circuit can be
described by ARMA-time series through converting an ODE.

Example 9.1.13. Consider a circuit which consists of an inductor, a resis-
tor, a capacitor and a voltage source. We denote the resistance, the induc-
tance and the capacitance of the circuit with R, L and C, respectively. We
also denote the electromotive force from the voltage source by E(t). Then the
current through the circuit, I(t), follows

L
D2

Dt2
I(t) +R

D

Dt
I(t) +

1

C
I(t) =

D

Dt
E(t) .

Now we use (9.17) and (9.18) to convert the equation above to a time series,
assuming short enough time step T :

L
1

T 2
(I(n)− 2I(n− 1) + I(n− 2)) +R

1

T
(I(n)− I(n− 1)) +

1

C
I(n)

=
1

T
(E(n)− E(n− 1)) ⇒(

L

T 2
+
R

T
+

1

C

)
︸ ︷︷ ︸

A

I(n)−
(

2
L

T 2
+
R

T

)
︸ ︷︷ ︸

B

I(n− 1) +
L

T 2︸︷︷︸
D

I(n− 2)

=
1

T
E(n)− 1

T
E(n− 1) ⇒

I(n) =
1

AT
E(n)− 1

AT
E(n− 1) +

B

A
I(n− 1)− D

A
I(n− 2)

With

u(n) = [E(n) E(n−1) I(n−1) I(n−2)] , ωo = col

{
1

AT
,− 1

AT
,
B

A
,−D

A

}
,

we have
I(n) = u(n)ωo + v(n) ,

where we have added a white noise term for measurement uncertainties. This
is on the ARMA-time series form and hence we have shown how an ODE
can be transformed into an ARMA-time series. Note that ωo here has two
terms pertaining to the MA-part and another two pertaining to the AR-part.

9.1.3 Optimization in Learning Algorithms

A very common problem that arises in leaning is optimization, i.e., find-
ing some parameter that optimizes some problem. As we shall see, the
problem we are interested in through this chapter is minimizing a function.
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This has already been seen in equation (9.5). Generally we formulate this
as the problem of finding the parameter f that generates the lowest value of
some cost function J(f). The problem can be stated as finding the optimal
fo

fo := arg min
f∈F

J(f) , (9.19)

where F is some space which we constrain f to be within. This can be
anything from Hilbert function space to the simple R.

Steepest Decent Method

One very useful way of solving minimizing optimization problems is the so
called Steepest Decent or Gradient Decent Method. It uses that the gradient
of a function points in the direction where the function grows fastest. Thus
the opposite direction is the direction of steepest decent. By always following
the path of steepest decent the algorithm finds a minimum, given a short
enough step size. If we further know that we have a convex problem the
method will find the global minimum. The algorithm is an iterative process
according to

x(n+ 1) = x(n)− µn∇xJ(x(n)), (9.20)

where x(n) is the variable of the cost function J , µn is the step size at time
n and ∇x is the gradient with respect to x.

Mean Square Cost Function

The cost function J can be constructed in many ways but a very common
one, and the one we will mostly be using in this chapter, is the Mean Square
Error, MSE, cost function. It takes the expected squared error as the cost to
minimize. In general, the variable which we want to find can be a function,
a vector, or even a scalar. When constructing the error we assume that we
have some measurement d, some parameters x prescribed to the measurement
and an estimate of the sought parameter f . In general the sought quantity
f and the prescribed parameters x are related to the measurement d by a
function h(f, x). This function predicts the measurement based on the model
parameter f and the prescribed parameters x. This now gives us the error

e(f) := h(f, x)− d

The prescribed parameters could for example be the training data input in
the kernel approach or the vector u in the ARMA method. The function
h(f, x) is usually simple as in the kernel approach, where we have h(f, x) =
f(x). More discussion on this will follow. Anyhow we now get the MSE as

MSE := J(f) := E
{
‖e(f)‖2

}
= E

{
‖h(f, x)− d‖2

}
. (9.21)
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Network with a fusion center.
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Figure 9.11 An example of a gen-
eral network topology where each
node acts as a peer.

The MSE cost function has the nice property of being a convex function
making optimization involving it easy to solve.

9.2 Learning in WSNs

The usage of WSNs in learning problems opens for new possibilities.
WSNs allow for information gathering over a wide area and the network
can be made very robust. In this section we will look at how we can use
the methods from last section in WSNs. In the same way that WSNs has
certain advantages they also have their downsides, one of which is the tight
constraints on energy consumption. This makes the communication in the
network costly and hence makes many learning methods unfit in WSNs. De-
pending on which network topology the network has different techniques can
be used and in this section we will discuss both the star topology and general
network topology. The star network has a central node, known as the fusion
center, to which all other nodes are connected and no other connections ex-
ist. The general network has no predefined structure but generally connects
only nodes that are close enough to each other. Examples of these types of
network can be seen in Figure 9.10 and Figure 9.11. We will look at methods
that try to communicate as little as possible to avoid depleting the nodes’
energy sources.
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9.2.1 Star Topology

When the network has the shape of a star and thus has a fusion center,
the central node, the network nodes could simply send the measurements
to the fusion center. At the fusion center all the calculations in the used
learning algorithm could be performed. This approach however does not take
the restrictions on communication into account and in practice the limited
energy and bandwidth makes this simple approach unfeasible. Furthermore
it does not use the available computation capabilities that all the nodes
posses. Thus we would like to investigate how local calculations can lower
the need for communication and still give good learning results.

Lower Limit on Communication

In this section we show that good learning performance can be achieved
by reduced communications. Here we consider kernel methods in general
but since we can see ARMA-time series as a special case of the estimation
problem in supervised learning the results studied in this section hold there
as well.

We suppose that the restrictions on power consumption and bandwidth
limit each sensor to only send one bit of information in each time step.
In each time step the fusion center sends a request for information to the
nodes which each has the choice to respond with one bit, i.e., 0 or 1, or to
abstain from sending anything. Under these assumptions, we are interested
in studying if is possible to achieve universally consistent learning. As stated
by the following theorem this is possible.

Theorem 9.2.1 (Classification and Estimation with Abstention). Suppose
that the data from the sensors, Sm = ∪Kj=1S

j
m are i.i.d. with (Xi, Yi) ∼

PXY ∀i ∈ {1, ...,K}, and the individual sensors know K, i.e., the size of
the network. Then, in binary classification under zero-one loss, and in esti-
mation under squared-error criterion, there exist a sensor decision algorithm
and a fusion rule that enable universally consistent distributed learning with
abstention.

Theorem 9.2.1 is proven by construction and the proof can be found in
(Predd et al., 2006a). By proven by construction we mean that given the
constraints a sensor decision algorithm and a fusion rule are found that are
provable universally consistent. The decision rule that was proven to be
universally consistent in the classification case is discussed in more detail in
Example 9.2.4.

As the problem is formulated now the sensors are able not to respond. If
each sensor has to respond however, giving them two choices instead of three
will this still be possible? The two following theorems address this issue.
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Theorem 9.2.2 (Classification without Abstention). Suppose that the data
from the sensors, Sm = ∪Kj=1S

j
m, are i.i.d. with (Xi, Yi) ∼ PXY ∀i ∈

{1, ...,K}, and the individual sensors know K, i.e., the size of the net-
work. Then in binary classification under zero-one loss there exist sensor
decision algorithm and a fusion rule that enable universally consistent dis-
tributed learning without abstention.

Theorem 9.2.2 is in the same way as Theorem 9.2.1 proven by construc-
tion in (Predd et al., 2006a). In Example 9.2.5 this case is considered. To
tackle the estimation problem without abstention we first introduce an as-
sumption.

Assumption 1. Assume that the considered fusion rule is invariant to the
order in which bits are received from the network. Further assume that for
all x ∈ X the decision rule is Lipschitz continuous in the average Hamming
distance, i.e., if we order the received bits in a vector b ∈ {0, 1}m and denote
the decision rule gm(x, b), there exists a constant C so that

‖gm(x, b1)− gm(x, b2)‖ ≤ C 1

m

m∑
i=1

‖b1i − b2i‖

for every b1, b2 ∈ {0, 1}m .

With Assumption 1 we are now ready for the theorem about estimation
without abstention.

Theorem 9.2.3 (Estimation without Abstention). Suppose that the data
from the sensors, Sm = ∪Kj=1S

j
m are i.i.d. with (Xi, Yi) ∼ PXY ∀i ∈

{1, ...,K}, that the individual sensors know K, i.e., the size of the network
and that the fusion rule satisfies Assumption 1. Then, for any sensor de-
cision algorithm that obeys the constraints of distributed learning without
abstention, there does not exist a regular fusion rule that is consistent for
every distribution PXY with E {Y 2} <∞ under the squared-error criterion.

Theorem 9.2.3 is proved in (Predd et al., 2006a) through a counter-
example, and thereby establishes the impossibility of universally consistency
in distributed regression without abstention under Assumption 1, which im-
plies a restricted but reasonable class of wireless sensor networks.

Example 9.2.4. Here we discuss a universally consistent decision rule for
the classification with abstention. We assume that each sensor has one train-
ing data sample. When the fusion center wants to know how to classify x ∈ X
it sends this value to all the nodes. These in turn use their training sample,
(xk, yk), and x to decide whether to respond, with 0 or 1, or to abstain. The
nodes decide this by using the naive kernel in Table 9.1 here denoted κ(·, ·).
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Let us denote the response from node k as δk. We can then formulate the
response as

δk(x) =

{
yk if κ(x, xk) = 1

abstain otherwise
.

The fusion center then fuses these responses to get the prediction y according
to

g(x) =

1 if
∑

i∈R δi ≥
1

2
‖R‖

0 otherwise
.

Here R denotes the set of nodes that did respond and ‖R‖ denotes the size
of this set, i.e., the number of responding nodes. The decision rule is simply
the majority vote of the nodes that are close enough, determined by rm in
the naive kernel, to x to get to vote. This decision rule is actually the same
as the one in (9.4) given that we round the result. Now for the decision rule
to be universally consistent we have to restrict ourselves to the case where

rm → 0 and (rm)dK →∞ as K →∞ ,

where d is the dimension of the input space X. If these conditions hold we
have a universally consistent learning rule.

Example 9.2.5. Here we discuss a universally consistent decision rule for
the classification without abstention. We use the same assumptions as in
Example 9.2.4. We only remove the possibility of abstaining from responding,
forcing the nodes to send either 0 or 1 back to the fusion center. This time we
include a function that on random chooses either 0 or 1 with equal probability.
We call this function θ0/1, and have P (θ0/1 = 1) = P (θ0/1 = 0) = 0.5. With
this we get

δk(x) =

{
yk if κ(x, xk) = 1

θ0/1 otherwise
.

The fusion center then fuses these responses to get the prediction y according
to

g(x) =

1 if
∑K

i=1 δi ≥
1

2
0 otherwise

.

Here we let the close nodes respond their training data output but let the other
nodes make an unqualified guess. With many of these unqualified responses
they will cancel each other out. Now for the decision rule to be universally
consistent we have to restrict ourselves to the case where

rm → 0 and (rm)d
√
K →∞ as K →∞ ,

where again d is the dimension of X. If these conditions hold we have a
universally consistent learning rule.
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9.2.2 General Topology

In this section we consider the case when our network has general struc-
ture. We mainly discuss two ways of handling general topology WSNs, using
a cyclic path through the network or using diffusion methods. The methods
are very general and can be applied to almost any network. The methods
also do not assume there to be any fusion center and thus gets rid of the
central link that requires long range communication and gives the network
a weak link. The methods are first developed in general and then applied to
the two cases of kernel methods and ARMA-time series in the last parts of
this section. Throughout this chapter we will assume that the networks we
are working with are connected, i.e., the graph representing the network is
connected which means that for each pair of nodes in the graph there is a
path connecting them.

As we have seen earlier the concept of learning often boils down to finding
a parameter that minimizes a cost function J(·). This is the case in this
section and thus we discuss the network cost function below.

Network Cost Function

Because of the network structure the cost function J(f), to which we want
to find the minimizer f , usually naturally splits up in a sum of individual
cost functions Jk(f) over all the K sensors:

J(f) =

K∑
k=1

Jk(f) . (9.22)

This is not always the case, but we will in this chapter only consider this
situation. This restriction is in practice not very restricting since terms that
does not naturally belong to one of the sensors can be split between them
or just be assorted to one of them.

The network’s goal is to estimate the function or variable f , which min-
imizes the cost function J(f), and we can therefore use the previously de-
scribed steepest decent method in (9.20). If fn denotes the n-th iterative
approximation of f we have:

fn+1 = fn −
µn
2
∇fJ(fn), (9.23)

but from (9.22) we get

∇fJ(f) = ∇f
K∑
k=1

Jk(f) =
K∑
k=1

∇fJk(f) =
K∑
k=1

Hk(f),

where we define the new function

Hk(f) , ∇fJk(f). (9.24)
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We then get

fn+1 = fn −
µn
2

K∑
k=1

Hk(fn) . (9.25)

Thus we have modified the steepest decent algorithm to the case where the
cost function splits up into a sum.

Local MSE Cost Functions

A commonly used and simple local cost function, i.e., Jk(·), is just the
local MSE in (9.21). We will denote this choice of local cost function as
J loc
k (·), where the superscript symbolizes that only local information is used.

This gives us

J loc
k (f) = MSEk = E

{
‖hk(f)− dk‖2

}
, (9.26)

Using Jk(f) = J loc
k (f) in (9.22) gives us

J(f) =

K∑
k=1

J loc
k (f) =

K∑
k=1

E
{
‖hk(f)− dk‖2

}
. (9.27)

If we use the J loc
k (f) in (9.26) and (9.24) we have

H loc
k (f) = ∇f E

{
‖hk(f)− dk‖2

}
= E

{
2(hk(f)− dk)

dhk(f)

df

}
. (9.28)

As stated now equation (9.28) is a bit abstract, but the form of h(·, ·) is
usually very simple as we shall see in Section 9.2.3 and 9.2.4, when we apply
this equation in the specific cases of kernel methods and ARMA-time series.

Cyclic Path Method

Notice how, if we use Hk(fn) = H loc
k (fn), each update of fn in (9.25)

involves a sum incorporating one term with only local data from each sensor.
This motivates the following algorithm:

ψn0 ← fn−1,

ψnk ← ψnk−1 −
µn
2
H loc
k (fn−1), k = 1, ... ,K, (9.29)

fn ← ψnK ,

with H loc
k (fn) as in (9.28). If there exists a cyclic path through the network,

as in Figure 9.12, this algorithm can be implemented by letting each sensor
compute its estimate, ψnk , from its measured value and the preceding sen-
sor’s estimate, ψnk−1. One problem is that (9.29) requires all sensors to know
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Figure 9.12 A small network using the incremental cyclic path method in
(9.30). The arrows represent information flow and the gray lines show pos-
sible connections which are not used in this algorithm.

the value of fn, which enters into H loc
k (·). To remedy this problem one can

instead of the actual value of fn use the previous local estimate ψnk−1. This
type of estimate is known as an incremental solution. We also allow the step
size to vary with k, instead giving

Incremental Cyclic Path Method

ψn0 ← fn−1,

ψnk ← ψnk−1 −
µk,n

2
H loc
k (ψnk−1), k = 1, ... ,K, (9.30)

fn ← ψnK .

In Figure 9.12 the algorithm is depicted for a small network consisting of
nine nodes. How well (9.30) performs depends on what model is used and
we will later in this chapter discus this for kernel methods and ARMA-time
series.

A More General Cost Function

The local MSE cost function in (9.26) is in many cases a very good choice
for Jk(f), but sometimes a more flexibility is required. Thus we here consider
a more general cost function inspired by equation (9.5). Here we define the
complete function and seeks local ones that fulfill (9.22) and not the other
way around as in the case of the local MSE cost function. Equation (9.5)
has a loss function l(·) which we here take as the MSE function in (9.21)
giving us:

J(f) =

K∑
k=1

E
{
‖hk(f)− dk‖2

}
+ λ‖f‖2F ,
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which can be rewritten as

J(f) =
K∑
k=1

[
E
{
‖hk(f)− dk‖2

}
+ λk‖f‖2F

]
, (9.31)

as long as
∑K

k=1 λk = λ. Now imagine that each sensor not only gets in-
formation from one other sensor, as in the cyclic method, but from all the
sensors of the set of neighbors, Nk, defined as:

Nk = {the set of nodes connected to k including itself}. (9.32)

Now we want to find a Jk(f) that satisfies (9.22), given the J(f) in (9.31), but
that incorporates the information from the other sensors in Nk. To achieve
this goal let us first consider the set of non-negative set of coefficients {ckl}
that for all values of k satisfy:

ckl ≥ 0,
K∑
l=1

ckl = 1, and ckl = 0 if l /∈ Nk . (9.33)

If we collect the coefficients {ckl} in a matrix C = {ckl} the conditions in
(9.33) implies that

C1 = 1, (9.34)

where 1 is the (K × 1) vector defined as

1 , [1, 1, ..., 1]T . (9.35)

This makes C a right stochastic matrix. If the restrictions in (9.33) are
followed the values of {ckl} can be chosen freely. There are a lot of different
ways of doing this and by choosing a good way the performance will be
better. As we shall see this is the same requirements that we have for an
other set of coefficients {akl}. For this reason the choices presented for them
will work here as well. So keep this in mind when reading the part called
Combination Rules for Diffusion Methods.

Now using the coefficients in (9.33) we achieve a Jk(f) that satisfies
(9.22), given the J(f) in (9.31), through:

Jgen
k (f) =

∑
l∈Nk

clk E
{
‖hl(f)− dl‖2

}
+ λk‖f‖2F .

Where the superscript symbols that this local cost function is of the general
kind. Note the change in the order of the subscript on c. Remembering
equation (9.26) we can write this:

Jgen
k (f) =

∑
l∈Nk

clkJ
loc
l (f) + λk‖f‖2F . (9.36)
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Here it is worth to note that if we choose clk = δlk, or equivalently C = I,
and λk = 0 ∀ k we have that (9.36) reduces to (9.26), where δlk is the
Kronecker delta and I the identity matrix.

The equation of (9.36) can be motivated by considering the cost function
in (9.31) and using (9.26) and (9.33):

J(f) =
K∑
k=1

[
J loc
k (f) + λk‖f‖2F

]
=

K∑
k=1

[(
K∑
l=1

ckl

)
J loc
k (f) + λk‖f‖2F

]

=

K∑
k=1

K∑
l=1

cklJ
loc
k (f) + λ‖f‖2F =

K∑
l=1

K∑
k=1

cklJ
loc
k (f) + λ‖f‖2F

=
K∑
l=1

[
K∑
k=1

cklJ
loc
k (f) + λl‖f‖2F

]
.

By now switching the index labeling l↔ k and using that ckl = 0 if l /∈ Nk
we arrive at:

J(f) =

K∑
k=1

∑
l∈Nk

clkJ
loc
l (f) + λk‖f‖2F

 =

K∑
k=1

Jgen
k (f) ,

where we have defined Jgen
k (f) ,

∑
l∈Nk clkJ

loc
l (f) + λk‖f‖2F , which is as in

(9.36).
Now with the new cost function of (9.36) we can calculate the new

Hgen
k (f) using (9.36) according to (9.24):

Hgen
k (f) = ∇f

∑
l∈Nk

clkJ
loc
l (f) + λk‖f‖2F


=
∑
l∈Nk

clk∇fJ loc
l (f) + λk∇f‖f‖2F =

∑
l∈Nk

clkH
loc
l (f) + 2λkf ⇒

Hgen
k (f) =

∑
l∈Nk

clkH
loc
l (f) + 2λkf , (9.37)

where we have H loc
l according to (9.28).

Diffusion Methods

We previously showed how the cyclic patch method works in principle.
The idea was that each node only received data from a single node and sent
data to yet another single node. This approach to the distributed learning
problem is in some cases a very good choice. The method is very energy
efficient, only requiring the nodes to send and receive from short distances
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once per time step. The communications always happen the same way mak-
ing them easier to optimize as well. Thus this algorithm is very good when
energy constraints are tight. However, it has some limiting factors making it
unsuitable for general situations. First, the algorithm requires that there is
a cyclic path through the network, which might not be the case, at least not
that makes sense to implement. We do not want the distances to be large
between cyclic neighbors, and if it exceeds the average distance of neighbor-
ing nodes too much the algorithm does not make much sense. Secondly the
cyclic path makes the network very vulnerable to node failures, since one
failure ruins the cyclic path. Thirdly the algorithm requires the nodes to
wait for all the other nodes between updates and this limits how fast the al-
gorithm can run. These arguments combined gives strong incentive to search
for better methods to use when these issues produce problems.

In most networks, the topology allows for the nodes to communicate
with many other nodes and if this is not prohibited by energy restraints we
should take advantage of this possibility. If the communication is omnidi-
rectional there might not be more energy exhausting to communicate with
all neighbors than it is with one of them. We can benefit from the expanded
communication by instead of at node k using the estimate from node k − 1,
as in (9.30), use a weighted average estimate from the nodes of the set Nk
introduced in (9.32). This can be done by:

ψnk =
∑
l∈Nk

akψ
n−1
l with

∑
l∈Nk

akl = 1 ∀ k. (9.38)

By using (9.38) as the the local estimate, fn, and iterate the equation (9.23)
once for all nodes in each time step using their local cost functions, Jk which
here is not specified, we get a so called diffusion method, or more specifically
the Combine-Then-Adapt diffusion algorithm, or short CTA. This method
can be described as:

CTA diffusion

φnk ←
∑
l∈Nk

aklψ
n−1
l ,

ψnk ← φnk −
µn,k

2
Hk(φ

n
k) . (9.39)

Here the cyclic update has been removed, instead in all time steps n all sen-
sors performs the two step process depicted above. This makes it possible
for all nodes to perform updates at the same time and significantly reduces
the idle waiting time. By switching the step order in the CTA algorithm we
get the Adapt-Then-Combine version as
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Figure 9.13 The CTA algorithm using local adaptive data. There are three
ordered steps: Exchange, Combine and Adapt. All nodes perform this pro-
cess in every time step, here depicted for node k.
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Figure 9.14 The ATC algorithm using local adaptive data. There are three
ordered steps: Adapt, Exchange and Combine. All nodes perform this pro-
cess in every time step, here depicted for node k.

ATC diffusion

φnk ← ψn−1
k − µn,k

2
Hk(ψ

n−1
k ),

ψnk ←
∑
l∈Nk

aklφ
n
l . (9.40)

The CTA and ATC algorithms can be seen depicted, for the case where
Hk(·) = H loc

k (·), in Figure 9.13 and 9.14 respectively. If we were to use the
general Hgen

k (·), we would have to include another exchange stage before the
adapt state, where we share information of the local data.

A few comments are in order. The CTA and ATC methods are very simi-
lar and the question is whether they perform equally well. We will look more
closely at this question in Section 9.2.5, but we can mention here that the
ATC method generally perform better. This can be intuitively understood
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by noting that in ATC the adaption step is performed first incorporating new
data before sharing its estimate. This has the effect that the ATC method
always works with more recent data than the CTA.

Motivation for Diffusion Methods

The algorithms in (9.40) and (9.39) can be more formally motivated by
looking at the global cost function at one of the nodes. As described by
(9.22) the global cost function, J(·) for the entire network is a sum over the
sensor’s individual cost functions. We can rewrite the equation as

J(f) = Jk(f) +
K∑
l=1
l 6=k

Jl(f) .

Note that we have not yet limited what the sought minimizer f is. It could,
e.g., be a function, vector or scalar. We do however assume that it is con-
tained in the set {F} and has a definition of norm ‖ · ‖2F . If we relax the
global cost function, J(f), to the neighborhood of k, we obtain

JNk (f) = Jk(f) +
∑

l∈Nk/{k}

Jl(f) .

By now approximating Jl(f) ≈ bkl‖f−fol ‖2F , where fol = arg minf∈F (Jl(f)),
and introduce the regularization parameter, δ > 0, we get the more conve-
nient form

JNk (f) = Jk(f) + δ
∑

l∈Nk/{k}

bkl‖f − fol ‖2F , (9.41)

for some {bkl} such that
∑

l∈Nk bkl = 1 ∀ k.
By now using the steepest decent algorithm in (9.20), and denote the

approximation of f at time n and at node k by ψnk , we get:

ψnk = ψn−1
k − µn,k

2
∇fJNk (ψn−1

k )

= ψn−1
k − µn,k

2
∇f

Jk(ψn−1
k ) + δ

∑
l∈Nk/{k}

bkl‖ψn−1
k − fol ‖2F


= ψn−1

k − µn,k
2
∇fJk(ψn−1

k )− µn,k
2
δ

∑
l∈Nk/{k}

bkl∇f‖ψn−1
k − fol ‖2F

= ψn−1
k − µn,k

2
∇fJk(ψn−1

k )− µn,kδ
∑

l∈Nk/{k}

bkl(ψ
n−1
k − fol ).
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This can be split into a two step process

φnk ← ψn−1
k − µn,k

2
∇fJk(ψn−1

k ),

ψnk ← φnk − µn,kδ
∑

l∈Nk/{k}

bkl
(
ψn−1
k − fol

)
. (9.42)

By now substituting φnk for ψn−1
k and using the local estimate, φnl , as an

approximation for the local optimal, fol , the right hand side of the second
equation in (9.42) takes the form:

φnk−µn,kδ
∑

l∈Nk/{k}

bkl(φ
n
k−φnl ) = (1−µn,kδ+µn,kδbkk)φnk+

∑
l∈Nk/{k}

µn,kδbklφ
n
l

=
∑
l∈Nk

aklφ
n
l with akl =

{
1− µn,kδ + µn,kδbkk if k = l

µn,kδbkl otherwise.

Note that since
∑

l∈Nk bkl = 1 we have
∑

l∈Nk akl = 1 for all k. If we choose
δ = 1/µn,k we furthermore get akl = bkl. Using the above derived expressions
we get the new form of (9.42) as

φnk ← ψn−1
k − µn,k

2
∇fJk(ψn−1

k ),

ψnk ←
∑
l∈Nk

aklφ
n
l . (9.43)

We have according to (9.24) that ∇fJk(f) = Hk(f). This transforms al-
gorithm (9.43) into (9.40). Thus we have shown how the ATC method can
be motivated. The motivation for the CTA method is very similar only
switching the order that some of the steps are done in altering how the
approximations are done.

Combination Rules for Diffusion Methods

There are several ways to select the combination weights {akl} for the
diffusion methods in (9.39) and (9.40). Here we will discuss some of the most
common variants. Some of these are very simple other more complicated,
especially the adaptive ones that will be considered last. We will here use the
notation of A = {akl} for a (K ×K) matrix containing all the combination
weights. The combination weights are conformed to the following:

akl ≥ 0,

K∑
l=1

akl = 1, and akl = 0 if l /∈ Nk, (9.44)

which implies that

A1 = 1, (9.45)
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where we have 1 according to (9.35), making A a right-stochastic matrix.
These are the same requirements that were put on the matrix of coefficients
C = {ckl} found in (9.33) and (9.34). This means that all the following
choices for {akl} will work for {ckl} as well.

The simplest way of deciding the weights is just to choose them so to
average the incoming values, with

nk , |Nk| = number of nodes in the neighborhood including k itself

this means
akl =

1

nk
∀ l ∈ Nk .

This is a very robust choice which exploits the connectivity of the network
quite fully. It is also easily adapted to node failures and network topology
changes as the weights only depend on the number of current connections.

Consider the Laplacian matrix below:

Lkl =


−1 if k 6= l are linked

nk − 1 if k = l

0 otherwise

The weights are the chosen as follows:

A = IN − γLkl ,

for some constant γ. By choosing γ = nmax where nmax is the maximum
degree across the network we end up with

akl =


1/nmax if k 6= l are linked
1− (nk − 1)/nmax if k = l

0 otherwise
. (9.46)

Another choice is just γ = K, the size of the network, giving

akl =


1/K if k 6= l are linked
1− (nk − 1)/K if k = l

0 otherwise
. (9.47)

The Metropolis rule considers how connected the neighbors are as well, with
nk and nl denoting the degree of node k and l respectively, we have

akl =


1/max(nk, nl) if k 6= l are linked
1−∑l∈Nk/{k} akl if k = l

0 otherwise
. (9.48)
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A similar choice is the following, that does not yield symmetric weights,
which the Metropolis rule does, but generally performs better is

akl =

{
nl/
∑

m∈Nk nm if k and l are linked or k = l

0 otherwise
. (9.49)

The above described weights are, as long as the network topology remains
intact, constants in time. This is of course not the case for all combination
weights. Here below we we consider the so called adaptive combination
weights. The idea here is to consider the relative measurement noise levels
at the nodes and weight them thereafter, giving the nodes with lower noise
higher weights. The two most commonly used combination rules are Hastings
rule and the relative-variance rule. The Hastings rule is described in the
following equation, where σ2

v,l is the measurement variance at node l.

akl =


σ2
v,l

max{nkσ2
v,k, nlσ

2
v,l}

if k 6= l are linked

1−∑l∈Nk/{k} akl if k = l

0 otherwise.

(9.50)

The relative-variance rule on the other hand is:

akl =


σ−2
v,l∑

l∈Nk σ
−2
v,l

if k and l are linked or k = l

0 otherwise.
(9.51)

There is one major problem with (9.50) and (9.51) is that we in general
know nothing about the variances σ2

v,l. This means that to be able to use
the mentioned combination rules we have to have a way of approximating
these values.

Working towards this goal we first consider the following filters:

γ2
kl(n) = (1− νk)γ2

kl(n− 1) + νk‖φn−1
l − φn−1

k ‖2, (CTA) (9.52)

ζ2
kl(n) = (1− νk)ζ2

kl(n− 1) + νk‖ψnl − φn−1
k ‖2, (ATC) (9.53)

where νk ∈ (0, 1) is a small positive coefficient. The reason that we have
two of them is that they use the combination weights at different times
in each iteration. In the ATC version we have to save the value of φn−1

k

since this is the latest value that is not influenced by the measurements
from neighboring nodes in general. Remember that the adaptive state may
incorporate information from its neighborhood. It can be verified that as the
number of iterations goes towards infinity, i.e., n→∞, the values of γ2

kl and
ζ2
kl approximately approaches a constant multiplier times the sought σ2

v,l.
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Since this constant multiplier is common to all γ2
kl and ζ

2
kl we can use them

directly in the place for σ2
v,l in both (9.50) and (9.51). Notably this allows us

to get adaptive combination weights without sending any more information
than we already do. Some of the above discussed combination rules does
however require us to send additional information in form of the node degrees.
This increases the required communication, but we can for example only
update these numbers every tenth iteration or suchlike, assuming that the
topology does not change considerably in each iteration. If the topology
does not change at all, we can just perform this communication step once
and hence the problem vanishes.

9.2.3 Distributed Learning Using Kernel Methods

In this section we are going to discuss how we can use kernel methods
in distributed learning in WSNs. In a previous section we already handled
the case with a star topology network and so we will now consider a gen-
eral network. In the kernel methods we use so called training data to find
the desired learning rule. This training data can be assumed to have been
acquired before the communication begins or in steps during the algorithm.
The training data in WSNs is usually pairs of (xk, dk(n)), where xk usually
is the position of the node which may or may not include the time and dk
the corresponding measurement of y.

We are now going to consider how we can apply the derived learning
algorithms from former sections for the specific case of kernel methods. This
means that we are searching for a function f ∈ HK that for a x gives
us a y, where x could be the space-time position and y the quantity that
we are interested in, e.g. the temperature. Since we are interested in the
function that predicts y which we measure directly, in dn,k, we get the simple
hk(f) = f(xk) in (9.26) giving

J loc
k (f) = E {‖f(xk)− dk‖2}. (9.54)

Because f ∈ HK we have that hk(f) = f(xk) = 〈f, κxk〉HK , which in (9.28)
gives us:

H loc
k (f) = ∇fJ loc

k (f) = E

{
2(〈f, κxk〉HK − dk)

d〈f, κxk〉HK
df

}
= E {2(〈f, κxk〉HK − dk)κxk} = E {2(f(xk)− dk)κxk} .

Since we do not know the statistical distributions on the variables in the
equation above we need some way to approximate the expectation value.
Without any prior knowledge we use the instantaneous estimate E {X} = X,
i.e., LMS approximation, giving us

H loc
k (f) = 2(f(xk)− dk)κxk . (9.55)
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With the finished expression for Hk(f) in (9.55) we can use the previously
derived framework for the cyclic path and diffusion methods in (9.30), (9.39)
and (9.40).

Cyclic Path Method

The cyclic path method in (9.30) uses the H loc
k (f) in each update. Here

however we would like to generalize this a little bit by lending the complexity
controlling term in (9.37). This is done since we are optimizing a function
which we would like to stay relatively uncomplicated. This causes no prob-
lems in the algorithm since this term, given the set {λk}Kk=1, will not need
any other information not already pertained in the original algorithm. This
will give us

Hk(f) = 2(f(xk)− dk)κxk + 2λkf.

If this is put into (9.30) instead of H loc
k we get, where we have put a time

index n on xk to indicate that they can be time dependent:

ψn0 ← fn−1,

ψnk ← ψnk−1(1− µk,nλk)− µk,n(ψnk−1(xk,n)− dk(n))κxk,n , k = 1, ... ,K,

fn ← ψnK . (9.56)

This algorithm requires the nodes to send and receive functions, which might
sound very abstract and communication inefficient. This is certainly true
for the general case, but we have restricted our function to HK and if we
preprogram the sensors with the kernel they only need to know the input
values {xi}mi=1 and the corresponding weights cλm as in (9.8). If the input at
the nodes does not change, these vectors will be bounded to the size of the
network. If the network is big however this could still be much data. This
set of data is exactly the same size as the total training data sat and thus,
we could as well just let the sensors relay this information to a fusion center
which could use the technique in (9.9), which probably gives better results.
Thus this method might not be to useful.

Diffusion Methods

Using the general derived Hgen
k (f) in (9.37) and the the H loc

k (f) in (9.55)
we get:

Hgen
k (f) = 2

∑
l∈Nk

clk(f(xl)− dl)κxl + 2λkf, (9.57)

which in gives us the diffusion methods in (9.39) and (9.40) as:
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General CTA diffusion LMS

φnk ←
∑
l∈Nk

aklψ
n−1
l ,

ψnk ← φnk(1− µn,kλk) + µn,k
∑
l∈Nk

clk(dl(n)− φnl (xl,n))κxl,n . (9.58)

General ATC diffusion LMS

φnk ← ψn−1
k (1− µn,kλk) + µn,k

∑
l∈Nk

clk(dl(n)− ψn−1
l (xl,n))κxl,n ,

ψnk ←
∑
l∈Nk

aklφ
n
l . (9.59)

These algorithms generally perform very well. The problem is again that
we are passing functions between nodes, this time to all neighboring nodes.
This requires extensive communication and might hence only be plausible to
implement where the energy consumption requirements are not too limiting.
If we assume that the xl do not vary with time, the communicated vectors
representing the functions will be bounded and we could save some data
compared to the case where all information is relayed to a fusion center.
The real gain with this method however is that it, in comparison to both
centralized solutions and the cyclic path method, is far more robust. Here we
have no crucially important nodes and if the combination rules can handle
node failures the system will work just fine if a couple of nodes fail, whereas
the other methods might or will fail.

Alternating Projection Algorithms

Here we address the issue of the above described methods. We thereby
seek a distributed method for finding a decision rule that does not involve
sending functions but rather real valued numbers. To construct the algorithm
we assume that each sensor gets one training data sample (xk, yk). The
algorithm could be constructed more generally by letting number of data
samples be bigger. Here however we mostly seek to convey the idea of the
algorithm. Further assume that sensor k can query the data (xl, yl) from
its neighbors l ∈ Nk. Then each sensor could solve the local approximation
of the global problem in (9.5) using the squared error loss function by only
considering its neighborhood:

min
f∈HK

∑
l∈Nk

(f(xl)− yl)2 + λk‖f‖2HK

 . (9.60)

The solution to this problem can be solved locally and all sensors would
have a local estimate. This however does not use the entire networks data
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and resemble more a network of sensors taking turns at being fusion center.
The idea of the alternating projection algorithm is to include a set of mes-
sage variables {zl} ∈ R, one for each sensor. These can then be read and
changed by all sensors in Nk. Each sensor initializes with zl = yl then the
sensors take turns in querying its neighbors message variables and solving
its neighborhood problem. When this is done it updates its neighbors vari-
ables according to the function it just found. When a cycle is done the same
procedure is repeated until some convergence criteria is reached. We call the
estimate at sensor k at time n for fnk . A little change is made to the problem
above so that sensor k controls the inertia of the algorithm by changing the
complexity term of (9.60). This makes the problem that sensor k solves at
iteration n:

min
f∈HK

∑
l∈Nk

(f(xl)− zl)2 + λk‖f − fnk ‖2HK

 . (9.61)

The resulting algorithm can be seen in Table 9.2 and is also depicted in
Figure 9.15. Here this algorithm has only been motivated by intuitive argu-
ments, however the algorithm can be analyzed formally by using successive
orthogonal projection, SOP, algorithms applied to network typologies and
kernel methods. This is however far outside the scope of this book and will
hence be omitted, the analysis can be found in (Predd et al., 2005) and
(Predd et al., 2006b) for the interested reader. By using the framework for
SOP algorithms it can be shown that the algorithm in Table 9.2 converges
in the limit n→∞ and does so to an approximation of the global optimum.
That it does not the optimal solution can be understood by considering that
it solves a optimization problem of lower degree at each node than would
be done centrally and thus the solution according to the Representer theo-
rem in (9.8) is of lower degree. Thus we can only reach the best possible
approximation that the sub-dimensional space offers for the real solution.

A few comments on the algorithm above are in order. We have achieved
an algorithm that only sends, in the iteration, real valued numbers and
hence is much more suited for many situations where the communication
constraints are strong. As stated above in (9.61), each sensor has to solve an
optimization problem, which might seem abstract. This can however be done
in a similar manner as to (9.9), which involves solving a |Nk|-dimensional
system of linear equations. Another thing worth mentioning is that as stated
now the the algorithm in Table 9.2 the sensors perform their local calculations
in order. The calculations could be parallelized as long as none of the message
variables zl are updated simultaneously. We mentioned, in the beginning of
this section, that the assumption that each sensor only contribute with one
training data sample could be loosened to include many samples. If this
is the case the sum of squared errors would include all the training data
samples of the neighboring sensors.
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Table 9.2 Training distributively with alternating projections

Initialization: Neighboring sensors share training data inputs:
sensor k stores {xl}l∈Nk

Sensor k initializes zk = yk, fnk = 0 ∈ HK

Training: for n = 1, ..., N
for k = 1, ...,K

Sensor k:
Queries zl ∀ l ∈ Nk
fnk := arg min

f∈HK

[∑
l∈Nk(f(xl)− zl)2

+λk‖f − fn−1
k ‖2HK

]
Updates zl ← fnk (xl) ∀ l ∈ Nk

end
end

9.2.4 Distributed Learning Using ARMA-time Series

In this section we assume that the phenomena we are interested in learn-
ing about can be described by ARMA-time series according to

dk(n) = uk(n)ωo + vk(n), (9.62)

where dk(n) is the scalar parameter we are interested in predicting, uk(n)
the history of the system at node k containing previous system states and
interference, v(n) is some white noise and ωo is the vector that describes
how the system works, see Section 9.1.2. We use M as the length of uk and
ωo as in Section 9.1.2.

The goal of the network is to find ωo, which is defined as

ωo = arg min
ω

K∑
k=1

Jk(ω).

Because of this we use ωo to denote the optimal solution and ω to denote
an estimate of this parameter. Because of the structure in (9.62) we assume
that the optimal solution ωo also is the optimal solution to the local cost
functions. This is the case for the cost functions that we are going to use.

We assume that the data {dk(n), uk,n} follows the following criteria:

1. The unknown vector ωo relates the data {dk(n), uk,n} as in (9.62) where
vk(n) is some white noise sequence with variance E {‖vk(n)‖2} = σ2

v,k

which is independent of {dk(n), uk,n} for all k, n.

2. The sequences {uk,n} are spatially independent, i.e., uk,n is indepen-
dent of ul(n) for k 6= l.



Chapter 9. Distributed Learning 244

2

3 k

5

6

7

8

9

2

3 k

5

6

7

8

9

arg min{zl} fnk

2. Optimization
{{xl}, fn−1

k }
l ∈ Nk

1. Query

3. Update

z3

zk

z5

z6
z7

fnk (x3)
fnk (xk)

fnk (x5)

fnk (x6)

fnk (x7)

Figure 9.15 The alternating projection algorithm in use. All nodes perform
three ordered steps in each time step: Querying, Optimization and Updating.
The optimization step finds the optimal function according to (9.61).

3. The sequence {uk,n} is independent over time, i.e., time independent.

4. The regressors {uk,n} arise from a temporally white distribution.

Some of these criteria might not be completely fulfilled in many situa-
tions, especially when employing a MA-part the time independence part is
a bit problematic. Here the regressors exhibit a time shift structure. How-
ever, there have been extensive studies in stochastic approximation litera-
ture showing that results based on the time independent approximation still
match well with the actual solutions for sufficient small step sizes. Therefore
we will use the above conditions and assume that sufficiently small step sizes
are used.

It is worth mentioning what capabilities the nodes are assumed to have.
The general ARMA-time series contains both an auto-regressive, AR, and a
moving-average, MA, part. The AR part is straight forward, it only requires
the nodes to store a certain number of old measurements. The MA part
however assumes that we know how the past disturbances to the system
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have looked. This translates to that we either can measure these disturbing
forces or that the node itself produces them, and know their appearance.
Thus it requires the nodes to have sensors that can measure the disturbances
or probing equipment to produce the wanted disturbances. Because of this
simpler sensors might only be capable of implementing the AR part. This is
not too limiting however since some unknown disturbances could be factored
into the white noise term vk(n) in (9.62). From here on out we will not
distinguish between ARMA-time series containing an AR part, a MA part
or both since the analysis is the same regardless.

We denote the M ×M covariance matrices of the data u by

Ru,k = E {uTk uk}, (9.63)

and the M × 1 cross-covariance vectors by

Rdu,k = E {dkuTk }. (9.64)

Given this model we see that we are trying to predict d(n) according to (9.62)
and hence we get, skipping the index for the time n, hk(ω) = ukω. This can
be used to calculate different Hk(f) that enable the use of the previously
derived algorithms in (9.30), (9.39) and (9.40) to find the desired ωo.

Cyclic Methods

In the cyclic method we use the local MSE cost function and hk(ω) = ukω
in (9.28) gives us:

H loc
k (ω) = E

{
2(ukω − dk)

d ukω

dω

}
= E

{
2(ukω − dk)uTk

}
= 2E

{
uTk ukω − dk(n)uTk

}
= 2(Ru,kω −Rdu,k),

so we have

H loc
k (ω) = 2(Ru,kω −Rdu,k), (9.65)

with Ru,k and Rdu,k according to (9.63) and (9.64). Inserting (9.65) into
(9.30) then gives:

ψn0 ← ωn−1,

ψnk ← ψnk−1 − µk(Ru,kψnk−1 −Rdu,k), k = 1, ... ,K, (9.66)
ωn ← ψnK .

Here we have assumed temporally homogeneous step sizes but allowed spatial
differences.

However since we generally do not know the statistical profile, and hence
{Ru,k, Rdu,k}, we must approximate these to be able to use the algorithm in
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general. This is done by using local instantaneous approximations according
to the LMS type, i.e.,

Ru,k ≈ uTk,nuk,n, Rdu,k ≈ dk(n)uTk,n. (9.67)

This gives a new much more applicable algorithm according to:

Cyclic Incremental LMS

ψn0 ← ωn−1,

ψnk ← ψnk−1 + µku
T
k,n(dk(n)− uk,nψnk ), k = 1, ... ,K, (9.68)

ωn ← ψnK .

Here one could initiate with e.g. ω−1 = 0 and repeat the algorithm above
until good enough precision is achieved.

Diffusion Methods

Now when considering diffusion methods we are allowed much greater
freedom in the choice of cost functions Jk(ω). We start by using the general
cost functions described in (9.36). This gives us a Hk(ω) according to (9.37):

Hgen
k (ω) =

∑
l∈Nk

clkH
loc
l (ω) + λkω. (9.69)

Since we are searching for a vector ωo, and not a function, we do not need
to incorporate the λ-term which regularizes the algorithm not to generate to
big and complex answers. The desired ωo might be a vector of large norm,
but that is the vector we want to find and if the model is correct it should
not cause any bigger problems. This motivates us to simplify (9.69):

Hgen
k (ω) =

∑
l∈Nk

clkH
loc
l (ω).

Now using (9.65) and the LMS approximations in (9.67), omitting the time
indicator n, we instead get

Hgen
k (ω) = 2

∑
l∈Nk

clku
T
k (ukω − dk). (9.70)

By using the derived Hk(ω) from (9.70) in the algorithm for the diffusion
methods, (9.39) and (9.40), we get:

General CTA diffusion LMS

φnk ←
∑
l∈Nk

aklψ
n−1
l ,

ψnk ← φnk + µk
∑
l∈Nk

clku
T
l,n(dl(n)− ul,nφnl ). (9.71)
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General ATC diffusion LSM

φnk ← ψn−1
k + µk

∑
l∈Nk

clku
T
l,n(dl(n)− ul,nψn−1

l ),

ψnk ←
∑
l∈Nk

aklφ
n
l . (9.72)

When using these algorithms one usually initialize with {ψ−1
l = 0} for all l

and then iterate the algorithms above once for each node in each time step
n ≥ 0. In both of these algorithms all sensors need send information two
times in each iteration, one time in the combine step where they send their
temporary local estimate and another time in the adapt step where they
share their local correction term, uTk,n(dk(n) − uk,nψn−1

k ). Both times the
conveyed message is a vector of length M . This makes the algorithm quite
communication heavy and a bit slower than it has to be. The algorithms in
(9.71) and (9.72) are very versatile and robust but might in some situations
be a bit to complicated. In many cases we would like to lower the communi-
cation requirements and thus we discuss a simpler version of the above. By
only using the local data in the adapt step, i.e., clk = δlk (δlk is as before
the Kronecker delta) or equivalently using Jk(ω) = J loc

k (ω), we can simplify
algorithms (9.71) and (9.72) to

Local CTA diffusion LMS

φnk ←
∑
l∈Nk

aklψ
n−1
l ,

ψnk ← φnk + µku
T
l,n(dl(n)− ul,nφnl ). (9.73)

Local ATC diffusion LSM

φnk ← ψn−1
k + µku

T
l,n(dl(n)− ul,nψn−1

l ),

ψnk ←
∑
l∈Nk

aklφ
n
l . (9.74)

Here we can as earlier proposed initiate with φ−1
l = 0 for all l and then

iterate the above described algorithm for n ≥ 0 until good enough conver-
gence is reached. Here we only use local data for the adaptive step and
thus Figure 9.13 and 9.14 show exactly how this method works. The above
described methods are often a very useful in practice and not to communi-
cation demanding or complicated. We shall in the next chapter discuss how
the discussed methods perform concerning convergence speed and precision.

9.2.5 Convergence Speed and Precision

In this section we will look at the convergence of some of the described
algorithms. Special focus will be given methods using ARMA-time series
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under certain constraints. This is because of their simpler form to the kernel
methods making them less troublesome to analyze. We will however try to
communicate how these results can give clues to how the given conclusions
can be thought of in general.

First of all let us decide what restrictions we will apply when performing
the analysis. We will restrict our attention to the case of ARMA-methods
and use the criteria on the data presented in the numbered list in the be-
ginning of section 9.2.4. We will further assume , i.spatially independent
regressor covariancese. Ru,k = Ru for all k where Ru,k is defined as in (9.63).
Additionally we restrict our cast to Ru > 0, i.e., that Ru is positive-definite,
and hence invertible. We further assume that the step sizes used in the al-
gorithms are of the same size, i.e., µn,k = µ. We will regardless of algorithm
assume that we use the local MSE cost function, i.e., we have Jk(·) = J loc

k (·)
where J loc

k (·) is as in (9.26). This means that we limit us to the algorithms
in (9.66), (9.73) and (9.74). If we assume all the criteria described in this
paragraph are fulfilled all the results and theorems that following analysis
yields are correct.

The Non-cooperative Case

First, before looking at the distributed cases we discuss the case where
the nodes do not cooperate. This is important to see how the cooperative
algorithms perform in comparison. We will be considering the mean square
deviation, MSD, as time goes towards infinity and we define:

MSDk = lim
t→∞

E {‖ωo − ωk,t‖2}, (9.75)

where ωk,t is the estimate at node k by the time t. The time limits can be
translated to a limits in n the number of steps the algorithm in question has
taken.

Let us start with the case where each sensor uses the steepest decent
method and the local MSE cost function with the LMS approximation. Here
wee do not allow any cooperation. In this case we get:

ωn+1
k = ωnk + µuTk,n(dk(n)− uk,nωnk ).

It is known that for sufficiently small µ this will converge and we get

MSDncop,k ≈
µM

4
σ2
v,k, (9.76)

where M is the length of ω and the ncop in the subscript indicates that this
is for the non-cooperative case. It is further known that the condition for
convergence is that µ obeys:

µ <
4

λmax(Ru)
, (9.77)
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and for such µ the MSD has a convergence rate, towards its steady state
value, of

r ≈ 1− µ · λmin(Ru) , (9.78)

where λmax(Ru) and λmin(Ru) are the biggest and smallest eigenvalues of
Ru respectively. The smaller r ∈ (0, 1) the faster the convergence. We will
not prove either of these but rather simply consider them as true.

By averaging the MSDk over the network we get the network MSD as:

MSDnetwork
ncop ≈ µM

4
·
(

1

K

K∑
l=1

σ2
v,l

)
. (9.79)

The Centralized Case

Now we consider the case where all the information is sent to a fusion
center as in the star topology case. In this case the fusion center can use
an average of the local cost functions as the global cost function giving the
algorithm

ωn+1 = ωn + µ

(
1

K

K∑
l=1

uTl,n(dl(n)− ul,nωn)

)
.

This algorithm will have a better MSD according to

MSDcent ≈
µM

4
· 1

K
·
(

1

K

K∑
l=1

σ2
v,l

)
, (9.80)

i.e., a K-fold performance improvement. Note that this is without degrading
the convergence rate which remains the same as in (9.78). We also have the
same condition (9.77) for convergence. Now the question is however the
distributed algorithms can perform equally well. This question is attended
to in the following sections.

The Cyclic Algorithm

Now we turn our attention to the incremental cyclic algorithm in (9.68).
If we take some inspiration from the centralized case and introduce a factor
of 1/K to cycle each step, so to make the step size for each time step n equal
to µ and not K · µ. We then get

MSDcycl ≈ MSDcent ≈
µM

4
· 1

K
·
(

1

K

K∑
l=1

σ2
v,l

)
, (9.81)

while still keeping (9.77) and (9.78), as in the non-cooperative case. It is
worth noting however that the convergence rate is in time steps n and how
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long time one step corresponds to is different from algorithm to algorithm.
Here in the cyclic path one time step includes a whole cycle through the net-
work, which most certainly will take longer time than processing everything
centrally, since there is a lot of idle waiting time involved with the cyclic
algorithm.

Diffusion methods

When we consider the Diffusion methods, the analysis is more complex.
Remember that we have restricted our attention to the local CTA and ATC
LMS methods in (9.73) and (9.74). The analysis is complicated and involves
advanced linear algebra. Thus we will only present the following facts and
theorems.

First, we can conclude that the convergence rate for diffusion networks is
still given by (9.78) and that the condition (9.77) still holds. As we mentioned
before there are performance differences between the CTA and the ATC
algorithms. The convergence rates are both the same as stated above. The
MSD is not however as stated by the following theorem (9.2.6). Remember
that the matrix A is the matrix containing all the combination weights for
the network.

Theorem 9.2.6 (Comparing MSD Performance). Assume that A is
symmetric or close to symmetric. Then the ACT diffusion method achieves
the lowest network MSD and

MSDnetwork
ATC ≤ MSDnetwork

CTA ≤ MSDnetwork
ncop . (9.82)

Now we are interested in how the MSD performance is at the individual
nodes. The restrictions on the combination weights {akl} found in (9.44) and
the assumption that the network is connected gives the matrix A = {akl}
a new property. A is then what is known as a primitive matrix, which
in turn implies that A has a unique eigenvalue at one and that all other
eigenvalues will have magnitude less than one. If we denote the eigenvector
corresponding to the eigenvalue at one with p which we have normalized so
that its terms add up to one. p = col{p1, p2, ..., pK} will then be defined by:

Ap = p, pT1 = 1, 0 < pl < 1 , (9.83)

where we have 1 according to (9.35). With this definition we now have the
next theorem.

Theorem 9.2.7 (Node and Network Diffusion MSD). For connected
diffusion networks the performance of each individual node is approximately
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equal to the network MSD and they are both well approximated by

MSDdiff,k ≈ MSDnetwork
diff ≈ µM

4

(
K∑
l=1

p2
l σ

2
v,l

)
+O(µ2) (9.84)

for all nodes k.

Comparing (9.84)to (9.80) in the centralized case we have that the effect
of diffusion cooperation is to scale the noise variances by the factor {pl}
instead of the previous 1/K2. These factors are determined by the combina-
tion rule matrix A. Note that Theorem 9.2.7 does not limit us to either CTA
or ATC which means that the performance difference found in Theorem 9.2.6
must arise from second order terms in µ.

To get a better picture of what the factors {pl} means we look at the case
where A is symmetric. This is the case for some of the previously discussed
combination rules. Anyhow a symmetric A gives us

AT1 = A1 = 1 , (9.85)

which in turn implies that p = 1/K or pl = 1/K for all nodes l. Thus
equation (9.84) takes the form, where we have neglected the second order
terms:

MSDdiff,sym,k ≈ MSDnetwork
diff,sym ≈

µM

4
· 1

K
·
(

1

K

K∑
l=1

σ2
v,l

)
, (9.86)

where sym in the subscript indicates that A is symmetric. This is the same
MSD as for the centralized case. Lastly we want to examine however us-
ing adaptive combination rules enhances performance. To achieve the best
performance we want to solve the following problem:

Ao = arg min
A∈A

K∑
l=1

plσ
2
v,l ,

where A denote all the (K×K) matrices that satisfy (9.44). Interestingly it
turns out that we have already discussed one solution to the equation above.
The so called Hastings rule in (9.50) is a solution. The resulting minimum
(optimal) MDS using this A is:

MSDnetwork
diff,opt ≈ MSDdiff,opt,k ≈

µM

4
· 1∑K

l=1 σ
−2
v,l

, (9.87)

To evaluate this we use the Chebyshev’s sum inequality which states that if

a1 ≤ a2 ≤ .... ≤ aK
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and
b1 ≥ b2 ≥ .... ≥ bK ,

then
1

K

K∑
l=i

aibi ≤
(

1

K

K∑
i=1

ai

)(
1

K

K∑
i=1

bi

)
.

We can arrange the variances, {σ2
v,k}, in order from smallest to largest as

the {ak} in Chebyshev’s sum inequality, this in turn would give the inverse
variances, {σ−2

v,k}, according to the {bk} and hence given this labeling the
prerequisites for the inequality are met. For this choice of {ak} and {bk} the
inequality looks instead as

1

K

K∑
l=1

σ2
v,lσ
−2
v,l ≤

(
1

K

K∑
l=1

σ2
v,l

)(
1

K

K∑
l=1

σ−2
v,l

)
.

But σ2
v,lσ
−2
v,l = 1 making the left side equal to one and hence:

(
1

K

K∑
l=1

σ2
v,l

)(
1

K

K∑
l=1

σ−2
v,l

)
≥ 1. (9.88)

Keeping this in mind we now look at

1∑K
l=1 σ

−2
v,l

=

∑K
l=1 σ

2
v,l(∑K

l=1 σ
2
v,l

)(∑K
l=1 σ

−2
v,l

)
=

1

K2

∑K
l=1 σ

2
v,l(

1

K

∑K
l=1 σ

2
v,l

)(
1

K

∑K
l=1 σ

−2
v,l

) (9.88)
≤ 1

K2

K∑
l=1

σ2
v,l . (9.89)

So we have that
1∑K

l=1 σ
−2
v,l

≤ 1

K
·
(

1

K

K∑
l=1

σ2
v,l

)
,

which means that MSDnetwork
diff,opt ≈ MSDdiff,opt,k ≤ MSDdiff,sym,k ≈ MSDcent.

This states that when using optimal combination rules in diffusion methods
we end up with a MSD that is as small if not smaller than than for the
centralized method. This might seem strange, but notice that in the diffusion
case we give nodes with better signal to noise ratio greater impact which of
course gives a better result. Remember also that we can achieve estimates
allowing us to use the Hastings rule without sending any data about the
variances.
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In General

So far we have only considered the limited case of ARMA-time series
under the assumptions mentioned in the beginning of Section 9.2.5. The
question is however these conclusions are valid for more general situations.
In most cases we can apply the relative conclusions to the general ARMA-
case, i.e., how the different MSD and convergence rates relate to each other.
The derived numbers will not be true in general of course though.

Regarding the case of kernel methods, we should still expect similar re-
sults owing to the intuitive arguments presented trough this chapter. It is
for example almost always true that the ATC algorithm performs better or
at least not worse that the CTA. For the reader who is interested in learning
more about convergence properties we refer to other literature. In (Haykin
and Liu, 2009, Chapter 22) they do not assume uniform statistical distribu-
tion Ru. In (Sayed, 2012) they perform much of the analysis we have done
here but rigorously and also considers more general cases such as using the
algorithms in (9.71) and (9.72).

9.3 Conclusions

This chapter has discussed how we can achieve learning in WSN:s and
has shown how we can use both kernel methods and ARMA-time series to
this end. Different network topologies have been discussed and in the gen-
eral topology we have introduced the cyclic algorithm, the diffusion methods
and the alternating projection algorithm. All these algorithms all have their
advantages and drawbacks. Some give very good results such as the gen-
eral diffusion methods and others offer low communication needs, making
them more applicable like the alternating projection algorithm and the lo-
cal ATC and CTA algorithms. Ultimately what algorithm is suitable is
very dependent on the situation but here we have introduced a wide variety
of possible choices. Techniques described in this chapter have been used to
learning regarding temperature fields, target localization, intruder detection,
understanding biological networks, climate modeling and much more. See
for example (Richard et al., 2010), (Sayed et al., 2013) and (Shanmuganthan
et al., 2008). These are only some examples and the possibilities are nearly
infinite making this area very important and interesting.

9.4 Consulted Material

This chapter has used several sources for the contained material. Some
are already cited in the text, others are more of the general nature. In this
section the materials that have produced this chapter are considered.

In Section 9.1.1, on supervised learning, most of the material is taken
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from (Swami et al., 2007, Chapter 8), the examples are either inspired from
other sources, Example 9.1.4 from (Predd et al., 2006a), or are of own con-
struction.

Section 9.1.2, on ARMA-time series, includes material from (Haykin and
Liu, 2009, Chapter 22), (Sayed et al., 2013) and (Sayed, 2012).

Section 9.1.3, on optimization, is inspired by more or less all the cited
material, but primarily by (Haykin and Liu, 2009, Chapter 22).

Section 9.2.1, covering the star network, is primarily based on (Swami
et al., 2007, Chapter 8), the examples however are inspired by (Predd et al.,
2006a).

Section 9.2.2, on learning in general network topology, is a generalization
of specific methods found in (Haykin and Liu, 2009, Chapter 22), (Sayed
et al., 2013), (Richard et al., 2010), (Sayed, 2012) and (Swami et al., 2007,
Chapter 8).

Section 9.2.3, learning in WSN using kernel methods, uses material from
(Swami et al., 2007, Chapter 8), (Richard et al., 2010) and the material in
Section 9.2.2 and thereby indirectly the there considered material.

Section 9.2.4, learning in WSN using ARMA-time series, is based on
material from (Haykin and Liu, 2009, Chapter 22), (Sayed et al., 2013),
(Sayed, 2012) and the material in Section 9.2.2.

Section 9.2.5, on convergence speed and precision, is based on material
mainly from (Sayed et al., 2013), but also some from (Sayed et al., 2013),
(Zhao and Sayed, 2012) and (Haykin and Liu, 2009, Chapter 22).

Problems
Problem 9.1 Motivate CTA
As seen in the part called Motivation for Diffusion Methods in section 9.2.2 we
can formally motivate the usage of the ATC diffusion method. By following this
derivation do your own derivation but instead for the CTA method.

Problem 9.2 ODE to ARMA-time series
As described in the part called Applied to Differential Equations in section 9.1.2
we can couple ODE:s and ARMA-time series. The following ODE describes the
height position z, around the equilibrium position of z = 0, of a weight hanging in
an fictional elastic spring subject to a small perturbation force F (t):

m
D2

Dt2
z(t) + c

D

Dt
z(t) + kz(t) = F (t).

By using Euler Backward, found in (9.17) and (9.18), method convert this ODE
into a ARMA-time series for predicting z. Show how ωo looks in this model and
assign the different terms in it to either the AR or MA part of the process. You
can assume that the sampling time T is short enough for the approximation to be
valid.
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1

2

3

4
5

6

7

8

9

10 11 12

i1

i2

i3

Sensor Position (x1, x2)

1 (−2.5, 2)
2 (0.2, 2.5)
3 (2.6, 3)
4 (2.3, 1.3)
5 (4, 1)
6 (−3.4, 0)
7 (0.2,−0.5)
8 (−0.1, 0.1)
9 (2.1,−0.5)
10 (−2.7,−2)
11 (0.3,−2)
12 (4,−2)
i1 (−1.2, 1.5)
i2 (3.6, 2.3)
i3 (−1,−1.3)

Figure 9.16 Illustration and table for Problem 9.3.

Problem 9.3 Using kernel methods
In this problem we consider the case where we get a set of training data from a
WSN and using kernel methods would like to classify some points on a map. In
Figure 9.16 the network is depicted. The nodes that are colored blue correspond to
a positive measurement, i.e. 1, and the red ones to a negative measurement, i.e. 0.
We would like to know how to classify the three nodes named i1, i2 and i3. To do
this use the kernel method in (9.4). Do this with the naive kernel ( for rm = 4, 2, 1)
and the Gaussian kernel functions in Table 9.1. Try to see if you can predict what
the three points will be classified as before doing the calculations.

Problem 9.4 Combination rules
Consider the network depicted in Figure 9.11. In this network suppose that we are
going to employ some diffusion strategy. This requires a set of combination weights
{akl}. Now consider some different combination rules and compute what weights
they would generate. Calculate the weights corresponding to node 0, 2 and 14, i.e.
a0,l, a2,l and a14,l for all l, for the combination rules stated below.

a) The maximum degree Laplacian rule in (9.46);

b) The Metropolis rule in (9.48);

c) The relative degree rule in (9.49).





Chapter 10

Positioning and Localization

WSNs have the capability to monitor phenomena in the physical world,
establish spatial relationships between the nodes, and detect objects and
events; hence offering many convenient services. However, without being
able to know the position of a sensor node, or of an object or person that has
to be tracked in its spatial position, the usage of WSN is limited to a great
extent. For example WSNs deployed in a forest to raise alarms whenever
wildfires occur, may play a crucial role if they are able to report the spatial
relationship between them and the monitored event. Further, various other
tasks rely on accurate location information, such as location-aware services,
surveillance systems, motion tracking, and many others.

Localization is the process of determining the physical coordinates of a
sensor node or the spatial relationships among objects. There are many tech-
niques to achieve this goal, a sensor node can collect information from the
surroundings to estimate its position. For example, from ranging measure-
ments such as RSS, the distances or ranges between a number of transmitters
and a received node could be measured and used to find the position of the
receiver node. Every localization procedure is ultimately based on detection
and estimation theory, and on distributed estimation.

This chapter begins with an introduction of positioning and localization.
Then various ranging techniques are discussed. There are two main types of
localization i.e. range-based and range-free localization. These methods are
presented in the following section.

10.1 Introduction

Localization can be generally divided into two classes, range-based tech-
niques and range-free techniques. Range-based techniques are based on dis-
tance measurement using ranging techniques (for example, the received sig-
nal strength, angle of arrival, and time of arrival). They require presence of
at least three special nodes, called “anchor nodes” whose positions are clearly

257
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Figure 10.1 Measurement errors.

known by all the nodes in the network. The position of unknown nodes can
be estimated using the distance measurements between them and anchor
nodes. In contrast, range-free techniques do not require distance measure-
ments, they use connectivity information to determine the positions. Trian-
gulation, Trilateration, Iterative and Collaborative Multilateration are some
examples of range-based localization. Ad-Hoc Positioning System, Approx-
imate Point in Triangulation and Localization Based on Multidimensional
Scaling fall in the category of range-free localization.

10.2 Challenges

Localization faces many challenges such as physical layer measurement
errors, computational constraints, lack of GPS data, low-end sensor nodes,
and varying configurations. In addition, different applications have different
requirements. A WSN localization system will come across various chal-
lenges to fulfill all kinds of requirements. The main challenges in WSNs are
discussed below.

10.2.1 Physical Layer Measurements

Sensor nodes can use ranging techniques to estimate their positions. The
ranging measurements can be time, angle or received signal strength. These
measurements can affect the accuracy of the estimated positions greatly. For
line-of-sight communication, small error in the measurement leads to large
deviation in the estimated position. For example, as shown in the Figure 10.1
node A transmits a signal to node B in order to estimate its position using
received signal strength. If the estimated angle θ̂ varies only a little from
the real θ and the radius is also large, the estimated position differs a lot
from the actual one. In addition, if there is an obstacle between A and B,
multipath propagation can induce even larger error in the estimates.
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10.2.2 Computational Constraints

A node collect information in terms of distance, time, orientation or con-
nectivity from neighbors to estimate its positions. In order to find the exact
location, a node should combine as much information as possible to do the
estimation, this requires implementation of algorithms that may require a
large computational complexity. Due to the limitation of a node’s memory
length and processing ability, some computations may be done at a par-
ticular processing node. This will add information overhead and increase
transmission delay.

10.2.3 Lack of GPS

GPS(Global Positioning System) is widely used to determine position in
many systems such as navigation and phone. It can provide precise position-
ing outdoor, but indoor may give high unreliability. In addition, it is not
feasible to use GPS in all of the nodes in a WSN. The reason being the high
cost and large power consumption requirement for a node. However, some
of the anchor sensor nodes can be equipped with GPS. These anchor nodes
may then use the GPS as a mean to initialize positioning algorithms with
the GPS information.

10.2.4 Low-End Sensor Node

Wireless sensor nodes may be equipped with low-end components to pro-
vide low-cost operation. These imperfect components pose several challenges
for localization in WSNs. In addition to errors in range measurement, some
hardware errors can also be introduced into the measurement processes.
These errors are random, we can do little to avoid them. Low-end com-
ponent can cause node failure frequently. All of these challenge the accuracy
of position estimations.

10.3 Ranging Techniques

Localization techniques often rely on the measurement of the distance
between the nodes to calculate positions. These distances can be measured
by considering certain characteristics of the signal such as signal strength,
angle of arrival, propagation time etc. Since such methods are used to mea-
sure the distance between nodes, they are called ranging techniques. A few
of these techniques are discussed below.

10.3.1 Time of Arrival

The key principle of Time of Arrival (ToA) method is to determine the
distance between the sensor nodes using measured signal propagation time
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Figure 10.2 One-way and two-way ToA ranging measurement scheme.

and known propagation velocity. ToA has two types, one-way ToA and two-
way ToA. One-way ToA measures the one-way signal propagation time and
requires the sender and the receiver to be synchronized with each other.
The difference between the sending time and receiving times is calculated
as shown in Figure 10.2(a). The distance between the nodes i and j can be
determined as

dij = (t2 − t1)× v (10.1)

where t1 and t2 are the sending and receive times of the signal (measured
at the sender and receiver, respectively). Here, the receiver calculates the
distance and uses it to determine its location.

In two-way ToA, in addition to the first signal, the receiver then transmits
a response signal back to transmitter. This is shown in Figure 10.2(b). So
we have four time points and the transmitter uses them, together with signal
velocity, to measure the distance.

dij =
(t4 − t1)− (t3 − t2)

2
× v , (10.2)

where t3 and t4 are the sending and receive times of the response signal.
Hence the transmitter is calculating the receiver’s location. Note that a third
message is necessary to inform the receiver about its location. Moreover this
two-way technique does not require synchronization of the sender and the
receiver, hence making it a preferred approach.

10.3.2 Time Difference of Arrival

The time difference of arrival (TDoA) approach uses two signals that
travel with different velocities.

As shown in Figure 10.3, the transmitting node sends a signal with speed
v1 at time t1, the receiving node receives this signal at time t2. After a time
delay tdelay = t3 − t1, the transmitter sends another signal with velocity v2,
the receiver gets this signal at time t4. Then we can measure the distance
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Figure 10.3 TDoA measurement scheme.

Figure 10.4 Angle of Arrival ranging measurement scheme.

between transmitter and receiver using these measurements.

dij = (t4 − t2 − tdelay)× (v1 − v2) . (10.3)

One advantage of TDoA is that it does not require time synchronization
between transmitter and receiver. The estimation of TDoA may have a
better accuracy compared to ToA, but it can require additional hardware,
for example, a microphone and speaker if one intend to use acoustic signal
as one of the two signals.

10.3.3 Angle of Arrival

A node can estimate its position by measuring angles of arriving signals
using an array of antennas or microphones. Measurements are made from at
least three anchor nodes as shown in Figure 10.4.

This mechanism can provide precise localization, but it depends on the
accuracy of directional antennas, which may not be easy have inside a sensor
node. The addition of measurement hardware can raise the cost and size of
a sensor node. Also, this method can easily get corrupted in NLoS environ-
ment due to multi-path fading and scattering, which prevent the accurate
measurement of the angles.
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10.3.4 Received Signal Strength

The method of measuring received signal strength relies on that a trans-
mitted signal power decays with distance. Received Signal Strength Indicator
(RSSI) is a common feature in wireless devices that can measure the power
of the incoming radio signal. The RSSI is a mapping of the power into quan-
tized levels. The mapping between the RSSI value and signal power varies
from vendor to vendor. The distance can be calculated according to the
received signal power. In the simplest case of no attenuations due to slow
and fast fading, the Friis transmission equation for free space gives

Pr
Pt

= GtGr
λ2

(4π)2 d2
, (10.4)

where Gt is the antenna gain of the transmitting antenna and Gr is the
antenna gain of the receiving antenna. In reality, the signal power is affected
by multi-path propagation, noise and so on, so this equation gives a rough
ideal approximation.

10.4 Range-Based Localization

10.4.1 Triangulation

This technique relies on the geometric relationship between unknown
nodes and anchor nodes. The position of the unknown node is estimated
by measuring the angle of arrival of signals from anchor nodes. Then some
statistical method (for example, maximum likelihood algorithm) is used to
minimize the estimation error. This is illustrated in Figure 10.5 where we
have three anchor nodes with known locations x=[xi, yi]

T where i=1,2,3 and
one unknown node at location xr=[xr, yr]

T . The actual angles between the
unknown node and anchors are

θ(Xr) = [θ1(Xr), ..., θN (Xr)]
T ,

where N=3 and
θi (Xr) = arctan

xr − xi
yr − yi

.

But due to some noise or errors in the measurement process, the measured
angles do not perfectly reflect the actual angles and are represented as Y =
[θ̃1, ..., θ̃N ]T , so that we have

Y = θ(Xr) + n , (10.5)

where n = [n1, n2, n3]T is Gaussian noise with zero mean and covariance
given by

R = E
{
n · nT

}
=

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 . (10.6)
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•
x1, y1

•
xr, yr

•
x3, y3

•
x2, y2θ̃1 θ̃2

θ̃3

Figure 10.5 Measurements for the triangulation scheme.

If we use ML criterion to estimate a sensor’s location, the location estimation
is achieved by minimizing the following error covariance

C(Xr) =
[
θ(X̂r)− Y

]T
R−1

[
θ(X̂r)− Y

]
(10.7)

=
3∑
i=1

(
θi(X̂r)− θ̃i

)2

σ2
i

, (10.8)

and hence

X̂r = argmin C(Xr) (10.9)

To find the position estimation (X̂r = [x̂r, ŷr]
T ), we have to minimize C(Xr).

This can be achieved by taking a derivative of C(Xr) and equating it to
zero. Since this is the minimization of a non-linear least-square, we apply
the Newton-Gauss method:

X̂r,i+1 =X̂r,i

+ (θX(X̂r,i)
TS−1θX(X̂r,i))

−1θX(X̂r,i)
TS−1[Y − θX(X̂r,i)] ,

(10.10)

where θX(X̂r,i) is the matrix of the partial derivatives of θ with respect to
its arguments and evaluated at X̂r,i. As i tends to ∞, X̂r,i tends to the
minimum of C(Xr). Equation (10.10) requires an initial estimate that is
close to the true minimum of the cost function.

10.4.2 Trilateration

Trilateration is the process of calculating a node’s position based on the
measured distance between this node and other anchor nodes whose positions
are known. Obviously, for a given distance, this node must be positioned on
the circumference of a circle centered at an anchor node with a radios given
by the distance between these two nodes. In Figure 10.6 anchor nodes are
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•
x1, y1

•
Xr =

[
xr
yr

]
•

xN , yN

•
x2, y2

d1
d2

dN

Figure 10.6 Trilateration scheme.

located at xi = (xi, yi)(i = 1, ..., N) and the unknown node is at location
Xr = [xr, yr]

T . The distance measurements are assumed to be corrupted by
noise and given by

d̃i = di + ni , i = 1, ..., N . (10.11)

From simple trigonometry,
(x1 − xr)2 + (y1 − yr)2 = d̃2

1
...

(xN − xr)2 + (yN − yr)2 = d̃2
N .

(10.12)

After subtracting these N equations we arrive at the following system of
equations

A ·Xr = Y , (10.13)

where
A ∈ R(N−1)×2, Xr ∈ R2, Y ∈ R(N−1)×1 ,

A = 2 ·

 (xN − x1) (yN − y1)
...

(xN − xN−1)

...
(yN − yN−1)

 , (10.14)

Y =

 d̃2
1 − d̃2

N − x2
1 − y2

1 + x2
N + y2

N
...

d̃2
N−1 − d̃2

N − x2
N−1 − y2

N−1 + x2
N + y2

N

 . (10.15)

We can the get the estimation of position as follows:

X̂ = LY , (10.16)

where L =
(
ATA

)−1
AT .
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Figure 10.7 (a) Iterative multilateration (b) Collaborative multilateration

10.4.3 Iterative and Collaborative Multilateration

Iterative and collaborative multilateration is an extension of lateration
technique that requires at least three anchor nodes to determine position of
the fourth unknown node. With these extended multilateration techniques
it is possible to estimate position even without the presence of three neigh-
bouring anchor nodes. If a node has determined its position then it becomes
an anchor node and broadcasts its anchor message to other nodes. This
process continues until all the nodes in a network have been localized. It
is called iterative multilateration and shown in Figure 10.7(a); three black
nodes aid in localization of the gray node in first iteration and in second
iteration, white nodes estimate their respective locations with the help of
the gray node and two black anchor nodes. The drawback of this technique
is that estimation error accumulates with each iteration.

It is possible that all the nodes will have less than three neighbouring
anchor nodes, in this case collaborative multilateration is adopted to estimate
position. In the Figure 10.7(b), there are 4 anchors and 2 unknown position
nodes. The goal of collaborative multilateration is to construct a graph of
participating nodes, that is, nodes that are anchors or have at least three
participating neighbours. As a result a set of over-constrained quadratic
equations is obtained that relate the distance among nodes and its neigh-
bours. These equations are solved to estimate the positions in the network.

10.5 Range-Free Localization

Range-free localization techniques does not rely distance estimation using
ranging techniques, instead it uses connectivity information for estimating
the position. So, these techniques do not require installation of additional
hardware on the nodes that makes them cost-effective alternative to the
range-based algorithms. One such technique is called Ad Hoc Positioning
System (APS) which is discussed next.
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Figure 10.8 APS:DV-hop localization.

Ad Hoc Positioning System (APS)

Basic principle

APS is the most typical model of distributed localization based on con-
nectivity between nodes in the network. In this algorithm anchor nodes are
also needed to estimate unknown positions, in-fact, the accuracy of estima-
tion increases by increasing the number of anchors. At least three anchor
nodes are required for localization. Each anchor node propagates its position
to other nodes using Distance Vector. All the nodes exchange their routing
tables with one-hop neighbours. In the most basic scheme of APS, called
DV-hop, each node stores a table {Xi, Yi, hi} where {Xi, Yi} means the lo-
cation of anchor node i and hi is the distance in hops between this node and
node i. When an anchor node knows the location of other anchor nodes and
the distance in hops between them, it can determine the average size of one
hop called the correction factor. The correction factor ci of anchor node i is:

ci =

∑√
(xi − xj)2 + (yi − yj)2∑

hi
(j 6= i) . (10.17)

Correction factors are propagated in the network via controlled flooding
which means that each node uses only one correction factor, usually the
first from the closest neighbour. When a node knows the distance in hops
between it and anchors nodes (at least 3) and the correction factor, it can
implement trilateration to estimate its own location.

For example in the network shown in Figure 10.8, if d (A1, A2) = 50,
d (A2, A3) = 60, d (A1, A3) = 80, the correction factor of A1 will be c1 =
(50 + 80)/(2 + 6) = 16.25. The same c2 = (50 + 60)/(2 + 5) = 15.71,
c3 = (60 + 80)/(6 + 5) = 12.73. Node S has A2 as the closest anchor so it
will use correction factor c2 = 15.71. It can calculate the distances between
itself and anchor nodes by multiplying c2 with number of hops with each of
the three anchor nodes (3x15.71 to A1, 2x15.71 to A2, 3x15.71 to A3). Then
trilateration can be used to find its location in the network.
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Improvements

Localization through APS can have some errors, however, some improve-
ments are suggested in order to minimize the estimation error.

1. When each node gets the one-hop distance, use the formula

Hopsizeave =

∑
Hopsizei
n

,

where n is the number of anchor nodes, Hopsizei denotes the one-hop
distance calculated from anchor i.

2. Increase the number of anchor nodes, the more anchors ensures more
reliable results.

3. We can analyze the deviation between each anchor’s one-hop distance
and the average one-hop distance, then modify the average one-hop
distance we previously got. The following steps will show how it works.
In the beginning, we define the average one-hop distance deviation of
anchor i as

err−disi =
∑
i6=j

|dtrue − destimate|ij
hopsij × ni

(10.18)

Here, hopsij means number of hops between anchor i and j, ni means
the number of anchors in anchor’s data list,

dtrue =

√
(xi − xj)2 + (yi − yj)2 ,

where
destimate = Hopsizeave × hopsij .

First, we calculate the average one-hop distance, then we use Equa-
tion (10.18) to compute the average one-hop distance deviation and
propagate it to the network in the form of {id, err−disi}. Secondly,
every node receiving this data package stores the information in its
data list and transmit it to its neighbors, the package with the same
id number will be dropped. Thirdly, when every node acquires the
average one-hop deviation of each anchor, we can do the calculation
c−err−dis =

∑
err−disi/n, where n is the number of anchors. Finally, we

can recalculate the average one-hop distance:

New−Hopsizeave = Hopsizeave + k × c−err−dis , (10.19)

where k is from -1 to 1.
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4. Any network has its region, as the estimated distance between node and
anchor has some variations from the true one, the estimated position
may be located outside the network region which increases the average
location errors. We can re-modify the locations that are out of the
regions. If X 6 Xmin, we make X = Xmin. If X > Xmax, we make
X = Xmax, the same with Y axis.

Problems
Problem 10.1 Timing Offset and GPS (Ex.9.1 in (Pottie and Kaiser, 2005))
GPS uses a constellation of 24 satellites and their ground stations as reference
points to calculate positions accurate to a matter of meters. Suppose we find our
distance measurements from three satellites to be 18 000, 19 000, and 20 000 km
respectively. Collectively this places the location at either of the two points where
the 20 000 km sphere cuts through the circle that is the intersection of the 18 000
and 19 000 km spheres. Thus by ranging from three satellites we can narrow our
position to just two points in space. To decide which one is our true location we
could make a fourth measurement. However, usually one of the two points is a non-
possible answer (either too far from Earth or moving at an impossible velocity) and
can be rejected without a measurement. Now apply the above principle of location
in a two-dimensional space. Assume that points A, B, and C are reference points
with known locations, respectively at (x1, y1), (x2, y2), and (x3, y3), and that the
unknown position is 3.0 meters from point A, 4.0 meters from point B, and 5.0
meters from point C.

(a) Suppose that accurate measurements are available. Then the three measure-
ments can be used to uniquely determine the position. Let (x1, y1) = (0, 3.0),
(x2, y2) = (4.0, 0), (x3, y3) = (4.0, 3.0). Find the position.

(b) Now assume that all measurements include a single timing offset that corre-
sponds to an error of 0.5 m. In other words, the position is observed to be
3.5 m from point A, 4.5 m from point B, and 5.5 m from point C. Develop a
generic procedure to find the true position.

Problem 10.2 Linearizing GPS Equations (Ex.9.2 in (Pottie and Kaiser, 2005))
In order to find position using the GPS system, we need to know the location of at
least three satellites and the distance to each of those satellites. Assume that the
three satellites are located respectively at (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3),
and that the distance between us and the three satellites are respectively d1, d2, d3.
The following nonlinear system of equations needs to be solved,

(x− x1)
2

+ (y − y1)
2

+ (z − z1)
2

= d2
1

(x− x2)
2

+ (y − y2)
2

+ (z − z2)
2

= d2
2

(x− x3)
2

+ (y − y3)
2

+ (z − z3)
2

= d2
3 .

(10.20)

Obviously linearization is desirable in this case. Assume that the reference point is
(0, 0, 0). Prove that the resulting system after linearizing (10.20) is

2

[
x1 y1 z1

x2 y2 z2

x3 y3 y3

][
x
y
z

]
=

 x2
1 + y2

1 + z2
1 − d2

1

x2
2 + y2

2 + z2
2 − d2

2

x2
3 + y2

3 + z2
3 − d2

3


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.

Problem 10.3 Averaging to reduce error in TOA (Ex.9.3 in (Pottie and Kaiser,
2005))

TOA is based upon the measurement of the arrival time of a signal transmitted
from the to-be-located object to several reference nodes. For radio signals, the
distance is ct, where c is the velocity of light and t is time of travel from the object
to the reference node. This measurement thus indicates the object is on a circle of
radius ct, centered at the reference node. There is always a need for at least three
reference nodes to determine the location of the object correctly. The disadvantage
of this technique is that processing delays and non-line-of-sight propagation can
cause error, resulting in mistakes in the TOA estimation. Assume that t is a
Gaussian distributed RV with mean at the real time of arrival t and a variance δt.

(a) Find the mean and variance of the resulting range of the object.

(b) Now assume that independent multiple measurements of range are available.
That is, t(n), n = 1, 2, 3, .., is the measured time of arrival from the refer-
ence node to the to-be-located object, at time instant n. Show that multiple
measurements help to reduce the error in the resulting range of the object.

Problem 10.4 Weighted centroid computation (Ex.9.9 in (Pottie and Kaiser,
2005))

Three beacons are located at a = (1, 1), b = (1,−1), and c = (−1, 1). The received
powers from nodes a, b, and c are 1.2, 1.5, and 1.7 respectively. Calculate the
unknown position of the receiver through a weighted centroid computation.

Problem 10.5 Collaborative multilateration

Consider Figure 10.9, suppose node U can estimate ranges only for nodes A, C,
and V , and node V can estimate ranges only for nodes B, D, and U , where the
unknown locations are U and V . One can begin with an initial guess at the po-
sition of U from either the centroids of the known positions in immediate range,
or via the topology. Then multilateration is performed using the locations of all
neighbors (estimated or known) to refine the positions, in a sequence that proceeds
until locations stabilize. Compute the first estimate of the positions of U(u0) and
V (n0) as the centroids of the nodes they can hear that have known position. Then
iteratively calculate by multilateration the positions in the order u1, n1 assuming
perfect range measurements.

Problem 10.6 Linearization of angle of arrival (AOA) location determination
(Ex.9.11 in (Pottie and Kaiser, 2005))
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A=(1,1)

B=(1,-1)

C=(-1,1)

D=(-1,-1)

U=(.5,.5)

V=(-.5,-.5)

Figure 10.9 Four node multilateration.

The intersection of the angles from two or more sites may be used to provide an
unknown location in the plane. For this triangulation problem, denote the position
of the two known nodes as ri = [ xi yi ]T , i = 1, 2, and the unknown node’s
position as r = [ x y ]T . The bearing angles can be expressed as

θi = fi(r, ri) + ni, i = 1, 2, (10.21)

where ni is the angle measurement error, and the function fi() is defined as

fi(r, ri) = arctan

(
x− xi
y − yi

)
, i = 1, 2. (10.22)

After collecting angle measurements from known nodes, the unknown node’s posi-
tion can be found by solving the nonlinear system of equations

θ1 = arctan
(
x−x1

y−y1

)
+ n1

θ2 = arctan
(
x−x2

y−y2

)
+ n2 .

(10.23)

This triangulation problem can alternatively be solved by linearizing the fi() func-
tion by expanding it in a Taylor series around a reference point, denoted by r0.
Once the equation system is linearized, the ML estimator is used to provide the
following unknown node position estimate

r̂ = r0 +
(
GTN−1G

)−1
GTN−1

[
θ1 − f1(r0)
θ2 − f2(r0)

]
= r0 +G−1

[
θ1 − f1(r0)
θ2 − f2(r0)

]
. (10.24)

Matrix N = E[nn′] is the measurement error covariance matrix, and matrix G is
the matrix of the resulting equation system after linearizing (10.21). Matrix G is
equal to

G =

[
(y0 − y1)/d2

01 −(x0 − x1)/d2
01

(y0 − y2)/d2
02 −(x0 − x2)/d2

02

]
,

where angle θ0i = fi(r0), i = 1, 2, and d0i is the distance between the i th node and
r0. Given r0 = [ 0 0 ]T , r1 = [ −3 4 ]T , r2 = [ 4 3 ]T , θ1 = 45◦, θ2 = 135◦,
and

N =

[
1 0
0 0.9

]
.

Use equation (10.24) to find the unknown node’s position. Comment on the accu-
racy of the results.
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Chapter 11

Time Synchronization

In the previous chapter the topics of localization and positioning of sensor
nodes within a WSN were covered. Various techniques are applied to retrieve
the location information of the nodes which is associated with their gathered
information to provide an accurate view of the observed sensor field. To
determine where and when the events occur and how they evolve in space
and time, the sensors must know their own position and the time. Many
techniques for determining location in turn depend on having precise time
references. Moreover, since an event is usually determined in its entity by
the collaborative information from multiple nodes, timing information among
these nodes needs to be consistent. Thus the two topics of localization and
synchronization are closely connected.

Time synchronization also ensures compatibility in terms of protocol de-
velopment. As an example, time division multiple access (TDMA) protocols
require neighbor nodes to be synchronized so that they can follow a common
time frame for medium access. As explained in Chapter 4, sensor nodes fol-
lowing a TDMA protocol need to agree on boundaries of time slots; otherwise
their transmissions would overlap and collide. Furthermore, with respect to
energy, many WSNs rely on sleep/wake protocols that allow a network to
selectively switch off sensor nodes or let them enter low-power sleep modes.
Therefore, temporal coordination among sensors is essential for nodes to
know when they can enter a sleep mode and when to rewake to ensure that
neighboring nodes overlap in their wake periods to enable communication
among them.

In this chapter, the basic topics about time synchronization in WSNs are
covered. In general, a WSN nodes is equipped with its own local clock for
internal operations. Since each node operates independently on its own clock
and considering possible random phase shifts and drift rates of oscillators,
the local time reading of nodes differ. Moreover, the multi-hop and packet-
based information delivery in WSNs results in variations in the information
delivery time. The delay between a node and the sink is proportional to the

273
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distance between them. Consequently, the received time of the packets at
the sink and the order in which they are received do not correctly represent
the sensing time of the events. Time synchronization is therefore essential
for a seamless network operation.

The chapter is organized as follows: Section 9.1 provides the basic defini-
tions regarding the sensors’ clocks and the challenges that occur in the time
synchronization process. Next, in Section 9.2, the basic aspects regarding
the time synchronization process are covered. In particular, the way nodes
exchange their synchronization messages is examined in detail. In Section
9.3, the most representative time synchronization protocols are presented
while the last section of the chapter describes a fully distributed protocol,
the Gradient Time Synchronization Protocol.

11.1 Node Clocks and Synchronization Problem

In this section we give some introductory concepts that are used for node
synchronization protocols.

A typical node possesses an oscillator of a specified frequency and a
counter register, which is incremented in hardware after a certain number
of oscillator pulses. The node’s software has only access to the value of
this register and the time between two increments (ticks) determines the
achievable time resolution. The value of the hardware clock of node i at
real time t can be represented as Hi(t). Further, the software clock Ci(t)
of node I at some real time t is given by

Ci(t) = ρi(t) ·Hi(t) + φi(t) , (11.1)

where φi(t) is called phase shift and ρi(t) is called drift rate. In a perfect
clock ρi(t) = 1 and φi(t) = 0. Clock adjustment is performed by properly
adjusting the parameters φi and ρi since it is often neither possible nor
desirable to influence the oscillator or the counter register. In WSNs, the
low-cost crystals oscillators introduce both drift rate, i.e., ρi(t) 6= 1, and
phase shift, i.e., φi(t) > 0. Since these parameters can be different for each
sensor node, the nodes result unsynchronized. Note that the phase shift and
drift rate of a local clock shown in Equation 11.1 are also function of time.

The frequency at which a clock progresses is called clock rate, namely
dC/dt. The maximum drift rate of a clock is expressed as ρ and for the clock
rate the following condition holds:

1− ρ ≤ dC

dt
≤ 1 + ρ , (11.2)

Further, comparing the local software times of two nodes i and j, the
clock offset indicates the difference between the times. Synchronization is
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Figure 11.1 Relationship between software time C(t) and real time t.

then defined as the procedure of adjusting properly the time of at least one
of these node clocks such that their readings match.

Oscillators often have a priori a slight random deviation from their nomi-
nal frequency, called drift or clock skew. This can be due to impure crystals
but oscillators also depend on several environmental conditions like pressure,
temperature, and so on, which in a deployed WSNs might well differ from
laboratory specifications. The clock drift is often expressed in parts per
million(ppm) and gives the number of additional or missing oscillations a
clock makes in the amount of time needed for one million oscillations at the
nominal rate.

Perfect or ideal clocks are those with clock rate dC/dt = 1 at all times.
However, as shown in Figure 11.1, the clock rate can take a value different
from 1 due to environmental factors or hardware flaws that affect the actual
clock rate resulting in a drift rate.

Figure 11.1 illustrates how the drift rate affects the clock reading with
respect to real time, resulting in either a perfect, fast, or slow clock. This
drift rate is responsible for inconsistencies in sensors’ clock readings even
after clocks have been synchronized, making it necessary to repeat the syn-
chronization process periodically.

Assuming two different nodes with synchronized clocks, their clocks can
drift from each other at a rate of at most 2ρmax. Therefore, in order to find
out when a resynchronization is needed, the following inequality can be used:

dCi
dt
− dCj

dt
≤ 2ρmax . (11.3)

The delay difference between two node clocks is usually categorized by an
initial time offset t0, a time-dependent frequency offset ∆f(t), and jitter
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t

ci(t)− cj(t)

offset

Figure 11.2 Relationship between software time C(t) and real time t.

∆τ(t) due to noise, as follows:

ci (t)− cj (t) = t0 + ∆f (t) · t+ ∆τ(t) . (11.4)

The frequency offset is due to both differences in the hardware details of
different clocks as well as environmental conditions such as temperature of
operation, humidity etc. A clock is said to be stable if the frequency off-
set changes slowly. The relative phase between clocks can be obtained by
differentiating with respect to delay. Figure 11.2 shows that the difference
Ci(t) − Cj(t) can become arbitrarily large as t increases. Therefore, a time
synchronization protocol is needed. The objective of a time synchroniza-
tion protocol is to establish a one-to-one correspondence between the times
reported by the different clocks.

In general, we distinguish two types of synchronization: external and
internal (or distributed). External synchronization means that the clocks
of all nodes are synchronized with an external source of time (or reference
clock). The external reference clock is an accurate real-time standard such
as Coordinated Universal Time (UTC).

Internal (or distributed) synchronization means that the clocks of all
nodes are synchronized with each other, without the support of an external
reference clock. The goal of internal synchronization is to obtain a consistent
view of time across all nodes in the network, even though this time may
be different from any external reference times. External synchronization
ensures both synchronization with an external source and consistency among
all clocks within the network. When nodes are synchronized to an external
reference clock, the accuracy of a clock describes the maximum offset of a
clock with respect to the reference clock. In particular, nodes 1, 2, . . . , n are
said to be accurate at time t within a bound δ if |Ci(t)− t| < δ holds for all
nodes i ∈ {1, 2, . . . , n}.

On the other hand, when nodes in a network are internally synchronized,
the precision indicates the maximum offset between any two clocks in the
network (Kopetz 1997). The nodes 1, 2, ..., n are said to agree on the time
with a bound of δ if |Ci(t)− Cj(t)| < δ holds for all i, j ∈ 1, 2, . . . , n.
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Clearly, if two nodes are externally synchronized with an accuracy of δ,
they are also internally synchronized with a precision of 2δ.

11.1.1 Challenges for Time Synchronization

Traditional time synchronization protocols proposed in wired networks
cannot be directly applied to WSNs without considering the specific chal-
lenges that occur in low-cost low-power sensor nodes and the wireless medium.
Similar to wired environments, time synchronization in WSNs needs to face
challenges such varying clock drifts due to changes in temperature and hu-
midity. However, the nature of a WSN imposes a set of additional challenges
and constraints that time synchronization protocols for sensor networks have
to consider. Some of these challenges are summarized below:

Environmental Effects

Environmental factors such as temperature, pressure, and humidity affect
the clock readings. While typical wired network devices are operated in
rather stable environments (e.g., A/C-controlled cluster rooms or offices),
wireless sensors are frequently placed outdoors and in harsh environments
where these fluctuations in ambient properties are common.

Energy Constraints

As mentioned in the previous chapters, energy consumption and the
resulting constraints are of crucial importance in a WSN. Wireless sensor
nodes are typically driven by finite power sources, that is, either dispos-
able or rechargeable batteries. Battery replacement can add significantly
to the cost of a WSN, particularly in large-scale networks and when the
nodes are in difficult-to-service locations. Therefore, time synchronization
protocols should not contribute significantly to the energy consumption of
wireless nodes in order to ensure long battery life times. Since communica-
tion among sensor nodes is typically the basis for time synchronization, an
energy-efficient synchronization protocol should aim to minimize the mutu-
ally transmitted messages that are necessary to obtain synchronized nodes.

Wireless Medium and Mobility

Synchronization requires nodes to communicate with each other to ex-
change clock information through which the local clocks can be synchronized.
While this communication is usually trivial in wired networks such as the
Internet, WSNs require wireless communication between nodes, which cre-
ates additional challenges for synchronization as a result of the error-prone
communication and non-deterministic delays. Firstly, the wireless channel
errors result in some of the synchronization messages being lost. Thus, some
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nodes in the network may be unsynchronized. More importantly, the syn-
chronization messages sent by the unsynchronized nodes force other nodes
to adapt to their local clocks. Therefore, robust synchronization methods
are required. Secondly, the broadcast nature of the wireless channel necessi-
tates MAC protocols being utilized for efficient channel access. These MAC
protocols introduce a non-deterministic access delay, which is the time be-
tween the synchronization protocol issuing a synchronization packet to be
sent and the time this packet is actually transmitted. As we will see next,
the channel access operation introduces an important randomness in time
synchronization and needs to be accounted for in calculations. Finally, the
wireless channel introduces an asymmetric delay between two nodes for mes-
sage exchanges. Since the access times as well as transmission times can vary
because of channel errors and retransmissions, the communication delay may
be different for each direction. This is an important point for synchroniza-
tion since most solutions rely on consecutive message exchanges where the
round trip time between two nodes is considered for calculations. Whereas
for wired networks the round-trip time is roughly equal to twice the delay in
one direction, wireless communication results in asymmetric delays in each
direction.

Additional Constraints

Besides energy limitations, low-power and low-cost sensor nodes are of-
ten constrained in their processor speeds and memory, further requiring that
time synchronization protocols are lightweight. The small size and cost of
sensor devices proscribe the use of large and expensive hardware to achieve
synchronization (e.g., GPS receivers). Therefore, time synchronization pro-
tocols should be designed to operate in resource-constrained environments
with little or no addition to the overall cost of a sensor device. Wireless
sensor network deployments are often very large in scale and a synchroniza-
tion protocol should scale well with increasing numbers of nodes or network
density. Finally, different sensor applications will have differing requirements
on clock accuracy or precision.

11.2 Basics of Time Synchronization

In this section, the fundamental aspects regarding the time synchroniza-
tion process are covered. These aspects are the basis of the time synchro-
nization protocols that will be examined in the next section. In these pro-
tocols, one node, called the receiver, exchanges data packets with another
node, called the sender, to let the receiver synchronize to the sender’s clock.
Since synchronization can only be achieved through communication between
nodes, the effects of the wireless channel need to be carefully considered
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Figure 11.3 End-to-end delay for a synchronization message.

in the design of synchronization protocols. However, wireless communi-
cation introduces randomness in the delay between two nodes. Together
with the several challenges that a time synchronization protocol has to face,
the non-determinism of communication delay significantly contributes to the
precision that can be achieved. In general, this latency experienced by syn-
chronization messages is the sum of several components, as illustrated in
Figure 11.3. Considering the handshake scheme shown in Figure 11.3 the
delay between two nodes has four components:

1. Send delay: This is the time spent by the sender to generate the syn-
chronization message and pass the message to the network interface.
This includes delays caused by operating system behavior system call
interface, context switches), the network protocol stack, and the net-
work device driver. The sending delay is non-deterministic because of
the complex and time-varying interactions between each hardware and
software component in the embedded system.

2. Access delay: This is the time spent by the sender to access the physical
channel and is mostly determined by the medium access control (MAC)
protocol in use. As mentioned in Chapter 4, depending on the MAC
protocol, an additional delay is introduced in waiting for access to
the channel. While this delay may be bounded in a TDMA protocol
because of reserved slots, a CSMA-based protocol may introduce a
significant amount of access delay if the channel is highly loaded. In
either case, the access delay cannot be determined a priori.

3. Propagation delay: It refers to the actual time needed for the mes-
sage to reach from the sender to the receiver. Once a node accesses
the channel, the synchronization message is transmitted and it takes
some amount of time for the packet to reach the intended receiver.
While the propagation delay is negligible in communication through
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air, underground and underwater environments introduce significant
propagation delay, which is important for synchronization. Moreover,
this delay is directly proportional to the distance between the nodes.

4. Receive delay: This is the time spent by the receiver device to receive
the message from the medium, to process the message, and to notify
the host of its arrival. This includes the transmission and processing
delay required for the antenna to receive the message from the channel,
perform A/D conversion, and notify the operating system of its arrival.
Host notification typically occurs via interrupts, at which the local
time (i.e., the message arrival time) can be read. As a consequence,
the receive delay tends to be much smaller than the send delay.

Synchronization is typically based on some sort of message exchange
among sensor nodes. If the medium supports broadcast (as it is the case in
wireless systems), multiple devices can be synchronized simultaneously with
a low number of messages. Most existing time synchronization protocols are
based on pairwise synchronization, where two nodes synchronize their clocks
using at least one synchronization message. Network-wide synchronization
can be achieved by repeating this process among multiple node pairs until
every node in a network has been able to adjust its clock. Regarding the
flow of synchronization messages, we can distinguish between three different
techniques used to achieve synchronization:

11.2.1 One-Way Message Exchange

This is the simplest approach of pairwise synchronization. It occurs when
only a single message is used to synchronize two nodes, that is, one node
sends a time stamp to another node. As illustrated in Figure 11.4, node i
sends a synchronization message to node j at time t1, embedding t1 as time
stamp into the message. Upon reception of this message, node j obtains a
time stamp t2 from its own local clock. The difference between the two time
stamps is an indicator of the clock offset (between the clocks of nodes i and
j) δ. More accurately, the difference between the two times is expressed as

t2 − t1 = D + δ , (11.5)

where D is the unknown propagation time. Propagation times in the wireless
medium are very small (a few microseconds) and are often ignored or assumed
to be a certain constant value. In this approach, node j is able to calculate
an offset and adjust its clock to match the clock of node i.

11.2.2 Two-Way Message Exchange

A somewhat more accurate approach is to use two synchronization mes-
sages as shown in Figure 11.5. Here, node j responds with a message issued
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Figure 11.4 One-way message exchange procedure.

at time t3, containing time stamps t1, t2, and t3. Upon reception of this
second message at time t4, both nodes are able to determine the clock offset,
again assuming a fixed value for the propagation delay. However, node i is
now able to more accurately determine both the propagation delay and the
offset as

D =
(t2 − t1) + (t4 − t3)

2
, (11.6)

offset =
(t2 − t1)− (t4 − t3)

2
. (11.7)

Note that this assumes that the propagation delay is identical in both di-
rections and the clock drift does not change between measurements (which
is feasible because of the brief time span). While only node i has sufficient
information to determine the offset, node i can share the offset value with
node j in a third message.

11.2.3 Receiver-Receiver Synchronization

A different approach is taken by protocols that apply the receiver-receiver
synchronization principle, where synchronization is based on the time at
which the same message arrives at each receiver. This is in contrast to the
more traditional sender-receiver approach of most synchronization schemes.
In broadcast environments, these receivers obtain the message at about the
same time and then exchange their arrival times to compute an offset (i.e., the
difference in reception times indicates the offset of their clocks). Figure 11.6
shows an example of this scheme where there are two node receivers j and k
and three messages are needed to synchronize them. Note that the broadcast
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Figure 11.5 Two-way message exchange procedure.

Figure 11.6 Receiver-receiver synchronization procedure.

message does not carry a time stamp, instead the arrival times of the broad-
cast message at the different receivers is used to synchronize the receivers to
each other.

11.3 Time Synchronization Protocols

Numerous time synchronization protocols for WSNs have been developed,
where most of them are based on some variations of the message exchange
concepts described in the previous section.

Typical clock synchronization algorithms rely on the ability to exchange
messages at a high rate which may not be possible in wireless sensor networks.
Traditional time synchronization algorithms such as the Network Time Pro-
tocol (NTP), which is a synchronization protocol used for the Internet, is
not suitable for WSNs applications. However, this protocol contains several
synchronization approaches that have been adopted by the synchronization
protocols developed for WSNs. Before presenting the most representative
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ones, the time synchronization method based on the MMSE criterion is pro-
vided in the following section.

11.3.1 MMSE Technique in Time Synchronization Protocols

In this method, a single node i with software clock Ci(t) broadcasts
a synchronization message. The objective is to establish the relative time
among different clocks, while allowing the individual clocks to run freely. We
also consider another node j that is unsynchronized with node i and receives
the synchronization message. Moreover, the local clock of a node j can be
represented relative to a node i as follows:

cj (t) = a0 + a1 · ci (t) , (11.8)

where a0 and a1 are the relative clock offset and drift, respectively. The
synchronization between two nodes i and j is performed according to the
relation between their clocks and the aim is to correct the relative differences
between them. Consequently, providing a common reference frame requires
that the reference clock drift and offset between the nodes in the network
must be minimized by performing a linear least squares fit (linear regression).
Since errors occur due to the non-determinism of the communication delay, as
explained before, a sequence of broadcast messages in different time instants
are sent and the values of Cj(t) are periodically measured. Denote x0 the
value of the software clock of node i at the time instant t0; that is Ci(t0) = x0.
Then, the value of the software clock of node j becomes:

Cj (t0) = a0 + a1 · Ci (t0) = a0 + a1 · x0
∆
= y0 . (11.9)

Continuing iteratively n times and assuming that a0 and a1 are constant we
get

Ci (t1)
∆
= x1

Cj (t1) = a0 + a1 · x1
∆
= y1

...
Ci (tn−1)

∆
= xn−1

Cj (tn−1) = a0 + a1 · xn−1
∆
= yn−1 .

(11.10)

Therefore, to find the best fit to the data according to the MMSE criterion,
we form and solve

A ·X = Y , (11.11)

where

A =


x0

x1

1
1

...
xn−1

...
1

 (11.12)
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X =

[
a1

a0

]
, (11.13)

and

Y =


y0

y1
...
yn−1

 . (11.14)

The solution of this equation provides an estimator X̂ = L·Y of the unknown
vector X, where

L =
(
AT ·A

)−1
AT ,

and

AT ·A =


n−1∑
i=0

xi
2

n−1∑
i=0

xi

n−1∑
i=0

xi n

 ,

AT · Y =


n−1∑
i=0

xiyi

n−1∑
i=0

yi

 . (11.15)

The following sections provide an overview of some representative time
synchronization schemes and protocols.

11.3.2 The Network Time Protocol

The Network Time Protocol (NTP) is widely used in the Internet to
establish synchronism among a very large number of devices. Its main char-
acteristics are the scalability, the self-configuration over multiple hops, and
the robustness to failures. In this scheme, synchronization among nodes is
accomplished through a hierarchical structure of time servers each rooted to
some source of external time (e.g., GPS, which, in turn, is rooted to coor-
dinated universal time (UTC)), as shown in Figure 11.7. NTP relies on a
two-way handshake (request/response messages) between two nodes in order
to estimate delays between these nodes in the network and to adjust the lo-
cal timing to the network standard. These delays tend to be dominated by
congestion, which is highly variable. To minimize these effects, a sequence
of messages is sent to multiple peers, with the shortest delay returns in each
probing sequence used for delay and offset measurements for that peer (re-
mote server). The results are then combined and clustered to use only the
most reliable (consistent) of the peers, with a weighted combination of these
results used as inputs to a phase/frequency lock loop that compares to NTP
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Figure 11.7 The hierarchical time server architecture of the NTP protocol.

time. This selection process is designed to reject unreliable or malicious
peers. While NTP provides robust time synchronization in a large-scale
network, many characteristics of WSNs make this protocol unsuitable. In
particular, synchronizing all sensor nodes into a single clock reference may be
a problem due to interference from the environment and the large variations
in delays between the different parts of the sensor field. The interference
can temporarily disjoint the sensor field into multiple smaller fields leading
to undisciplined clocks among these smaller fields. Moreover, NTP is com-
putationally intensive and requires a precise time server to synchronize the
nodes in the network. In addition, it does not take into account the energy
consumption required for time synchronization. Although NTP is robust, it
may suffer from large propagation delays when sending timing messages to
the time servers. In addition, the nodes are synchronized in a hierarchical
manner and some of the time servers in the middle of the hierarchy may fail
causing unsynchronized nodes in the network. NTP also assumes symmetric
link delays between two nodes which may not be true in the case of WSNs.

11.3.3 Timing-Sync Protocol for Sensor Networks

The Timing-Sync Protocol for Sensor Networks (TPSN) adopts
some concepts from NTP. Similar to NTP, a hierarchical structure is used to
synchronize the whole WSN to a single time server. It is a sender-receiver
synchronization approach aiming to provide network-wide time synchroniza-
tion. The synchronization of a node depends on its parent in the hierarchical
structure. Therefore, even if the number of nodes in the network increases,
the high synchronization accuracy can still be achieved. Since the hierar-
chical structure covers the entire network based on a root node, the whole
network can be synchronized to the same time reference.

More specifically, the TPSN algorithm elects a root node and builds
a spanning tree (hierarchical structure) of the network during the initial
level discovery phase. The root node initiates this phase by broadcasting a
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level_discovery message that contains the level and the unique identity of
the sender. Every immediate neighbour of the root node uses this message
to identify its own level and rebroadcasts it with its own identity and level.
This process is repeated until every node in the network has identified its
level.

In the synchronization phase of the algorithm, nodes synchronize to their
parent in the tree (a node from a higher level) by a two-way message ex-
change. Using the timestamps embedded in the synchronization messages,
the child node is able to calculate the transmission delay and the relative
clock offset. In specific, the synchronization phase is initiated by the root
node issuing a time_sync packet. After waiting for some random time (to
reduce contention during medium access), nodes in level 1 initiate the two-
way message exchange with the root node. Once a node in level 1 receives
an acknowledgement from the root, it computes its offset and adjusts its
clock. Nodes on level 2 will overhear the synchronization pulses issued by
their level 1 neighbors and after a certain backoff time they initiate their
pairwise synchronization with nodes in level 1. The backoff time is neces-
sary to give level 1 nodes time to receive and process the acknowledgement
of their own synchronization pulses. This process is continued throughout
the hierarchical structure until all nodes have synchronized to the root node.

However, TPSN does not compensate for clock drift which makes frequent
resynchronization mandatory. In addition, TPSN causes a high communica-
tion overhead since a two-way message exchange is required for each child
node. Since the design of TPSN is based on a hierarchical methodology sim-
ilar to NTP, nodes within the hierarchy may fail and may cause nodes to
become unsynchronized. Further, node mobility may render the hierarchy
useless, because nodes may move out of their levels.

11.3.4 Lightweight Tree-Based Synchronization

Similar to TPSN described in the previous section, Lightweight Tree-
Based Synchronization (LTS) relies on a tree structure in order to perform
network-wide synchronization. The protocol is based on a message exchange
between two nodes to estimate the clock drift between their local clocks.
This pairwise synchronization scheme is extended for multi-hop synchro-
nization. LTS can be used with different algorithms for both centralized and
decentralized multi-hop synchronization

The centralized multi-hop version of LTS is based on a single reference
node that is the root of a spanning tree comprising all nodes of the network
which are synchronized to the root. In this mechanism, synchronization
accuracy decreases as the depth of the spanning tree increases. This is due
to that the errors resulting from the pairwise synchronizations are additive
and therefore increase along the branches of the tree as a function of the
number of hops. Thus, in order to maximize the synchronization accuracy,
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the depth of the tree should be minimized. After the tree is constructed,
the root of the tree initiates pairwise synchronization with its children nodes
and the synchronization is propagated along the tree to the leaf nodes.

The distributed multi-hop version of LTS does not require the construc-
tion of a spanning tree and the synchronization responsibility is moved from
the reference node to the sensor nodes themselves. This provides event-based
synchronization capabilities, where each node performs synchronization only
when it has a packet to send. In this case, each node is informed about
its distance to the reference node for synchronization and adjusts its syn-
chronization rate accordingly. Since synchronization accuracy is inversely
proportional to distance, nodes farther apart from the reference node per-
form synchronization more frequently

11.3.5 Flooding Time Synchronization Protocol

The Flooding Time Synchronization Protocol (FTSP) differs from
other solutions in that it uses a single broadcast to establish synchroniza-
tion points between sender and receivers while eliminating most sources of
synchronization error. A root node is elected which periodically floods its
current time stamp into the network forming an ad-hoc tree structure. MAC
layer time-stamping reduces possible sources of uncertainty in the message
delay. Each node uses a linear regression table to convert between the local
hardware clock and the clock of the reference node. The root node is dy-
namically elected by the network based on the smallest node identifier. After
initialization, a node waits for a few rounds and listens for synchronization
beacons from other nodes. Each node sufficiently synchronized to the root
node starts broadcasting its estimation of the global clock. If a node does
not receive synchronization messages during a certain period, it will declare
itself the new root node.

11.3.6 Reference Broadcast Synchronization protocol

The Reference Broadcast Synchronization (RBS) protocol ex-
ploits the broadcast nature of the physical channel to synchronize a set of
receivers with one another. It aims to inimize the critical path in synchro-
nization by eliminating the effect of the sender. Instead of synchronizing
a sender with a receiver, RBS provides time synchronization among a set
of receivers that are within the reference broadcast of a sender. Since the
propagation times are negligible, once a packet is transmitted by a sender,
it is received at its neighbors almost at the same instant (Figure 11.8). Each
of the receivers, which are within the broadcast range, records the time of
arrival of the reference packets. Then, the receivers communicate with each
other to determine the relative clock offsets. RBS is designed for single-
hop time synchronization only. To provide multi-hop synchronization, RBS
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Figure 11.8 Reference broadcasting, where node A’s broadcast message is
used by the remaining nodes for synchronization.

uses nodes that are receiving two or more reference broadcasts from different
transmitters. These nodes are denoted as translation nodes and are used to
translate the time between different broadcast domains.

11.3.7 Time-Diffusion Synchronization Protocol

Both the RBS and TPSN protocols aim to provide multi-hop synchro-
nization by extending a single hop synchronization method and performing
this method iteratively. While these solutions may be acceptable for small
networks, they are not scalable for very large networks. Instead, the Time-
Diffusion Synchronization Protocol (TDP) aims to maintain a common
time throughout the network within a certain tolerance. This tolerance level
can be adjusted depending on the application and the requirements of the
network. TDP assigns three different duties to the nodes in the network to
provide multi-hop synchronization: master nodes, which initiate the synchro-
nization process, diffused leader nodes that propagate the synchronization
messages further away from the broadcast range of the master nodes and
regular nodes that participate in the synchronization process minimally.

TDP follows a periodic procedure consisting of active and passive phases.
Resembling a TDMA-like operation, the synchronization procedures are per-
formed during the active phase. The protocol then enters the passive phase,
where no timing updates are performed. As the duration of the passive phase
increases, the network deviates further from the equilibrium time, which ne-
cessitates resynchronization. On the other hand, a smaller passive period
results in more frequent synchronization, increasing the overhead of the pro-
tocol. TDP provides an adaptive mechanism to adjust the synchronization
schedule according to the timing requirements of the WSN.

The active phase of TDP is further divided into cycles of length τ . The
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master nodes are re-elected at each cycle and the synchronization opera-
tion is performed. Each cycle of length τ is further divided into rounds of
length δ, where the master nodes repeatedly broadcast synchronization mes-
sages. According to this structure, TDP consists of two major procedures:
the election/re-election procedure (ERP), where the master nodes and the
diffused leaders are selected; and the time diffusion procedure (TP), where
the synchronization is performed. The ERP is performed at the beginning
of each cycle, τ , while the TP is performed at each round, δ, following the
ERP. The ERP aims to differentiate nodes that are eligible to become mas-
ter nodes or diffused leaders and performs this selection. The re-election
mechanism, which is performed every τ seconds, helps to distribute the load
on the master nodes and the diffused leaders.

TDP supports node mobility. It assigns master and diffused leader du-
ties to nodes dynamically based on their clock quality as well as the re-
maining energy. As a result, the energy consumption is also equally dis-
tributed in the network. In addition, TDP does not require an external time
server for synchronization. Without time servers, the protocol can reach a
network-wide equilibrium time, which can be converted into another frame
of reference by interacting with a single node in the network. However, the
election/re-election procedure, which dynamically elects master and diffused
leader nodes, increases the complexity of the protocol because of multiple
periods and cycles. If done too frequently, the energy consumption of the
protocol also increases.

11.3.8 Mini-Sync and Tiny-Sync

Tiny-sync and mini-sync protocols have been developed to provide a sim-
ple and accurate time synchronization for WSNs. Both protocols are based
on a hierarchical structure of sensor nodes, where each node is synchronized
with its parent node. In tiny- and mini-sync protocols, each node estimates
the relative clock drift and offset to its parent node in the hierarchical tree
structure for synchronization.

More specifically, recall that the local clock of a node i can be represented
relative to a node j as follows:

Ci(t) = aijCj(t) + bij , (11.16)

where aij expresses the relative drift and bij the relative offset, respectively.
In order to determine the unknown elements in the above equation, nodes
(nodes 1 and 2) use the two-way messaging handshake, for example, node
1 sends a time-stamped probe message at time t0 to node 2 and node 2
responds immediately with a time-stamped reply message at time t1. Node
1 records the arrival time of the second message (t2) to obtain a 3-tuple
of time stamps (t0, t1, t2), which is called a data point. Since t0 happened
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before t − 1, and t1 happened before t2, the following inequalities should
hold:

t0 < a12t1 + b12 , (11.17)

t2 > a12t1 + b12 . (11.18)

This procedure is repeated multiple times, resulting in a series of data points
and new constraints on the admissible values of a12 and b12. As the node
gathers more data points, the accuracy of the estimation improves. However,
since sensor nodes are constrained in terms of memory, this estimation should
be performed with a minimum number of data points.

The two versions of the protocol are based on the observation that not
all data points are useful. Every data point results in two constraints for
the relative drift and offset. The Tiny-sync algorithm maintains only four
of these constraints, that is, whenever a new data point has been obtained,
the current four and the two new constraints are compared and only the
four constraints that result in the best estimates of offset and drift are kept.
While this operation limits the number of constraints and the computational
complexity, it does not always lead to the optimum result. More specifically,
the data points discarded in an earlier round may be more helpful for deter-
mining closer bounds in the following rounds. As a result, tiny-sync provides
a lightweight operation at the cost of deviating from the optimum clock drift
and offset values.

Therefore, tiny-sync is extended through the mini-sync protocol which
stores more data points to determine the optimum values for the relative
clock drift and offset. Instead of selecting four data points for each three
measurements and discarding the other two, mini-sync discards the data
points only if they are proven not to improve the estimate. This results
in larger computational and storage costs compared to Tiny-sync, but the
advantage is an increased precision.

11.4 The Gradient Time Synchronization Protocol

The Gradient Time Synchronization Protocol (GTSP) is a representative
clock synchronization protocol that performs synchronization between nodes
using an exclusively distributed scheme. It is inspired by a long list of the-
oretical papers, originating in the distributed computing community, lately
also being adopted by the control theory community. It relies only on local
information, requiring no reference node or tree construction. Figure 11.9
shows the comparison between the FTSP and GTSP schemes. As mentioned
before, FTSP and similar protocols work on a spanning tree, synchronizing
nodes in the tree with their parents, and ultimately with the root of the tree.
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Figure 11.9 FTSP vs GTSP protocols comparison.

In this case, neighbouring nodes which are not closely related in the tree,
i.e., where the closest common ancestor even is the root of the tree, will not
be synchronized well because errors propagate down differently on different
paths of the tree. On the other hand, the GTSP approach provides precise
clock synchronization between direct neighbours while still maintaining a
tolerable global skew.

Before discussing the basic principles of GTSP scheme, we assume a
network consisting of a number of nodes equipped with a hardware clock
subject to clock drift. Therefore, each sensor node i is equipped with a
hardware clock Hi(·) whose value at time t is defined as

Hi (t) =

t∫
t0

hi (τ) dτ + φi (t0) , (11.19)

where hi(τ) is the hardware clock rate at time τ and φi (t0) is the hardware
clock offset at time t0. Moreover, the software clock of node i, Ci(·), is com-
puted as a function of the current hardware clock with its value representing
the synchronized time of node i. It is calculated as follows:

ci (t) =

t∫
t0

hi (τ) li (τ) dτ + θi (t0) , (11.20)

where li(τ) is the relative logical clock rate and θi(t0) is the clock offset
between the hardware clock and the logical clock at the reference time t0.
Defining the absolute logical clock rate xi(t) of node i at time t, we have

xi (t)
∆
= hi (t) · li (t) , (11.21)

the goal is to have the same xi(t) for all nodes taking into account the possible
network topology changes; that means that in different time periods, the
neighbour nodes of node i may differ.
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The synchronization process begins with every node i periodically broad-
casting a synchronization beacon containing its current logical time Ci(t) and
the relative logical clock rate li(t). Having received beacons from all neigh-
bouring nodes during a synchronization period, node i uses this information
to update its absolute logical clock rate xi(t) according to the following rule:

xi (k + 1)
∆
=

∑
j∈Ni(k)

xj (k) + xi (k)

|Ni|+ 1
, (11.22)

where Ni(tk) is the set of neighbors of node i at time tk, and |Ni| denotes
the cardinality of such a set. The aim is to show that using this update
mechanism all nodes converge to a common logical clock rate xss, which
means we wish to show

lim
t→∞

xi(t) = lim
t→∞

hi(t) · li(t) = xss, ∀i . (11.23)

By putting in a vector the logical clocks rates of all the N nodes, we have

X (k + 1) = A (k) ·X (k) , (11.24)

where the vectorX(k) = (x1(k), x2(k), . . . , xn(k))T contains the logical clock
rates of the N nodes at time k. The entries of the n×n matrix A are defined
as

A (k) = [ai,j (k)] =


1

|Ni|+1 if i, j are connected,

0 otherwise.
(11.25)

Matrix A has the row stochasticity property where:

A (k) ·

 1
...
1

 =

 1
...
1

 . (11.26)

Supposing that the graph G(V,E), which represents the network and corre-
sponds to matrices A, is connected in the long run then all the logical clock
rates will converge to a steady-state value xss:

lim
k→∞

X (k) = xss ·

 1
...
1

 , (11.27)

and therefore synchronization is achieved.
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Problems
Problem 11.1 TOA with low-cost clocks (Ex.9.4 in (Pottie and Kaiser, 2005))
In order to make accurate range measurements in a GPS system, the receiver and
satellite both need clocks that can be synchronized down to the nanosecond, which
potentially could require atomic clocks not only on all the satellites, but also in the
receivers. However, atomic clocks are far too expensive for everyday consumer use.
GPS sidesteps this problem by measuring the distance to four instead of the min-
imum three located satellites. Every satellite contains an expensive atomic clock,
but the receiver uses an ordinary quartz clock, which it constantly resets. With
four range measurements, the receiver can easily calculate the necessary adjustment
that will cause the four spheres to intersect at one point. Based on this, it resets
its clock to be in sync with the satellite’s atomic clock, thus providing time as well
as location. Explain mathematically how this fourth measurement provides these
benefits.

Problem 11.2 Time difference of arrival (TDOA) in a two-dimensional space
(Ex.9.5 in (Pottie and Kaiser, 2005))
TOA requires that all the reference nodes and the receiver have precise synchronized
clocks and the transmitted signals be labeled with time stamps. TDOA measure-
ments remove the requirement of an accurate clock at the receiver. Assume that
five reference nodes have known positions (0, 0), (−1,−1), (0, 1), (3, 1), and (1, 4)
respectively. We choose (0, 0) as the reference sensor for differential time-delays
which are defined as

t1r = t1 − tr =
rs1 − rs2

v
,

where v is the velocity of propagation, rsi is the distance between the unknown
node and the ith node. Further assume that t12 = −1.4s, t13 = 0.4s, t14 = −1.6s,
and t15 = −2.6s.

(a) Find the unknown location (xt, yt).

(b) Now assume that the propagation speed is known as 1.8 m/s. Find the unknown
location (xt, yt).

Problem 11.3 TDOA in a three-dimensional space (Ex.9.6 in (Pottie and Kaiser,
2005))
Now assume that five reference nodes are known at (0, 3, 0), (6, 0, 0), (3, 4, 0),
(−4,−3, 0), and (0, 0,−8) respectively. Also, t12 = 0s, t13 = 1s, t14 = 0.7s,
t15 = 0.7s, and t16 = 1.7s. The velocity of propagation is v.

(a) Find the unknown location (xt, yt, zt) using (9.10) from lecture notes.

(b) Now assume that the propagation speed is known to be 8.7 m/s. Find the
unknown location (xt, yt, zt) using (9.12) from lecture notes.
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Problem 11.4 Ex.9.3 in (Dargie and Poellabauer, 2010)
Consider two nodes, where the current time at node A is 1100 and the current time
at node B is 1000. Node A’s clock progresses by 1.01 time units once every 1 s and
node B’s clock progresses by 0.99 time units once every 1 s. Explain the terms clock
offset, clock rate, and clock skew using this concrete example. Are these clocks fast
or slow and why?

Problem 11.5 Ex.9.4 in (Dargie and Poellabauer, 2010)
Assume that two nodes have a maximum drift rate from the real time of 100 ppm
each. Your goal is to synchronize their clocks such that their relative offset does
not exceed 1 s. What is the necessary re-synchronization interval?

Problem 11.6 Ex.9.6 in (Dargie and Poellabauer, 2010)
A network of five nodes is synchronized to an external reference time with maximum
errors of 1, 3, 4, 1, and 2 time units, respectively. What is the maximum precision
that can be obtained in this network?

Problem 11.7 Ex.9.7 in (Dargie and Poellabauer, 2010)
Node A sends a synchronization request to node B at 3150 (on node A’s clock). At
3250, node A receives the reply from node B with a times-tamp of 3120.

(a) What is node A’s clock offset with respect to the time at node B (you can
ignore any processing delays at either node)?

(b) Is node A’s clock going too slow or too fast?

(c) How should node A adjust the clock?

Problem 11.8 Ex.9.8 in (Dargie and Poellabauer, 2010)
Node A issues a synchronization request simultaneously to nodes B, C, and D(Figure 11.10).
Assume that nodes B, C, and D are all perfectly synchronized to each other. Ex-
plain why the offsets between node A and the three other nodes may still differ?
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Figure 11.10 Pairwise synchronization with multiple neighboring nodes.





Chapter 12

Wireless Sensor Network
Control Systems

The concept of control in WSNs is of major importance. As we have
learnt in the previous chapters of the book, WSNs provide extensive infor-
mation from the physical world through distributed sensing mechanisms.
With the emergence of low-cost controllers that can affect the environment,
information that is sensed from the environment can be utilized to act on
the environment. This led to the development of Wireless Sensor Network
Control Systems (WSN-CS) that are capable of observing the physical world,
processing the data, making decisions based on the sensor observations and
performing appropriate actions. This chapter is devoted to the study of such
systems.

The chapter is organised as follows: Section 12.1 covers some basic no-
tions from control theory, as well as a few useful mathematical results con-
cerning stability. In section 12.2, the general architecture of the WSN-CS
is described and equations for a sampled system are derived. Section 12.3
discusses the challenges for networked control systems when it comes to sta-
bility. Criteria for stability are also given. Section 12.4 explores different
kinds of methods for sampling the plant output of the WSN-CS. In section
12.5, different approaches for designing a WSN-CS are evaluated. In the last
two sections, we study two types of systems that are rather different from
the ones studied in the first sections. Specifically, section 12.6 deals with
a Model-Based Network Control System and section 12.7 covers a feedback
control system in which every node of a wireless network acts as part of the
controller.

297
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Figure 12.1 The state space description.

12.1 Preliminaries

12.1.1 State space representation

By a plant we mean a physical phenomenon or process that is controlled
in order to make it behave in a desirable way. In order to describe the
plant and its time-evolution, we shall use the state space representation.
Hence, at every point in time t, the plant is assumed to be described by the
system state x(t) ∈ Rn. Furthermore, a plant is influenced by an input
signal u(t) ∈ Rm and produces a measurable output signal y(t) ∈ Rp. Unless
otherwise stated, all plants that we will be concerned with are linear, time-
invariant and operate in continuous-time. Hence, they are governed by the
following equations.

dx

dt
(t) := ẋ(t) = Ax(t) +Bu(t) (12.1)

y(t) = Cx(t) +Du(t) , (12.2)

where A,B,C and D are assumed to be known matrices of appropriate
dimensions. The situation we have described is illustrated in Figure 12.3.

Theorem 12.1.1. Given x0 = x(0), the unique solution of (12.1) is given
by:

x(t) = eA(t)x(0) +

t∫
0

eA(t−s)Bu(s)ds t > 0 . (12.3)

Proof. A proof can be found in an introductory book on control theory and
is omitted here. For a proof see e.g. (Glad and Ljung, 1981).

In the following simple lemma, we will rewrite equation (12.3) in a way
that will be useful later in the chapter.

Lemma 12.1.2. Let t0 > 0. Equation (12.3) may be written as:

x(t) = eA(t−t0)x(t0) +

t∫
t0

eA(t−s)Bu(s)ds t > t0 . (12.4)
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Proof. With t = t0 in (12.3) we get

eA(t−t0)x(t0) +

t∫
t0

eA(t−s)Bu(s)ds

= eA(t−t0)

eAt0x(0) +

t0∫
0

eA(t0−s)Bu(s)ds

+

t∫
t0

eA(t−s)Bu(s)ds

= eAtx(0) +

t∫
0

eA(t−s)Bu(s)ds = x(t) .

12.1.2 Stability of difference equations

Let a function g : Rn → Rn be given and consider the following difference
equation:

x(k + 1) = g(x(k)) . (12.5)

A specific solution x∗(k) of (12.5) is called stable if for all ε > 0 there is a
δ > 0 such that for every other solution x(k) we have:

‖x (0)− x∗ (0)‖ ≤ δ ⇒ ∀k ∈ N : ‖x(k)− x∗ (k)‖ ≤ ε .

In words, this means that every solution x(k) that starts near a particular
stable solution x∗(k) will continue to stay near x∗(k) for all time(i.e. for all
k). Note however that the stability of x∗(k) does not guarantee that x(k)
will converge to x∗(k). The following stronger notion of stability ensures this
convergence.

A specific solution x∗(k) of (12.5) is called asymptotically stable if it
is stable and if there is a δ > 0 such that for every other solution x(k) it
holds that:

‖x (0)− x∗ (0)‖ ≤ δ ⇒ ‖x (k)− x∗ (k)‖ → 0 as k →∞ .

Assume that x∗(k) = 0 is a solution of (12.5). Then Figure 12.2 illustrates
the behaviour of solutions that start out near the origin in the case when x∗

is stable and in the case when x∗ is asymptotically stable.
Now we shall turn to the important special case that g(x(k)) is a linear

function, i.e. it is given by some matrix A ∈ Rn×n. The difference equation
(12.5) then becomes

x(k + 1) = Ax(k) . (12.6)
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x∗ (k) = 0

Figure 12.2 Stability vs asymptotic stability of the constant solution x∗(k) =
0.

The following lemma shows that for a linear difference such as (12.6), stability
and asymptotic stability are properties of the difference equation rather than
of a particular solution.

Lemma 12.1.3. If the linear difference equation (12.6) has a (asymptoti-
cally) stable solution, then every solution of (12.6) is (asymptotically) stable.

Proof. We give the proof for stability, the proof for asymptotic stability is
completely analogous. Assume that x∗(k) is a stable solution of (12.6). Let
x′(k) be another solution and consider some ε > 0. Pick δ > 0 such that
for every solution x(k), it holds for all k that ‖x∗(k) − x(k)‖ < ε provided
that ‖x∗(0) − x(0)‖ < δ. Now, in order to prove the stability of x′(k),
we take a solution x′′(k) such that ‖x′(0) − x′′(0)‖ < δ. We note that
x∗(k) + x′(k)− x′′(k) = Akx∗(0) +Akx′(0)−Akx′′(0) = Ak(x∗(0) + x′(0)−
x′′(0)), which shows that x∗(k) + x′(k) − x′′(k) is in fact also a solution.
Furthermore, ‖(x∗(0)+x′(0)−x′′(0))−x∗(0)‖ = ‖x′(0)−x′′(0)‖ ≤ δ implies
that ‖x′(k)− x′′(k)‖ = ‖(x∗(k) + x′(k)− x′′(k))− x∗(k)‖ ≤ ε for all k. This
shows that x′(k) is a stable solution and the proof is finished.

In light of Lemma 12.1.3 it makes sense to make the following definition.
A linear difference equation of the form (12.6) is (asymptotically) stable if
the constant solution x∗(k) = 0 is (asymptotically) stable. Thus a linear
difference equation is stable if for all ε > 0 there is a δ > 0 such that for
every solution x(k) we have

‖x (0)‖ ≤ δ ⇒ ∀k : ‖x(k)‖ ≤ ε .

Similarly, a system is asymptotically stable if it is stable and if there is a
δ > 0 such that for every solution x(k) we have

‖x (0)‖ ≤ δ ⇒ ‖x (k)‖ → 0 as k →∞ .
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As we shall see in the theorem 12.1.5, it turns out that the stability and
asymptotic stability of a difference equation such as (12.6) is determined by
the eigenvalues of A. Before we state the theorem we introduce the notation
ρ(A) = max{|λ|, λ is an eigenvalue of A}. We also need the following lemma.

Lemma 12.1.4. Let D ∈ Rn×n be a diagonal matrix with diagonal entries
λ1, λ2, . . . , λn, such that |λi| ≤ 1 for i = 1, 2, . . . , n. Then ‖D‖ ≤ 1.

Proof. First let ei, e2, . . . , en denote the standard basis of Rn. Now let x ∈ Rn

have unit length and assume that x =
n∑
i=0

ciei, where c1, c2, . . . , cn ∈ R. Note

that ‖x‖2 =
n∑
i=1

c2
i = 1. Thus

‖Dx‖2 =

∥∥∥∥∥
n∑
i=1

λiciei

∥∥∥∥∥
2

=
n∑
i=1

λ2
i c

2
i ≤

n∑
i=1

c2
i = 1⇒ ‖Dx‖ ≤ 1 .

Since x was an arbitrary unit-length vector it follows that ‖D‖ ≤ 1.

Theorem 12.1.5.

(i) The difference equation (12.6) is stable if and only ρ(A) ≤ 1.

(ii) The difference equation (12.6) is asymptotically stable if and only ρ(A) <
1.

Proof. Throughout this proof we will assume thatA is diagonalizable. Specif-
ically, we assume that there exists an invertible matrix T and a diagonal
matrix D such that A = TDT−1.

(i) First assume that ρ(A) ≤ 1. Let ε > 0 be given and pick

δ =
ε

‖T‖ · ‖T−1‖ .

Let x(k) be a solution of (12.6) such that ‖x(0)‖ < δ. Then ‖x(k)‖ =
‖Ax(k − 1)‖ = · · · =

∥∥Akx(0)
∥∥ =

∥∥(TDT−1)kx(0)
∥∥ =

∥∥TDkT−1x(0)
∥∥ ≤

‖T‖
∥∥Dk

∥∥∥∥T−1
∥∥ ‖x(0)‖ ≤ ‖T‖ ‖D‖k

∥∥T−1
∥∥ ‖x(0)‖.

Now since ρ(A) ≤ 1 and since the diagonal entries of D are precisely
the eigenvalues of A, we may apply Lemma 12.1.4 and conclude that
‖D‖ ≤ 1. This implies that

‖x(k)‖ ≤ ‖T‖ ‖D‖k
∥∥T−1

∥∥ ‖x(0)‖ ≤ ‖T‖
∥∥T−1

∥∥ δ
= ‖T‖

∥∥T−1
∥∥ ε

‖T‖ · ‖T−1‖ = ε .

Thus the system is stable.
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To prove the other direction, assume instead that ρ(A) > 1. Then there
are x′ ∈ Rn and λ ∈ R such that |λ| > 1, ‖x′‖ = 1 and Ax′ = λx′. Now
for any δ > 0 we have a solution xδ(k) = δAkx′. This solution satisfies
‖xδ(0)‖ = ‖δx′‖ = δ, but

‖xδ(k)‖ =
∥∥∥Akδx′∥∥∥ = δ|λ|k

∥∥x′∥∥ = δ|λ|k −−−→
k→∞

∞ .

This shows that (12.6) is not stable.

(ii) This time we assume first that ρ(A) < 1. Let b1, b2, . . . , bn be a basis
for Rn of eigenvectors of A and let λ1, λ2, . . . λn be the corresponding
eigenvalues. Then

‖x(k)‖ =
∥∥∥Akx(0)

∥∥∥ =

∥∥∥∥∥
n∑
i=1

λki cibi

∥∥∥∥∥ ≤
n∑
i=1

|λi|k|ci| ‖bi‖ −−−→
k→∞

0 .

We conclude that the system is asymptotically stable.

Now assume that ρ(A) ≥ 1. Then there are x′ ∈ Rn and λ ∈ R such
that |λ| ≥ 1, ‖x′‖ = 1 and Ax′ = λx′. Again, for any δ > 0 we have
a solution xδ(k) = δAkx′ that satisfies ‖xδ(0)‖ = ‖δx′‖ = δ. Now we
have ‖xδ(k)‖ =

∥∥Akδx′∥∥ = δ|λ|k ‖x′‖ 6→ 0 as k → ∞. Thus in this
case the system is not asymptotically stable and the proof is finally
completed.

12.2 The Wireless Sensor Network Control System

12.2.1 Definition

By a Wireless Sensor Network Control System(WSN-CS), we mean a
spatially distributed feedback control system in which the sensor nodes of a
WSN is used both to gather information from the plant and as a commu-
nication medium for the exchange of control signals. The plant information
gathered by the sensors is sent over the wireless channel to a single dedicated
controller. The goal of the controller is to bring the plant state into a desired
region by sending a control decision to the actuators, which are the devices
responsible for the execution of the control decisions.

We stress that in a WSN-CS, the system is controlled by a computer.
Computers work in discrete time, i.e. they can only receive and send in-
formation at discrete points in time. Hence, the continuous output signal
from the WSN-CS must be sampled before it is sent to the controller(c.f. ap-
pendix C). The discrete-time controller then decides a control signal which is
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Figure 12.3 Model of a WSN-CS.

converted into a continuous signal before it is fed back to the plant through
the actuators. This conversion is called signal reconstruction.

12.2.2 Model

We shall now describe the mathematical model of the WSN-CS that we
will use. First of all, the WSN-CS have a plant with state x(t) ∈ Rn, input
signal u(t) ∈ Rm and output signal y(t) ∈ Rp. It is governed by the following
equations(c.f. section 12.1):

dx

dt
(t) := ẋ(t) = Ax(t) +Bu(t) (12.7)

y(t) = Cx(t) +Du(t) . (12.8)

We denote the sampling instants, i.e. the times when the output sig-
nal y(t) are sampled, by tk and the sampling period h(k) is defined by
h(k) = tk+1 − tk. We assume that we have a state feedback control system.
Thus, when a sample y(tk) of the plant output arrives at the controller,
the controller estimates the plant state x(tk) and decides a control signal
u(x(tk)), which is used as input for the plant. Unless otherwise stated, this
estimation is assumed to be perfect, i.e. we assume that the controller has
perfect knowledge of x(tk). We shall also assume that the signal reconstruc-
tion method is zero-order hold and hence

u(t) = u(tk), t ∈ [tk, tk+1) . (12.9)

For the rest of the chapter we shall, unless otherwise stated, assume that
the sampling period h(k) is constant and that t0 = 0. It follows that tk = kh.
From (12.9) we then have that u(t) = u(kh) for t ∈ [kh, kh+ h). The model
we have described is illustrated in Figure 12.3.
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Proposition 12.2.1. The system state x(t) of the WSN-CS we have de-
scribed above satisfies:

x(kh+ h) = φx(kh) + Γu(kh) (12.10)

where φ = eAh and Γ =
h∫
0

eAsdsB.

Proof. Equation (12.4) yields:

x(kh+ h) = eAhx(kh) +

kh+h∫
kh

eA(kh+h−s)Bu(s)ds

= φx(kh) +

kh+h∫
kh

eA(kh+h−s)dsBu(kh) = {s′ = kh+ h− s}

= φx(kh)−
0∫
h

eAs
′
ds′Bu(kh)

= φx(kh) +

h∫
0

eAs
′
ds′Bu(kh) = φx(kh) + Γu(kh) .

Equation (12.10) is referred to as the system equation for the sam-
pled system. Note that while proposition 12.2.1 gives a convenient de-
scription of the sampled system at the sampling instants, it provides no
information about the system state in the intervals between these instants.
The corollary below establishes an explicit solution of the system equation
for the sampled system.

Corollary 12.2.2. At the sampling instans tk = kh, the system state of a
WSN-CS is given by

x(kh) = φkx(0) +

k−1∑
j=0

φk−j−1Γu(jh) . (12.11)

Proof. The proof is by induction over k. The base case k = 0 is trivial.
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Assume that (12.11) holds for a certain k and consider k + 1:

x(kh+ h) = φx(kh) + Γu(kh) = φ

φkx(0) +

k−1∑
j=0

φk−j−1Γu(jh)

+ Γu(kh)

= φk+1x(0) +
k−1∑
j=0

φk−jΓu(jh) + Γu(kh)

= φk+1x(0) +
k∑
j=0

φk−jΓu(jh) .

Hence (12.11) is satisfied for k + 1 and we are done.

Example 12.2.3. Consider a WSN-CS with a discrete-time controller that
outputs a control signal that is a linear function of the state, i.e. u(kh) =
−Kx(kh) for some K ∈ Rn×n. The system state at the sampling instances
is given by (12.11):

x(kh) = φkx(0)−
k−1∑
j=0

φk−j−1ΓKx(jh) .

12.3 Challanges for system stability

We shall say that a WSN-CS is (asymptotically) stable if the system
equation for the sampled system is stable. For a WSN-CS, the presence of a
wireless network in the control loop poses many challenges for the stability.
In this chapter we shall deal with three categories of such challenges, namely
the following:

(i) Network delay is the delay that occurs while data is exchanged be-
tween devices connected to the shared medium.

(ii) Packet losses may occur during packet transmission due to the unre-
liability of the transmission channel.

(iii) Multiple-packet transmissionmust sometimes be used due to band-
width and packet size constraints.

12.3.1 Network delay

In the network there are two sources of delay, namely sensor-to-controller
delay and controller-to-actuator delay. We denote these by τsc and τca re-
spectively(see fig. 12.4). If the controller is time-invariant, we may lump
these terms together into a total network delay τ = τcs + τsa. Furthermore,
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Figure 12.4 WSN-CS with packet losses and negligible delay.

we may also include any controller computational delay into τ . We can con-
vince ourself that this simplification is valid by the following argument: If
the controller is time-invariant, then the controller decision u(t) will not de-
pend on the time at which the sample x(kh) reaches the controller and thus
only the total delay is of importance for the system. In what follows we will
study the stability of WSN-CSs which are subject to network delay. First we
will consider a delayed system with a continuous-time plant and show how
the system stability can be determined in the case of a constant network
delay. Then we will consider a discrete-time plant subject to time varying
delay and present a stability criterion for such a system. We will end this
subsection with some comments on the relationship between the sampling
interval, the network delay and the system stability.

Delayed system with continuous plant

The setting will be as follows. We have a WSN-CS that is subject to a
total time-delay τk at time t = kh. Furthermore we assume that τk < h for
all k ∈ N. Mathematically, we may model this situation by

ẋ(t) = Ax(t) +Bu(t− τk), t ∈ [kh, kh+ h)

y(t) = Cx(t) +Du(t) ,

where u(t) is the input signal in the abscence of delay, i.e. u(t) = u(kh) for
t ∈ [kh, kh+ h).

Proposition 12.3.1. The system state of the WSN-CS with delay as de-
scribed above satisfies the following difference equation:

x(kh+ h) = φx(kh) + Γ0(τk)u(kh) + Γ1(τk)u(kh− h) , (12.12)

where

φ =

h∫
0

eAh ,
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Γ0(τk) =

h−τk∫
0

eAsdsB ,

and

Γ1(τk) =

h∫
h−τk

eAsdsB .

Proof. We apply equation (12.4) which yields:

x(kh+ h) =eAhx(kh) +

kh+h∫
kh

eA(kh+h−s)Bu(s− τk)ds

=φx(kh) +

kh+τk∫
kh

eA(kh+h−s)dsBu(kh− h)

+

kh+h∫
kh+τk

eA(kh+h−s)dsBu(kh)

={s′ = kh+ h− s}

=φx(kh)−
h−τk∫
h

eAs
′
ds′Bu(kh− h)−

0∫
h−τk

eAs
′
ds′Bu(kh)

=φx(kh) + Γ0(τk)u(kh) + Γ1(τk)u(kh− h) .

Now we assume that the controller in the WSN-CS described above out-
puts a signal that is a linear function of the state, i.e. u(x(kh)) = −Kx(kh)
for some K ∈ Rn×n. In order to examine the stability of the resulting sys-
tem, we would like to rewrite equation (12.12) in the form (12.6). To this
end, we define the augmented state vector

z =
[

x(kh)
u(kh−h)

]
and the matrix

φ(τk) =
[
φ−Γ0(τk)K Γ1(τk)
−K 0

]
.

It can then be easily verified that equation (12.12) is equivalent to

z(kh+ h) = φ(τk)z(kh) . (12.13)

Note that since φ(τk) in (12.13) depends on the time delay τk at time kh, the
delayed system is no longer time-invariant. Thus the stability results that
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we showed in section 12.1 are not applicable. However, if an appropriate
network protocol is used, the delay τk will be constant, i.e. τk = τ for
all k ∈ N. In this case, the system becomes time-invariant and we may
apply theorem 12.1.5, from which we see that the stability of the WSN-CS
is determined by the eigenvalues of φ(τ). We shall illustrate this with an
example.

Example 12.3.2. Suppose that we are given a simple scalar system that is
subject to a constant network delay τ and governed by the following equation:

ẋ (t) = u (t) .

Assume that the controller decision is u (t) = −Kx (t).
In order to study the stability of this system, the matrix φ needs to be con-
structed. Thus, since A = 0 and B = 1, we have that

φ = e0 = 1 Γ0 =

h−τ∫
0

ds = h− τ Γ1 =

h∫
h−τ

ds = τ

and the matrix becomes

φ =

[
φ− Γ0 (τ)K Γ1 (τ)
−K 0

]
=

[
1− hK + τ τ
−K 0

]
.

We are now interested in computing the eigenvalues of φ:

det
(
φ− λI

)
= 0⇔ (1− hK + τK − λ) (−λ) + τK = 0⇔

⇔ λ2 − λ (1− hK + τK) + τK = 0⇔

⇔ λ1,2 =
1− hK + τK ±

√
(1− hL+ τK)2 − 4τK

2

At this point we recall theorem 12.1.5 which tells us that the sampled system
state is asymptotically stable if and only if |λ1|, |λ2| < 1.

If τk is greater than h for some k, the analysis becomes more complicated.
This is because during a single sampling interval h, the plant may receive
zero, one or more than one sampled signal. In the special case that there is
some natural number l > 1 such that (l− 1)h < τk < lh for all k ∈ N, it can
be shown by an argument similar to what was done in Example 12.3.2 that
w(kh+ h) = φ̃(τk)w(kh), where τ ′k = τk − (lh− h) and

φ̃(τk) =


φ Γ1(τ ′k) Γ0(τk) . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

 , w(kh) =


x(kh)

u(kh− lh)
...

u(kh− 2h)
u(kh− h)


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Stability criterion for time-varying delay

When a contention-based MAC protocol is used, the system will be sub-
ject to a time-varying delay τk. Below we shall study the stability of a WSN-
CS with time-varying delay, but for the moment we consider a non-delayed
system with a discrete-time plant that is governed by the equations:

x(k + 1) = Ax(k) +Bu(k) (12.14)

y(k) = Cx(k) +Du(k) . (12.15)

We assume that x(0) = 0 and thus a Z-transformation of the above
equations yields:

zX(z) = AX(z) +BU(z) (12.16)

Y (z) = CX(z) +DU(z) (12.17)

where X(z) = Z(x(k)), U(z) = Z(u(k)) and Y (z) = Z(y(k)).
From (12.16) we have that X = (zI − A)−1BU , which we insert into

(12.17) and thus conclude that Y =
[
C(zI −A)−1B +D

]
U = HU , where

H(z) is defined by H = C(zI − A)−1B + D. The control law is assumed
to be given as a convolution of the plant output y(k) with some function
f(k). We make thus make use of the Z-transform again and conclude that
U(z) = F (z)Y (z)

We are now ready to add network delay to the system we have considered.
We shall assume that the system described above is subject to a time-varying
delay τk such that τk ≤ τmax, where τmax ∈ N is the maximum number of
time-steps for which a packet can be delayed. For this situation it is possible
to prove the following theorem:

Theorem 12.3.3. Consider a WSN-CS subject to a time-varying delay τk ≤
τmax as described above. The system is stable if the following inequality holds
for all ω ∈ [0, 2π]: ∥∥∥∥ F (eiω)H(eiω)

1 + F (eiω)H(eiω)

∥∥∥∥ ≤ 1

τmax |eiω − 1| . (12.18)

Proof. The proof is omitted. For a proof see (Kao and Lincoln, 2004).

Note that f(k) and τmax can be chosen such that condition (12.18) holds.
This can be done by modifying the controller and the MAC protocol. Finally
we remark that (12.18) is a sufficiency condition for stability, but it must
not necessarily be satisfied by a stable system.
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Choice of appropriate sampling interval of a system with delay

In a sampled system, in order to approximate the underlying continuous-
time system as close as possible, is has conventionally been desired to have
a short sampling period h. For a WSN-CS however, frequent sampling com-
plicates the scheduling in the network and also leads to a higher energy
consumption. Moreover, frequent sampling may increase the network load,
which may lead to longer delays τk. As we can see from Example 12.3.2,
the eigenvalues of φ̄(and hence the stability of the corresponding system),
depends on both the delay τ and the sampling interval h. Thus the delay
should be taken into consideration when deciding the sampling interval.

12.3.2 Packet losses

In this section, the effect of packet losses on the WSN-CS stability is
examined. In order to simplify the analysis, we assume that the packet
losses may only occur as the data packets are sent form the plant to the
controller. We also assume that the network delay is negligible. As usual,
the state equation for the system is assumed to be:

ẋ(t) = Ax(t) +Bu(t) .

The input u(t) will depend on whether a packet drop has occurred or not
and is given by: u(t) = x(kh) for t ∈ [kh, kh+ h), where

x(kh) =

{
x(kh− h) the k:th packet was lost
x(kh) otherwise .

The probability of a packet loss is given by the packet loss probability
and will be denoted by p. The basic set-up we have described is depicted
in Figure ??. Using Proposition 12.2.1 we arrive at the following system
equation for the sampled system:

x(kh+ h) = φx(kh) + Γu(kh) .

Here φ and Γ are the usual matrices and u(t) is as above. The following
theorem gives criteria for stability of the sampled system.
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Theorem 12.3.4. Consider a WSN-CS with packet losses as described above.
Assume that ρ(φ− ΓK) < 1.

(i) If ρ(φ) ≤ 1, then the system is asymptotically stable for every p.

(ii) If ρ(φ) > 1, then the system is asymptotically stable if

1

1− γ1

γ2

< 1− p ,

where γ1 = log(λ2
max(φ− ΓK)), γ2 = log(λ2

max(φ)) and λmax(A) is the
maximum eigenvalue of a matrix A.

Proof. The proof is rather tedious and is not given here. The curious reader
will find a proof in (Zhang et al., 2001).

We remark that, the parameters p and L depend on factors that we may
influence(we may for instance change MAC protocol or controller). Thus,
given an unstable WSN-CS with packet losses, we may stabilize the system
by modifying the parameters p and L such that the criteria in Theorem
12.3.4 hold.

12.3.3 Multiple-packet transmission

Due to bandwidth and packet size constraints, the plant output must
sometimes be sent using multiple packets. In such cases, some of the packets
may not reach the controller in time because of delay or packet losses. For
simplicity we will only cover the case where the sampled plant state is trans-
mitted in two packets, but it is not hard to extend the model to systems in
which the state is sent using more than two packets. Again for simplicity,
the network delay is assumed to be negligible.

First of all, we assume that the sampled state of the plant is given by

x (kh) = [x1 (kh)x2 (kh)] ,

where x1 and x2 are sent in different packets. Then, as depicted in Fig-
ure 12.6, we model the double-packet transmission with a switch that can be
in two states. The position of the switch indicates which of the two packets
that is sent at a particular time step. In our model, depending on the posi-
tion of the switch, the auxiliary state vector x(kh) is updated according to
the equations below:

S1 : x1(kh) = x1(kh) x2(kh) = x2(kh− h)
S2 : x1(kh) = x1(kh− h) x2(kh) = x2(kh)

. (12.19)

Assume now that the state equation for the sampled system looks almost
like it usually does:

x(kh+ h) = φx(kh)− ΓKx(kh) . (12.20)
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Plant
x (kh+ h) = φx (kh) + Γu (kh)

• •s1 s2

x1 (kh)

x2 (kh)

Controller
u (kh) = −Kx̄ (kh)

x̄ (kh) =

[
x̄1 (kh)
x̄2 (kh)

]

Figure 12.6 model of a WSN-CS with double packet transmission

Here

x (kh) =

[
x1 (kh)
x2 (kh)

]
,

φ =

[
φ11 φ12

φ21 φ22

]
,

Γ =

[
Γ1

Γ2

]
,

and K = [K1 K2 ].
Defining an augmented state vector as

z (kh) =


x1 (kh)
x2 (kh)
x̄1 (kh)
x̄2 (kh)

 ,
it is an easy exercise to verify that the Equations in (12.19) and (12.20) are
equivalent to:

z((k + 1)h) = φ̃sz(kh) for s = 1, 2 , (12.21)

where φ̃1 and φ̃2 are given by

φ̃1 =


φ11 φ12 −Γ1K1 −Γ1K2

φ21 φ22 −Γ2K1 −Γ2K2

φ11 φ12 −Γ1K1 −Γ1K2

0 0 0 I

 (12.22)

φ̃2 =


φ11 φ12 −Γ1K1 −Γ1K2

φ21 φ22 −Γ2K1 −Γ2K2

0 0 I 0
φ21 φ22 −Γ2K1 −Γ2K2

 (12.23)
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respectively.

Now let us turn back to the original issue that brought us here, i.e. that of
stability. In order to simplify the analysis we assume that we have a schedul-
ing network and that packets are sent in the following order: x1, x2, x1, x2, . . .
In this case, we may describe the effect of sending the complete system
state(i.e. two packages) by x(kh + 2h) = φ2x(kh + h) = φ2φ1x(kh). Hence
the study of the system stability is in this case reduced to the study of the
eigenvalues of the the matrix product φ2φ1.

12.4 Sampling methods

One important way to reduce the energy consumption of a WSN-CS is
to reduce the network communication. In particular we would like to reduce
the idle listening time, since idle listening is a particularly energy consuming
node activity. So far we have only considered systems with constant sam-
pling periods. However, sampling methods that use aperiodic sampling could
potentially reduce energy consumption. The following discussion is based on
(Tiberi et al., 2013) and covers different kinds of such methods.

12.4.1 Event-triggered sampling

The first aperiodic sampling method we shall deal with is called event-
triggered sampling. In this sampling method, samples are sent to the
controller only when a certain kind of event occurs, i.e. when a specified
function of the system state meets specific requirements. An example of
such a requirement is that this function crosses a pre-determined threshold.
With this sampling method, we can hope to decrease the average amount of
communication through the network, since we take samples only when our
requirements are met. However, this sampling method forces the nodes to
perpetually wait for communication, i.e. the nodes must be in the highly
energy consuming state of idle listening all the time. It is thus clear that we
lose all energy savings that an aperiodic method potentially could have pro-
vided. Hence, by itself, event-triggered sampling is not a suitable sampling
method for a WSN-CS.

12.4.2 Self-triggered sampling

The second sampling method to be examined is self-triggered sam-
pling. With this method, an estimate of the evolution of the system state is
computed at every sampling instant. In analogy with the method above, the
next sampling instant is then set to be the point in time when a function of
the system state meets specific requirements. Just like the previous method,
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the sampling time is not periodic and the average amount of network commu-
nication could potentially be reduced. However, unlike the event-triggered
sampling, the nodes of the network know when the next sample will be sent
and can therefore avoid idle listening. Instead they may enter an energy
saving mode while waiting for the next sample. At first sight, self-triggered
sampling might seem ideal for WSN-CSs, but it has an important flaw. In-
deed, every sampling instant is based merely on an estimation of the evo-
lution of the state. Thus, unforeseen perturbations and uncertainties of the
prediction may cause the system to behave unexpectedly and even make it
unstable.

12.4.3 Adaptive self-triggered sampling

As we have learnt above, event-triggered and self-triggered sampling both
fail to provide reliable and energy efficient sampling. However, a compro-
mise between the two methods has been imagined: a sampling method that
is capable of both predicting the evolution of the system and of detecting
perturbations. Such a system would decrease the amount of network com-
munication as well as the idle listening period length. In (Tiberi et al., 2013),
one of the most recent works on this kind of sampling method is presented. In
the model used there, an estimate of the system disturbance is considered in
the computation of the next sampling instant. This leads to less conservative
sampling intervals and to an improvement of the system response.

As we have explained, the the choice of sampling method is important,
since it has influence on the energy consumption of the system. However, it
is not enough to focus solely on the sampling method, instead the protocols
of the network must also be designed to adapt to the sampling method.
Reciprocally, the sampling method must take the restrictions caused by some
protocols into account. For instance, IEEE 802.15.4, which is the most
common MAC protocol used for WSNs, does not allow communication at
every time t. This is an important constraint that must be addressed when
designing the sampling method.

12.5 System design

WSN-CSs are complex systems that involve a lot of hardware and soft-
ware with various functions. Designing such a system requires some organi-
zation. In this section, which is based on (Tiberi et al., 2013) and (Fischione
et al., 2011), we shall discuss three different approaches for the design of a
WSN-CS.



Chapter 12. Wireless Sensor Network Control Systems 315

12.5.1 The Top-down approach

In the top-down approach, which is an approach traditionally used
in the design of control applications, the structure of the network is not
taken into account. The network is simply modelled as a black box that
introduces perturbations such as delays, packet losses, etc. The control ap-
plications are designed to resist these perturbations, but they are assumed
not to have any influence on them. The top-down approach presents sev-
eral problems. Firstly, the models used to represent the network are often
simplified and important constraints imposed by the network protocols are
thereby neglected. Secondly, the energy-efficiency constraints imposed on
the system by the presence of the WSN is not taken into account. Thirdly,
the control applications are designed to entirely counter the imperfections
created by the network, i.e. to withstand the worst case scenario(e.g. a high
packet loss probability or long delays), even though this scenario might be
unlikely. This leads to a waste of resources of the system and hence also to
an energy-inefficient system.

12.5.2 The Bottom-up approach

The bottom-up approach on the other hand, is the approach tradi-
tionally used to design the protocols of a WSN. In this approach, the control
applications are not explicitly considered, even though they are the center
of the system. Instead, one simply tries to minimize the effect of usual prob-
lems inherent to a wireless system, like network delay and packet losses. As
a result, the protocols reduce those problems, but they can be very energy-
inefficient. This is because high reliability and low delays often demand a
high energy consumption.

12.5.3 The System-level approach

The design approaches discussed above have a problem in common: they
separate control applications and network protocols. By proceeding like this,
not only do we ignore the energy constraints imposed by the network, but
we also forget the fact that it is not necessary to completely suppress the ir-
regularities introduced by the network. Indeed, the control applications can
withstand a certain amount of delay and packet losses without becoming un-
stable. Minimizing the delay and the packet losses is therefore unnecessary.
However, most protocols for wireless systems are designed according to the
approaches mentioned above and thus they are too one-sided. For instance,
the protocol RMST offers reliability, but performs poorly in terms of delay
or energy and the protocols Fetch and Dozer are not designed for the high
network traffic load of control systems. These protocols are thus not suited
for control applications.
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Figure 12.7 A WSN-CS with n plants and n controllers.

In order to tackle the problems with the top-down approach and the
bottom-up approach, a new approach has been proposed to design WSN-
CSs, namely the system level approach (Fischione et al., 2011). With
this approach, one tries to find a trade-off between different parameters.
These parameters include the network reliability and latency, as well as the
energy efficiency. This is where the trade-off appears: a maximized latency
and reliability leads to a high energy consumption, which is not possible
with the low-power network we are using. When following the system level
approach, one should strive for adaptability. Indeed the goal of the control
applications may change overtime and it is necessary that the whole system is
optimized to satisfy the new requirements. Furthermore, the network design
must be easy to implement, since the nodes of the network have limited
resources.

We shall now present a mathematical model of the trade-off introduced
in the system-level approach. In order to do this we consider the problem
of designing the protocols for a WSN that is used to close the loop between
n plants and n controllers. State information from the sensors is sent to a
common sink node, which is wired to the controllers. The set-up is illustrated
in Fig. 12.7. For this situation, we may model the trade-off by the following
optimization problem(Fischione et al., 2011):

min
x
Etot(x) (12.24)

s.t. Ri(x) ≥ Ωi , i = 1, . . . , n (12.25)
Pr[Di(x) ≤ τi] ≥ ∆i , i = 1, ..., n . (12.26)

Here x represents the variables of the system that can be modified, such as
the radio power or the MAC parameters. Etot represents the total energy
consumed by the system. Ri(x) is the probability for a packet sent from node
i to reach the sink successfully. Di(x) is a random variable representing the
delay of a packet sent from node i to the sink.

In the optimization problem above, the objective function to be mini-
mized is the energy consumption, which makes is it a central aspect of the
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Figure 12.8 Set-up of a Model-Based NCS.

problem. This is what we are looking for. However, the system still has
some requirements to meet when it comes to reliability and delay, Ωi for
the reliability, τi and ∆i for the delay. This is where the trade-off between
the network performances and the energy consumption is represented. We
can also see that this mathematical problem allows adaptability. Indeed, if
the requirements of the control applications change, then the new optimal
x can be found by solving the optimization problem with the new set of
constraints.

Unfortunately, the optimization problem above can be extremely difficult
to solve. The expressions that link the different parameters can be non-
linear and the solution may be difficult to find even for small networks.
Hence, simplifications need to be made for this design to be possible. Such
simplifications are implemented in the protocols Breath and TREnD, which
are discussed further in (Fischione et al., 2011).

12.6 Model based network control system

Now we shall turn our attention to a type of a WSN-CS that we will refer
to as a model-based network control system (MB-NCS). Our analysis
will follow (Montestruque and Antsaklis, 2004; Xie et al., 2014). The basic
idea of the MB-NCS is to use a model of the plant that approximates the
plant behaviour between sampling instants and thereby allow for a reduction
of the packet transmission rate.

The set-up of the MB-NCS is depicted in Figure 12.8. We have a feed-
back control system consisting of a continuous-time plant, a discrete-time
controller and a model of the plant, which is incorporated in the controller.
At every sampling instant, the state of the model is set to be the actual
plant state. During the rest of the time the control signal(and thus also
the plant input signal) is determined by the plant model. There is also a
wireless network present between the sensor and the controller which will be



Chapter 12. Wireless Sensor Network Control Systems 318

responsible for packet losses and delay.

12.6.1 A model of the MB-NCS

Let us now make the above description of the MB-NCS precise by pre-
senting the mathematical model used in (Xie et al., 2014). As before we
assume that the system state of the plant evolves according to

ẋ(t) = Ax(t) +Bu(t) , (12.27)

where x(t) and u(t) denotes the plant state and input respectively. Analo-
gusly, the model of the plant is described by

x̆(t) = Ăx̆(t) + B̆u(t) , (12.28)

where x̆(t) is the state of the model. Ă and B̆ are estimates of A and B
respectively. Furthermore, we assume that the model continuously updates
the control signal to the plant according to u(t) = −Kx̆(t). When a new
sensor sample reaches the actuator, this sample is used as the state of the
model:

x̆ (tk) = x (tk) . (12.29)

In this model, we will not assume that the sampling period h(k) is constant,
but in order to simplify the analysis, we will still make the assumption that
t0 = 0. We now define the modelling error by Ā = A − Ă and B̄ = B − B̆.
Similarly, the state error between the plant and the model is given by e =
x − x̆. We also define an augmented state vector z(t) and a matrix Λ as
follows:

z =

[
x(t)
e(t)

]
, Λ =

[
A−BK BK

Ā− B̄K Ă+ B̄K

]
. (12.30)

With this new notation, we may describe the complete system(including
both the plant and the model) by

ż = Λz, t ∈ [tk, tk+1) . (12.31)

Notice that (12.31) holds only for t ∈ [tk, tk+1) and hence, in order to use
it to find z(t), we also need an equation that specifies z(t) at the sampling
instants. From (12.32) it follows that the following equation holds for every
k:

z(tk) =

[
I 0
0 0

]
z(t−k ) . (12.32)

Proposition 12.6.2 below will provide a handy formula for calculating the
system state, but first we need the following simple lemma:
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Lemma 12.6.1. The solution z(t) of (12.31) and (12.32) satisfies:

z(tk) =

k−1∏
j=0

[
I 0
0 0

]
eΛh(j)

 z0 . (12.33)

Proof. We proceed by induction over k. For k = 0 there is nothing to prove.
Assume that (12.33) holds for a certain k and consider k + 1: From (12.32)
we have

z(tk+1) =

[
I 0
0 0

]
z(t−k+1) .

Now we use (12.4) and (12.31), which together yield:

z(tk+1) =

[
I 0
0 0

]
eΛ(tk+1−tk)z(tk) .

By the induction hypothesis we thus have

z(tk+1) =

[
I 0
0 0

]
eΛ(tk+1−tk)

k−1∏
j=0

[
I 0
0 0

]
eΛh(j)

 z0

=

 k∏
j=0

[
I 0
0 0

]
eΛh(j)

 z0 .

Thus (12.33) holds for k + 1 and the proof is complete.

Proposition 12.6.2. For t ∈ [tk, tk+1), the solution of (12.31) and (12.32)
satisfies

z (t) = eΛ(t−tk)
k−1∏
j=0

M (j)z0 (12.34)

where

z0 =

[
x(0)

0

]
,

is the initial state and

M(j) =

[
I 0
0 0

]
eΛh(j)

[
I 0
0 0

]
.

Proof. Note that
[
I 0
0 0

]
eΛh(j) =

[
Sj Pj
0 0

]
, for some matrices Sj and Pj . It

follows that
k−1∏
j=0

[
I 0
0 0

]
eΛh(j) =

 k−1∏
j=0

Sj
k−1∏
j=0

Pj

0 0


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Thus, in light of Lemma 12.6.1

z(tk) =

k−1∏
j=0

[
I 0
0 0

]
eΛh(j)

 z0

=

k−1∏
j=0

[
I 0
0 0

]
eΛh(j)

[ x(0)
0

]

=

 k−1∏
j=0

Sj
k−1∏
j=0

Pj

0 0

[ x(0)
0

]
=

 k−1∏
j=0

Sj 0

0 0

[ x(0)
0

]

=

k−1∏
j=1

M(j)

 z0 .

Now for t ∈ [tk, tk+1) , (12.4) and (12.31) imply

z (t) = eΛ(t−tk)
k−1∏
j=1

M (j)z0 ,

and we are done.

12.6.2 MB-NCS stability

Now we shall investigate the stability of the MB-NCS we have described.
Firstly, we assume that the sampling intervals h(k) are independently and
identically distributed (i.i.d.) random variables with the common probability
distribution F . This implies that the neither h(k) nor M(k) depend on k
and we put h(k) = h, M(k) = M .

Now that random variables have entered into the picture, we need to
reformulate our notion of stability. We will not give a very general definition,
instead we shall say that the solution z = 0 of the system described by the
equations (12.31) and (12.32) is globally mean square asymptotically
stable if, for every initial-value z0 = z(0), the corresponding solution z(t)
of (12.31) and (12.32) satisfies:

E
[
||z(t)||2

]
−−−→
t→∞

0 . (12.35)

Proposition 12.6.3. Consider the system described by (12.31) and (12.32),
with sampling intervals h(k) that are independently and identically distributed
(i.i.d.) random variables with probability distribution F . The solution z = 0
of this system is globally mean square asymptotically stable if both of the
following two inequalities hold:

EM = E

[(
e||Λ||h

)2
]
<∞ (12.36)
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∥∥E [MTM
]∥∥ < 1 . (12.37)

Proof. The proof is omitted. For a proof see (Montestruque and Antsaklis,
2004).

Now we shall include packet losses in our stability analysis. Thus we
assume that our network is subject to a packet loss probability p and we let
r = 1 − p denote the probability of a successful transmission. We assume
furthermore that if a packet is lost, the sensor will attempt to send the packet
again at the next sampling instant. We also make the simplifying assumption
that the nominal sampling period(i.e the sampling period corresponding to
the case when a packet is not lost) is constant and given by hnom. Hence,
the probability that the real sampling interval is h = nhnom is equal to
r(1− r)n−1 , where (n− 1) is the number of consecutive packet losses. Now
we see that the sampling intervals h(k) are i.i.d. random variables and thus
we may use Proposition 12.6.3. In the following theorem, which presents
criteria for stability of the MB-NCS with packet losses, we will assume that
Λ is diagonalizable. Specifically, we assume that Λ̄ = PΛP−1, where Λ̄ =
diag(λ1, λ2, . . . , λn).

Theorem 12.6.4. Consider the system described by (12.31) and (12.32).
Assume that packet losses give rise to sampling intervals as described above.
The solution z = 0 of this system is globally mean square asymptotically
stable if (12.38) and (12.39) hold and

(1− r)e2||Λ||hnom < 1 (12.38)

∥∥∥∥[I 0
0 0

]
P TSP

[
I 0
0 0

]∥∥∥∥ < 1 , (12.39)

S = E

[
eΛ̄T h

(
P−1

)T [I 0
0 0

]
P−1eΛ̄h

]
. (12.40)

Proof. We shall prove that (12.36) and (12.37) in Proposition 12.6.3 holds.
We begin with (12.36):

EM = E

[(
e||Λ||h

)2
]

=
∞∑
n=1

r(1− r)n−1e2||Λ||nhnom

=

∞∑
n=1

r(1− r)−1
[
(1− r)e2||Λ||hnom

]n
.
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Thus it follows from (12.38) that EM <∞ and thus (12.36) holds.
Now we turn to (12.37):∥∥E [MTM

]∥∥
=

∥∥∥∥E [[ I 0
0 0

]
eΛT h

[
I 0
0 0

] [
I 0
0 0

]
eΛh

[
I 0
0 0

]]∥∥∥∥
=

∥∥∥∥E [[ I 0
0 0

]
eΛT h

[
I 0
0 0

]
eΛh

[
I 0
0 0

]]∥∥∥∥
=

∥∥∥∥E [[ I 0
0 0

]
P T eΛ̄T h

(
P−1

)T [ I 0
0 0

]
P−1eΛ̄hP

[
I 0
0 0

]]∥∥∥∥
=

∥∥∥∥[ I 0
0 0

]
P TE

[
eΛ̄T h

(
P−1

)T [ I 0
0 0

]
P−1eΛ̄h

]
P

[
I 0
0 0

]∥∥∥∥
=

∥∥∥∥[ I 0
0 0

]
P TSP

[
I 0
0 0

]∥∥∥∥ < 1 .

In the last inequality we have used (12.39).

Apart from packet losses, network delay is also important to consider
when analysing the system stability. We may reduce the destabilizing effects
of the network delay by time-stamping the packages. In this way, when the
controller receives a delayed system sample it may estimate the current plant
state as follows:

x̆(tk + τk) =
[
I 0

]
eΛτk

[
x(tk)
e(tk)

]
,

where τk is the delay of the k:th sample.

12.7 WSN-CS with Multiple Sensors

This last section is based on (Pajic et al., 2011) and is devoted to feed-
back control systems in which a wireless network is used in a way that is
fundamentally different from how it has been used in the systems we have
studied so far. We consider the case when the wireless control network has
each network node acting as part of a controller in a feedback control system.
In the specific set-up that we shall consider, a plant with multiple sensors
and actuators is controlled by a multi-hop wireless network (see Figure 12.9).
Note the difference between the WCN and the systems we have dealt with
earlier in the chapter; in the WSN-CSs that we have studied in the sections
above, information was routed to and from a single controller.
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Figure 12.9 Set-up of the WSN-CS with distributed controllers over the
network nodes (here, N = 9 nodes).

12.7.1 WCN Model

We shall now present the mathematical model of the WCN as described
in (Pajic et al., 2011), but before we proceed to the actual model, we need
some useful notation. A directed graph is an ordered pair G = (V ,E ), where
V is a set of vertices and E is a set of ordered pairs of different vertices,
called directed edges. For a certain vertex v ∈ V , the vertices in the set
Nv = {v′ ∈ V |(v′, v) ∈ E } are said to be neighbours of the vertex v.

In order to describe the WCN, we construct a graph G as follows: Let
the vertices be given by V = V ′ ∪ A ∪ S . Here V ′ = {v0, v1, . . . , vN} is
the set of network nodes, A = {a0, a1, . . . , vm} is the set of actuators and
S = {s0, s1, . . . , sp} is the set of sensors. The set of directed edges E is
chosen so as to represent the radio connectivity, i.e. for any α, β ∈ V , we
have (α, β) ∈ E if and only if β can receive information directly from α.

The plant in the WCN is assumed to operate in discrete time and to be
governed by the equations below:

x(kh+ h) = Ax(kh) +Bu(kh)
y(kh) = Cx(kh) .

(12.41)

As before, x(kh) ∈ Rn is the system state, u(kh) ∈ Rm is the plant input
and y(kh) ∈ Rp is the plant output. In addition to the plant state vector
x(kh), we now also assume that every network node vi ∈ V ′ have an associ-
ated scalar state zi(kh) that is updated at every time step according to the
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following equation:

zi(kh+ h) = wiizi(kh) +
∑

vj∈Nvi

wijzj(kh) +
∑

sj∈Nvi

hijyj(kh) . (12.42)

Hence, at every time-step the state of each node is set to be a linear combina-
tion of the network nodes and sensors from which it can receive information.
In a similar fashion, we let the plant input ui(kh) be a linear combination
of the node states that can send information to actuator ai:

ui(kh) =
∑
j∈Nai

gijzj(kh) . (12.43)

The scalars wij , hij and gij are elements of the matricesW ∈ RN×N , ∈ RN×p
and G ∈ Rm×N respectively. The radio connectivity imposes the following
sparsity constraints on these matrices: wij = 0 if vj 6∈ Nvi ∪ {vi}, hij = 0 if
sj 6∈ Nvi and gij = 0 if vj 6∈ Nai . We let Φ denote the set of all three-tuples
of matrices (W,H,G) ∈ RN×N × RN×p × Rn×N that satisfies the sparsity
constraints just described. If we now put together all node states into a value
vector

z(kh) =


z1(kh)
z2(kh)

...
zN (kh)

 .
we may model the information exchange in the network, by

z(kh+ h) = Wz(kh) +Hy(kh)
u(kh) = Gz(kh)

. (12.44)

In order to incorporate the evolution of the plant state into the equation
above, we put

x̂ =

[
x(kh)
z(kh)

]
, Â =

[
A BG
HC W

]
.

With this notation, the system equation for the entire system becomes:

x̂(kh+ h) = Âx̂(kh) . (12.45)

12.7.2 WSN-CS stability

We shall now address the question of how one should choose (W,H,G) ∈
Φ in order to make the system stable. In theory the answer is simple, we know
that the system will be asymptotically stable if we choose (W,H,G) ∈ Φ so
that

ρ(Â) < 1 (12.46)
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Sometimes however, (12.46) is not satisfied for any (W,H,G) ∈ Φ. If this
is the case, then the plant cannot be stabilised with the given radio connec-
tivity. If on the other hand it is possible to stabilize the plant, it is still not
an easy problem to find suitable matrices W,H and G. The hardness of this
problem is mainly due to the sparsity constraints imposed on these matrices.
However, in (Pajic et al., 2011), the authors present an iterative algorithm
that provides matrices such that (12.46) is satisfied. In the following theorem
we describe this algorithm.

Theorem 12.7.1. Consider the following algorithm:

1. Find feasible points X0, Y0,W0, H0, G0 that satisfy the constraints:[
X0 ÂT

Â Y0

]
� 0,

[
X0 I
I Y0

]
� 0, Â =

[
A BG0

H0C W0

]
,

(12.47)

where (W0, H0, G0) ∈ Φ and X0, Y0 ∈ R(N+n)×(N+n) are positive sym-
metric matrices. If such feasible points do not exist, it is not possible
to stabilize the plant with the given radio connectivity.

2. At iteration k(k ≥ 0), from Xk, Yk obtain the matrices Xk+1, Yk+1,Wk+1,
Hk+1, Gk+1 by solving the following Linear Matrix Inequality(LMI)
problem:

min tr(YkXk+1 +XkYk+1)

s.t. [
Xk+1 ÂTk+1

Âk+1 Yk+1

]
� 0,[

Xk+1 ÂT

Â Yk+1

]
� 0 ,

where

Â =

[
A BGk+1

Hk+1C Wk+1

]
and (Wk+1, Hk+1, Gk+1) ∈ Φ and Xk+1, Yk+1 ∈ R(N+n)×(N+n) are pos-
itive symmetric matrices.

3. If ρ(Âk+1) < 1, stop the algorithm. Otherwise set k = k + 1 and go to
step 2.

The algorithm described above determines a tuple (W,H,G) ∈ Φ such that
ρ(Â) < 1 if the sequence tk = tr(YkXk+1 +XkYk+1) converges to 2(n+N) .

Proof. The proof is omitted. For a proof see (Pajic et al., 2011).
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12.7.3 Advantages of the WCN

We conclude our review of the WCN with a discussion of the potential
benefits of the WCN compared to a conventional system, i.e. a system with
a single dedicated controller:

(i) Computational inexpensiveness: TheWCN scheme presented above
can be implemented on wireless nodes that are constrained in terms of
computational power and memory storage. Indeed, every node in the
network is required only to compute a linear combination of scalar node
states.

(ii) Simple scheduling: In the WCN, the actuators do not need to wait
for information packages to propagate all the way from the sensors.
Instead all network nodes transmit their state information exactly once
in each frame. This simplifies the scheduling of the communications in
the network, since the only requirement on the communication is that
it should be conflict-free.

(iii) Short minimal sampling period: Notice that the time-step k of the
plant in (12.41) is the same as that of the network nodes in (12.42).
Since the only requirement on the communication is that it should be
conflict-free, the minimal sampling period is equal to diTslot, where Tslot
is the duration of a communication slot and di is the maximal degree of
the interference graph Gint = (V ,Eint). By definition, there is an edge
between to vertices in the interference graph iff their transmissions can
interfere with each other.

(iv) Multiple sensing/actuation points: In real world control systems,
there are often multiple sensors and actuators that are geographically
distributed. The WCN, which do not rely on a single dedicated con-
troller, is particularly well suited to handle these situations.

(v) Compositionality: Given a WCN with matrices (Wa, Ha, Ga) that
controls a certain plant Pa, we may add another plant Pb and calcu-
late a new set of stabilising matrices (Wb, Hb, Gb) for this plant. The
important thing to note here is that calculation of (Wa, Ha, Ga) and
(Wb, Hb, Gb) is completely decoupled. Each network node vi may send
its states za,i and zb,i corresponding to Pa and Pb respectively, in a
single packet. This of course generalises to the addition of more then
one plant. Thus the WCN allows compositionality, in other words it is
easy to extend the system with additional subsystems. This is in con-
trast to traditional network control systems, in which the addition of a
new plant would require a complete recalculation of the entire network
communication schedule.
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Problems
Problem 12.1 Matrix Exponential
Let A be an n×n real or complex matrix. The exponential of A, denoted by eA or
exp(A), is the n× n matrix. Find eA using two different way, where

A =

[
0 1
0 0

]
.

Problem 12.2 Stability
Given a bi-dimensional state space system

Xt+1 = ΦXt ,

1. show how to compute the eigenvalues of Φ.

2. make some comments on the relationship between the eigenvalues of Φ and
the stability.

Problem 12.3 Modeling
Model the dynamics of a coordinated turn (circle movement) using Cartesian and
polar velocity. Here we assume that the turn rate ω is piecewise constant.

Problem 12.4 Linearized Discretization
In some cases, of which tracking with constant turn rate is one example, the state
space model can be discretized exactly by solving sampling formula

x(t+ T ) = x(t) +

∫ t+T

t

a(x(τ))dτ ,

analytically. The solution can be written as

x(t+ T ) = f(x(t)) .

Using this method, discretize the models in Ex:11.3.

Problem 12.5 Modeling of the Temperature Control
Assume that in winter, you’d like to keep the temperature in the room warm au-
tomatically by controlling a house heating system. Let Ti, To and Tr denote the
temperature inside, outside and radiator. Thus the process model can be simplified
as

Ṫi =α1(Tr − Ti) + α2(To − Ti)
Ṫr =α3(u− Tr) .
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1. Model the dynamics in standard state space form. Here assume that the
outside temperature is aroud zero, To = 0.

2. Assume that the sampling time is h, model the continuous state space form
to the discrete time standard form.

Problem 12.6 PID Controller

One heuristic tuning method for PID controller is formally known as the Ziegler-
Nichols method. In this method, the Ki and Kd gains are first set to zero. The Kp

gain is increased until it reaches the ultimate gain, G, at which the output of the
loop starts to oscillate. G and the oscillation period TG are used to set the gains,
let Kp = 0.60G, Ki = 2Kp/TG and Kd = KpTG/8. Now consider the system in Ex:
11.3 and the step response plot shown in Fig. 12.10. Find TG, then design the PID
controller for the system in continuous space using Ziegler-Nichols method. Here
assume that G = 10.
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Figure 12.10 The step response for PID controller with Kp = 12.

Problem 12.7 Stability of Networked Control Systems with Network-induced
Delay.
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Figure 12.11 Networked Control System with communication delay.
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Consider the Networked Control Systems (NCS) in Figure 12.11. The system con-
sists of a continuous plant

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

,

and a discrete controller

u(kh) = −Kx(kh), k = 0, 1, 2, . . . ,

where A ∈ R, B ∈ R, C ∈ R.
Let A = 0, B = I. Illustrate the stability properties of the system as function

of the network delays τsc and τca under the assumptions that τsc + τca ≤ h and
that h = 1/K.

Problem 12.8 Control with time-varying delay
A process with transfer function

P (z) =
z

z − 0.5

is controlled by the PI-controller

C(z) = Kp +Ki
z

z − 1
,

where Kp = 0.2 and Ki = 0.1. The control is performed over a wireless sensor
network, as shown in Figure 12.14. Due to retransmission of dropped packets, the
network induces time-varying delays. How large can the maximum delay be, so
that the closed loop system is stable?

ZOH G(s) 

Sample 

P(z)

WSN 

C(z) 

Figure 12.12 Closed loop system for Problem 12.2.
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Figure 12.13 Networked Control System with packet losses.

Problem 12.9 Stability of Networked Control Systems with Packet Losses.
Consider the Networked Control System in Figure 12.13. It is assumed that the
network is present only from the plant to the controller. The state space plant
model is [

ẋ1

ẋ2

]
=

[
1 1
0 −1

] [
x1

x2

]
+

[
0

0.1

]
u

y = [ 1 0 ]

[
x1

x2

]
.

The feedback controller is u(kh) = −Kx(kh), where K = [20, 9].
Suppose that packets sent over the network are received at rate r = 1−p, where

p is the packet loss rate, and that the system is sampled at rate h = 0.3 s. What is
the lower bound on reception rate r that still guarantee the stability of the system?

Problem 12.10 Networked Control System

Plant

Controller

Figure 12.14 Closed loop system over a WSN.

Consider the Networked Control System (NCS) in Fig. 12.14. The system consists
of a continuous plant

ẋ(t) = Ax(t) +Bu(t) (12.48a)
y(t) = Cx(t) , (12.48b)

where A = a, B = 1, C = 1. The system is sampled with sampling time h, and the
discrete controller is given by

u(kh) = −Kx(kh), k = 0, 1, 2, . . . ,

where K is a constant.
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(a) Suppose that the sensor network has a medium access control and routing
protocols that introduce a delay τ ≤ h. Derive a sampled system correspond-
ing to Eq.(12.48) with a zero-order-hold.

(b) Under the same assumption above that the sensor network introduces a delay
τ ≤ h, give an augmented state-space description of the closed loop system
so to account for such a delay.

(c) Under the same assumption above that the sensor network introduces a delay
τ ≤ h, characterize the conditions for which the closed loop system becomes
unstable [Hint: no need of computing numbers, equations will be enough]

(d) Now, suppose that the network does not induce any delay, but unfortunately
introduces packet losses with probability p. Let r = 1−p be the probability of
successful packet reception. Give and discuss sufficient conditions for which
the closed loop system is stable. If these conditions are not satisfied, discuss
what can be done at the network level or at the controller level so to still
ensure closed loop stability.

Problem 12.11 Model Based WSN-CS

Consider a MB-NCS where the state of the plant x ∈ R is governed by the equation
ẋ(t) = u(t). The input signal is given by u(t) = −Kx̆(t), where K ∈ R. We assume
that the sampling interval is constant and put h(k) = h(and hence tk = kh).

(a) How should we choose Ă and B̆ in order to make this MB-NCS equivalent
to a WSN-CS with zero-order hold(as described in section 12.2.2)?

(b) Let Ă and B̆ be as in 12.11. Use Proposition 12.6.2 to compute the augmented
system state z(t) and verify that it agrees with Proposition 12.2.1.

Problem 12.12 Distributed WSN-CS

Consider a very simple WCN with only one sensor s1, one actuator a1 and one
network node v1 as in Figure 12.15. The scalar state and output of the plant is
assumed to be governed by: x(kh+h) = αx(kh)+u(kh) and y(kh) = x(kh), where
α ∈ R.

(a) Construct the matrix Â for the WCN described above.

(b) Show that for every α it is possible to choose h11, g11 and w11 such that the
system becomes asymptotically stable.

Problem 12.13 Energy-Efficient Control of NCS over IEEE 802.15.4 Networks
(Tiberi et al., 2013).
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Figure 12.16 WAN-CS over IEEE 802.15.4 network.

Consider the Networked control system over IEEE 802.15.4 network composed of
3 control loops depicted in the Figure 12.16, where each process is scalar of the
form ẋi = aixi + biui, i = 1, 2, 3, and where the communication from the sensor
nodes to the Personal Area Network Coordinator (PANC) is allowed only during
the Guaranteed Time Slot (GTS) portion of the super-frame. Assume that there are
no time delays, i.e. the transmissions from sensor i to the PANC and the respective
control updates ui are performed at the same instant t = Ti,k and that each node
can transmit only a packet per super-frame.

At each t = Ti,k, node i sends the values of xi(Ti,k) and ti,k+1 to the PANC,
where xi(Ti,k) is the measurement of the output of process i at time t = Ti,k, and
ti,k+1 is the time by which the next transmission from node i must be performed.
The controller i updates the control input ui with ui = −kixi(Ti,k) and it keeps
it constant in the time interval [Ti,k, Ti,k+1). The transmissions are performed
according to a self-triggered sampler that predicts the time in which the condition
|ei(t)| := |xi(Ti,k) − xi(t)| ≤ δi is violated. The self-triggered sampler has the
expression

ti,k+1 = Ti,k +
1

|ai|
ln

(
1 +

|ai|δi
|ai − biki||xi(Ti,k)|

)
. (12.49)
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Consider the numerical values of the described NCS as in the following table
where xi,0 denotes the initial condition of the process i. Determine:

ai bi ki δi xi,0
Loop #1 2 1 ? 1

2 5
Loop #2 3 -2 -2 ? 8
Loop #3 2 1

2 6 1
2 ?

(a) The values of k1 such that practical-stability of the loop #1 is ensured.

(b) The values of δ2 such that that practical-stability of the loop #2 is ensured.

(c) The values of x3,0 such that that practical-stability of the loop #3 is ensured.

(d) For each control loop, find an upper-bound of the the practical-stability region
size εi.





Appendix A

Random Variables

A.1 Basic Definitions

The basic concept in probability theory is that of a random experiment
which is defined as an experiment whose outcome cannot be determined in
advance, but is nevertheless still subject to analysis. Examples of random
experiments are the toss of a dice, the numbering of the number of calls
arriving at a telephone center during a fixed time period, etc. The sample
space Ω of a random experiment is defined as the set of all possible outcomes
of the experiment.

Often we are not interested in a single outcome but in whether or not
one of a group of outcomes occurs. Such subsets of the sample space are
called events and are usually denoted by capital letters A,B,C, .... An event
A occurs if the outcome of the experiment is one of the elements in A.

Since events are sets, we can apply the usual set operations to them:

1. The set A ∪B (A union B) is the event that A or B occur.

2. The set A∩B (A intersection B) is the event that A and B both occur.

3. The event Ac is the event that A does not occur.

4. If A ⊂ B (A is a subject of B) then event A is said to imply event B.

Two events A and B which have no outcomes in common, that is, A∩B = ∅
are called disjoint events.

The probability of an event gives information about how likely it is that
this particular event will occur. In specific, a probability P is a rule (func-
tion) which assigns a positive number to each event, and which satisfies the
following axioms:

1. Pr (A) ≥ 0;

2. Pr (Ω) = 1;

335
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3. For any sequence A1, A2, ... of disjoint events we have

Pr

(⋃
i

Ai

)
=
∑
i

Pr (Ai)

As a direct consequence of the axioms we have the following properties
for P . Considering A and B as events, then

1. Pr (∅) = 0;

2. Pr ⊂ B ⇒ Pr (A) ≤ Pr (B);

3. Pr (A) ≤ 1;

4. Pr (Ac) = 1− Pr (A);

5. Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B).

Probabilities may change when we know that an event has occurred.
This leads to the definition of the conditional probability. Suppose an event
B ∈ Ω has occurred. Since we know that the outcome lies in B, event A will
occur if and only if A ∩B occurs. Therefore, the conditional probability of
A given B is

Pr (A|B) =
Pr (A ∩B)

Pr (B)
.

We say A and B are independent if the knowledge that A has occurred
does not change the probability that B occurs. That is

A,B independent ⇔ Pr (A|B) = Pr (A)

Since
Pr (A|B) =

Pr (A ∩B)

Pr (B)
,

an alternative definition of independence is

A,B independent ⇔ Pr (A ∩B) = Pr (A)Pr (B) .

Suppose B1, B2, ... is a partition of Ω. That is, B1, B2, ... are disjoint and
their union is Ω. Then,

Pr (A) =

n∑
i=1

Pr (A ∩Bi) ,

and using the definition of the conditional probability we have

Pr (A) =
n∑
i=1

Pr (A|Bi)Pr (Bi) .

Using the above equation, we get the Bayes’ rule

Pr (Bj |A) =
Pr (A|Bj)Pr (Bj)
n∑
i=1

Pr (A|Bi)Pr (Bi)

.
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A.2 Random Variables

After completing the basic definitions regarding the random experiments,
the concept of random variable is now introduced. Specifying a model for a
random experiment via a complete description of Ω and P may not always
be convenient or necessary. In practice we are only interested in various
observations (i.e., numerical measurements) of the experiment. A random
variable is a function from the sample space Ω to R.

Although random variables are, mathematically speaking, functions,it
is often convenient to view random variables as observations of a random
experiment that has not yet been carried out. Some examples of random
variables without specifying the sample space are

1. The number of bugs in a computer program.

2. The total number of heads after tossing a coin n times.

3. The amount of time needed for an operation.

The set of all possible values a random variable X can take is called the
range of X. We further distinguish between discrete and continuous random
variables:

• Discrete random variables can only take isolated values. For example:
a count can only take non-negative integer values.

• Continuous random variables can take values in an interval. For ex-
ample: rainfall measurements, lifetimes of components, lengths,. . . are
(at least in principle) continuous.

A.3 Probability Distribution

Let X be a random variable. We would like to specify the probabilities of
events such as {X = x} and {a ≤ X ≤ b}. If we can specify all probabilities
involving X,we say that we have specified the probability distribution of X.
One way to specify the probability distribution is to give the probabilities of
all events of the form {X ≤ x}, x ∈ R. This leads to the following definition
of the cumulative distribution function (cdf) of a random variable X as the
function F : R→ [0, 1]

F (x)
∆
= Pr (X ≤ x) , x ∈ R .

The following properties for F are a direct consequence of the three axioms
for P .

1. F is right-continuous:

lim
h↓0

F (x+ h) = F (x) .
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2.
lim
x→∞

F (x) = 1

and
lim

x→−∞
F (x) = 0 .

3. F is increasing: x ≤ y ⇒ F (x) ≤ F (y) .

4. 0 ≤ F (x) ≤ 1 .

Any function F with the above properties can be used to specify the dis-
tribution of a random variable X. Suppose that X has cdf F . Then the
probability that X takes a value in the interval (a, b] (excluding a, including
b)is given by

Pr (a < X ≤ b) = F (b)− F (a) .

The distribution of a random variable can be either discrete or continu-
ous.

• We say thatX has a discrete distribution ifX is a discrete random vari-
able. In particular, for some finite or countable set of values x1, x2, ...
we have

Pr (X = xi) > 0, i = 1, 2

and ∑
i

Pr (X = xi) = 1 .

The probability mass function (pmf) of X is then defined as

f (x) = Pr (X = x) .

• A random variable X is said to have a continuous distribution if X is
a continuous random variable for which there exists a positive function
f with total integral 1, such that for all a, b

Pr (a < X ≤ b) = F (b)− F (a) =

b∫
a

f (u) du .

The function f is called the probability density function (pdf) of X.
Note that the corresponding cdf F is simply a primitive of the pdf f .
In particular,

F (X) = Pr (X ≤ x) =

x∫
−∞

f (u) du .

Moreover, if a pdf f exists, then f is the derivative of the cdf F :

f (x) =
d

dx
F (x) = F ′ (x) .
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Describing an experiment via a random variable and its pdf, pmf or cdf seems
much easier than describing the experiment by giving the probability space.

Although all the probability information of a random variable is con-
tained in its cdf (or pmf for discrete random variables and pdf for continuous
random variables), it is often useful to consider various numerical character-
istics of that random variable. One such number is the expectation of a
random variable; it is a sort of "weighted average" of the values that X can
take. A definition for both discrete and continuous cases follows:

• Let X be a discrete random variable with pmf f . The expectation (or
expected value) of X, denoted by E {X}, is defined by

E {X} =
∑
x

xPr (X = x) =
∑
x

xf (x) .

• Let X be a continuous random variable with pdf f . The expectation
(or expected value) of X, denoted by E {X}, is defined by

E {X} =

∫
x
xf (x) dx .

Another useful number about (the distribution of) X is the variance of
X. This number, sometimes written as σ2

X, measures the spread or dispersion
of the distribution of X. The variance of a random variable X is defined by

Var (X) = E(X − E {X})2 .

The square root of the variance is called the standard deviation.
Some important discrete distributions are listed as following:

1. Bernoulli distribution: We say thatX has a Bernoulli distribution with
success probability p if X can only assume the values 0 and 1, with
probabilities

Pr (X = 1) = p = 1− Pr (X = 0) .

2. Binomial distribution: Consider a sequence of n coin tosses. If X is
the random variable which counts the total number of heads and the
probability of head is p then we say X has a binomial distribution with
parameters n and p and write X ∼ Bin (n, p). The probability mass
function X is given by

f (x) = Pr (X = x) =

(
n
x

)
px(1− p)n−x, x = 0, 1, ..., n .
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3. Geometric distribution: Again we look at a sequence of coin tosses but
count a different thing. Let X be the number of tosses needed before
the first head occurs. Then

Pr (X = x) = (1− p)x−1p, x = 1, 2, 3... .

Such a random variable X is said to have a geometric distribution with
parameter p and we write X ∼ G (p).

4. Poisson distribution: A random variable X for which

Pr (X = x) =
λx

x!
e−λ, x = 0, 1, 2...

(for fixed λ > 0) is said to have a Poisson distribution and we write
X ∼ Poi (λ).

Some important continuous distributions are the following:

1. Uniform distribution: We say that a random variable X has a uniform
distribution on the interval [a, b], if it has density function f ,given by

f (x) =
1

b− a, a ≤ x ≤ b.

We write X ∼ U [a, b] where X can model a randomly chosen point
from the interval [a, b], where each choice is equally likely.

2. Exponential distribution: A random variable X with probability den-
sity function f ,given by

f (x) = λe−λx, x ≥ 0

is said to have an exponential distribution with parameter λ. We
write X ∼ Exp (λ). The exponential distribution can be viewed as
a continuous version of the geometric distribution.

3. Normal or Gaussian distribution: The normal (or Gaussian) distribu-
tion is considered as the most important distribution in the study of
statistics. We say that a random variable has a normal distribution
with parameters µ and σ2 if its density function f is given by

f (x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, x ∈ R

We write X ∼ N
(
µ, σ2

)
. The parameters µ and σ2 turn out to be the

expectation and variance of the distribution, respectively. If µ = 0 and
σ = 1 then

f (x) =
1√
2π
e−

x
2

2

and the distribution is known as a standard normal distribution.
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4. Gamma and χ2 distribution: The gamma distribution arises frequently
in statistics. Its density function is given by

f (x) =
λaxa−1e−λx

Γ (a)
, x ≥ 0

where Γ is the Gamma-function defined as

Γ (a) =

∞∫
0

ua−1e−udu, a ≥ 0 .

Parameter a is called the shape parameter, and λ is called the scale
parameter and we write X ∼ Gam (α, λ). Of particular importance
is following special case: A random variable X is said to have a chi-
square distribution with n (∈ {1, 2, ...}) degrees of freedom if X ∼
Gam (n/2, 1/2) and we write X ∼ χ2

n
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Sampling Theory

B.1 Sampling

One major issue in the application of WSNs for control tasks is the dig-
italization of the system. Usually our controlled systems are continuous in
nature. For example the dynamics of a motor, the moisture and tempera-
ture drifts in a room or the concentration of ozone in the atmosphere are
continuous systems.

WSNs introduce the problem of a sampled measurement. For a well
behaved control of a system we generally require a high sampling rate. The
energy efficiency paradigm in WSNs leads to the opposite requirement, since
a low rate of measurements will cost less energy for the sensor and even more
crucial for the transmission of the data. Therefore, it is worth to study the
characteristics of sampled systems to develop methods to balance these two
contradicting aims.

By sampling a continuous system we lose information. In the digitalized
form we know the signal values only at the sampled time steps, but not at the
points in between. We present here three standard procedures for converting
continuous to discrete time. First of all the zero-order hold (ZOH) is a
mathematical method for signal processing. It holds for each time interval
a specified value. The mathematical formula is according to (Åström and
Wittenmark, 1997)

f(t) = f(kh) kh ≤ t < kh+ h .

A less used method is the first-order hold (FOH) procedure. It is slightly dif-
ferent to the ZOH method. A first-order hold filter transforms a continuous
system in a piece by piece linear signal. The mathematical representation is
given in (Åström and Wittenmark, 1997) as

f(t) = f(kh) +
t− kh
h

(f(kh+ h)− f(kh)) kh ≤ t < kh+ h.

343
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Figure B.1 Zero-order hold and First-order hold (Åström and Wittenmark,
1997). A sine signal (dashed, red) is sampled, indicated by the dots and the
straight lined (blue) one is the reconstructed signal.

A good comparison between both transformations is given in Figure B.1.
The last method mentioned here is the so called Tustin transform. It

maps the signal with

s =
2

Ts

z − 1

z + 1
,

from s-space to the z-space and explicitly assigns each value s in the analog
plane to a corresponding discrete z value. Where Ts is the sampling rate
which should be carefully selected as we will show soon. The Tustin trans-
formation even allows to map a controller from the continuous design to a
discrete approximation if the system is oversampled.

The question arises, which conclusion are possible with that reduced
amount of information - or, which signals and frequencies can be recon-
structed from the given sampled signal and which parameters do we need for
that.

B.2 Reconstruction

As mentioned in the previous section, sampling is the process of con-
verting analog signals in digital samples. Reconstruction is the reverse of
this. Digital samples received from the sampling unit over an communi-
cation channel have to be converted back to a continuous analog signal.
Therefore, based on the incoming samples, a certain voltage corresponding
to the encoded value is generated at the output.
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Nyquist-Shannon sampling theorem According to the Nyquist-Shannon
sampling theorem a signal must be sampled at least 2 times during one
period. That means, given a sampling rate ωs, all signals with frequency
ω ≤ ωs/2 can be constructed properly. This boundary is called Nyquist
frequency and is defined as ωN = ωs/2. Signals greater than ωN are trans-
formed to lower frequencies and therefore distort the resulting output.

Aliasing and Anti-aliasing Filters The phenomenon when a high fre-
quencies is interpreted as a low one is called aliasing. It appears if a signal is
sampled that contains higher frequencies than Nyquist frequency. To mini-
mize the effect of aliasing we can either use a high sampling frequency or add
a lowpass filter before sampling. In short the aliasing appears if ωs/2 > ωmax

is not true, where ωmax is the highest frequency component in the signal we
want to sample.

B.3 Z-Transform

The Laplace transform is important in the input-output analysis of con-
tinuous time systems. The z-transform was introduced to play a similar role
for sampled data systems and is a convenient tool to handle linear difference
equations with or without initial values. Considering the discrete time signal
{f (kh) : k = 0, 1, ...}, the z-transform of f (kh) is defined as

Z {f (kh)} = F (z) =

∞∑
k=0

f (kh) z−k , (B.1)

where z is a complex variable. The inverse transform is given by

f (kh) =
1

2πi

∮
F (z)zk−1dz , (B.2)

where the contour of integration encloses all singularities of F (z). Some
properties of the z-transform are summarized as follows.

1. Definition:

F (z) =
∞∑
k=0

f (kh) z−k ;

2. Inversion:
f (kh) =

1

2πi

∮
F (z)zk−1dz ;

3. Linearity:
Z {αf + βg} = αZ {f}+ βZ {g} ;
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4. Time shift:
Z
{
q−nf

}
= z−nF ;

Z {qnf} = zn (F − F1) where F1 (z) =

n−1∑
j=0

f (jh) z−j ;

5. Initial-value theorem:

f (0) = lim
z→∞

F (z) ;

6. Final-value theorem:
If
(
1− z−1

)
F (z) does not have any poles on or outside the unit circle,

then
lim
k→∞

f (kh) = lim
z→1

(
1− z−1

)
F (z) ;

7. Convolution:

Z {f ∗ g} = Z

{
k∑

n=0

f (n) g (k − n)

}
= Z {f}Z {g} .
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Optimization Theory

C.1 Optimization Theory

Optimization problems arise in many different applications. They include
the following elements:

• a mathematical model (discrete or continuous) that describes the prob-
lem of interest over some set of variables.

• a cost function of these variables that needs to be optimized according
to some metric or norm.

• a set of constraints or conditions on the variables that need to be
satisfied.

For example, the problem might be to determine the position of a source
observed by several sensors. The model may include a stochastic description
of the sources, noise, and propagation conditions. The optimization may be
cast as a least squares problem, in which the expected variance of the position
estimate is minimized. The constraints may include involvement of some
maximum number of sensors or some maximum number of bits exchanged
among the sensor nodes to conserve energy. In the following sections, a brief
exposition of the basic tools of numerical analysis is presented, followed by
a characterization of some classes of optimization problems and an outline
of some classic approaches.

C.2 Basic Tools of Numerical Analysis

A basic fact of numerical methods is that linear problems are much easier
to solve than non-linear ones. Consider, e.g., the problem of finding the
roots (zeros) of the equation f(x) = 0. Now if the function were a line one
could readily compute the point of intersection with the x-axis. Otherwise,
the problem is typically approached by linearizing it and proceeding in a
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sequence of iterations. For example, Newton’s method begins by guessing the
root as x0, and forming (using Taylor’s Theorem) the linear approximation
at x0:

l (x;x0) = f (x0) + f ′ (x0) (x− x0) ,

where f ′ (x0) denotes the first derivative. The unique root to the linear
equation l (x;x0) = 0 is, assuming the derivative is non-zero at x0,

x1 = x0 −
f (x0)

f ′ (x0)
.

One then proceeds through some series of iterations of the form

xk = xk−1 −
f (xk−1)

f ′ (xk−1)
,

until some stopping condition is met, e.g., the difference between xk and xk−1

is small enough or some maximum number of iterations is exceeded. Notice
that Newton’s method solves a non-linear problem through the following
steps: approximation as a linear problem, solution of that linear problem,
and iteration. This is a widely used general approach.

Consider now the problem of solving a system of non-linear equations:

f1 (x1, x2, ..., xn) = 0
f2 (x1, x2, ..., xn) = 0
...
fn (x1, x2, ..., xn) = 0 .

Using vector notation this may be rewritten as f (x) = 0 where x = (x1, x2, ..., xn)T

and f = (f1, f2, ..., fn)T Now in the particular case that the functions are lin-
ear and thus the system could be written as a matrix F times the vector x
is equal to zero, then any of a number of efficient algorithms could be used
to find the solution (e.g., QR decomposition, incomplete Gauss elimination)
that have complexity of order n3. Otherwise, the multidimensional form of
Taylor’s Theorem may be invoked to form the linear approximation about
some vector x(k):

f1 (x) ≈ f1

(
x(k)

)
+∇f1

(
x(k)

) (
x− x(k)

)
f2 (x) ≈ f2

(
x(k)

)
+∇f2

(
x(k)

) (
x− x(k)

)
...
fn (x) ≈ fn

(
x(k)

)
+∇fn

(
x(k)

) (
x− x(k)

) ,

where

∇f (x) =

(
∂f (x)

∂x1

∂f (x)

∂x2
· · · ∂f (x)

∂xn

)
.
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This may be written in matrix notation as

f (x) ≈ f
(
x(k)

)
+ Jf

(
x(k)

)(
x− x(k)

)
where the i-th row of the Jacobian matrix Jf (x) consists of ∇fi (x). The
kth iteration of Newton’s method then consists of finding the solution y to
the linear system of equations

Jf
(
x(k)

)
y = −f (x)

where y = x(k) − x and x(k+1) = y + x(k).

C.3 Convex Optimizations

Optimization problems take the form

min f0 (x)
s. .t. fi (x) ≤ bi, i = 1, . . . ,m ,

where the real-valued function f0 is the objective function, the vector x =
(x1, x2, ..., xn) is the optimization variable, and the inequalities are the con-
straints of the problem. The optimal vector, x∗, produces the smallest value
of the objective function such that all the constraints are also satisfied.

The optimization problem is an abstraction of the problem of making the
best possible choice of a vector in Rn from a set of candidate choices. The
variable x represents the choice made; the constraints fi (x) ≤ bi represent
firm requirements or specifications that limit the possible choices, and the
objective value f0 (x)) represents the cost of choosing x. A solution of the
optimization problem corresponds to a choice that has minimum cost (or
maximum utility), among all choices that meet the firm requirements.

Optimization problems are categorized in terms of the forms of the ob-
jective function and constraint functions. If f0, f1,. . . ,fm satisfy

fi (αx + βy) = αfi (x) + βfi (y) ,

for all real numbers α, β and vectors x,y, then the problem is said to be
a linear program. If this is not satisfied for any one of the functions the
problem is said to be a non-linear program. A more significant distinction in
practice is between convex and non-convex problems. A convex optimization
problem is one in which the objective and constraint functions are convex,
which means they satisfy the inequality

fi (αx + βy) ≤ αfi (x) + βfi (y)

Linear programs are relatively easy to solve, and many convex problems
are also fairly easily solved since there is but one global minimum with no
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local minima that can trap iterative algorithms. By comparing the above
equations, we see that convexity is more general than linearity: inequality
replaces the more restrictive equality, and the inequality must hold only for
certain values of α and β. Since any linear program is therefore a convex
optimization problem, we can consider convex optimization to be a general-
ization of linear programming. Non-convex problems by contrast are usually
very difficult. Thus in designing systems it is very advantageous to engineer
the required optimizations to be convex or close enough that solutions can be
reliably obtained. The least squares problem is the non-linear unconstrained
optimization

min f0 (x) = ‖Ax− b‖22 ,
where A is an k × n matrix, k > n, b is a k-dimensional vector, and the
squared Euclidean norm is used. The least squares problem fortunately is
convex, and can be reduced to solving the set of linear equations

ATAx = ATb .

For least-squares problems we have good algorithms (and software imple-
mentations) for solving the problem to high accuracy, with very high reli-
ability. The least-squares problem can be solved in a time approximately
proportional to n2k, with a known constant. A current desktop computer
can solve a least-squares problem with hundreds of variables, and thousands
of terms, in a few seconds; more powerful computers, of course, can solve
larger problems, or the same size problems, faster. Algorithms and software
for solving least-squares problems are reliable enough for embedded opti-
mization. In many cases we can solve even larger least-squares problems,
by exploiting some special structure in the coefficient matrix A. Suppose,
for example, that the matrix A is sparse, which means that it has far fewer
than kn nonzero entries. By exploiting sparsity, we can usually solve the
least-squares problem much faster than order n2k. A desktop computer can
solve a sparse least-squares problem with tens of thousands of variables, and
hundreds of thousands of terms, in around a minute (although this depends
on the particular sparsity pattern). For extremely large problems (say, with
millions of variables), or for problems with exacting real-time computing re-
quirements, solving a least-squares problem can be a challenge. But in the
vast majority of cases, we can say that existing methods are very effective,
and extremely reliable.

C.4 Non-convex Optimizations

A large part of the difficulty in convex optimizations lies in casting the
problem in the appropriate form. Once it has been realized that the problem
is indeed convex, then there are several methods that can be used to find the
solution systematically. For non-convex problems, it is by contrast relatively
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easy to state the problem given there are so few standard forms for which
efficient and reliable solution methods exist. It is then very hard actually
to compute a solution reliably. However, convex optimization also plays an
important role in problems that are not convex.

One obvious use is to combine convex optimization with a local optimiza-
tion method. In local optimization, the compromise is to give up seeking the
optimal x, which minimizes the objective over all feasible points. Instead we
seek a point that is only locally optimal, which means that it minimizes the
objective function among feasible points that are near it, but is not guaran-
teed to have a lower objective value than all other feasible points. Therefore,
starting with a nonconvex problem, we first find an approximate, but convex,
formulation of the problem. By solving this approximate problem, which can
be done easily and without an initial guess, we obtain the exact solution to
the approximate convex problem. This point is then used as the starting
point for a local optimization method, applied to the original nonconvex
problem.

Convex optimization is the basis for several heuristics for solving noncon-
vex problems. One interesting example we will see is the problem of finding
a sparse vector x (i.e., one with few nonzero entries) that satisfies some
constraints. While this is a difficult combinatorial problem, there are some
simple heuristics, based on convex optimization, that often find fairly sparse
solutions. Another broad example is given by randomized algorithms , in
which an approximate solution to a nonconvex problem is found by drawing
some number of candidates from a probability distribution, and taking the
best one found as the approximate solution. Now suppose the family of dis-
tributions from which we will draw the candidates is parametrized, e.g. by
its mean and covariance. We can then pose the question, which of these dis-
tributions gives us the smallest expected value of the objective? It turns out
that this problem is sometimes a convex problem, and therefore efficiently
solved.
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Matrix Algebra

D.1 Matrix Inversion Formula

Proposition D.1.1. For compatible matrices A, B, C and D,

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1,

assuming the inverses exist.

Proof. Begin by considering the block matrix

M =

[
A B
C D

]
.

By doing the LDU and UDL decomposition of M and equating them, we
obtain[

I 0
CA−1 0

] [
A 0
0 D − CA−1B

] [
I A−1B
0 I

]
=

[
I BD−1

0 I

] [
A−BD−1C 0
0 D

] [
I 0
D−1C I

]
.

Thus inverting both sides yields[
I −A−1B
0 I

] [
A−1 0

0
(
D − CA−1B

)−1

] [
I 0
−CA−1 0

]
=

[
I 0
−D−1C I

] [ (
A−BD−1C

)−1
0

0 D−1

] [
I −BD−1

0 I

]
.

Equating the (1, 1) block shows(
A−BD−1C

)−1
= A−1 +A−1B

(
D − CA−1B

)−1
CA−1.

Finally substituting C → −D and D → C−1, we obtain

(A+BCD)−1 = A−1 −A−1B
(
C−1 +DA−1B

)−1
DA−1.
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Graph Theory

E.1 Basic definitions

Definition E.1.1. A graph G = (V ,E ) is a pair of disjoint sets such that
E ⊆ [V ]2, which is the set of all 2-elements subsets of V . We call the
elements of V vertices or nodes and the elements of E we call edges. We may
picture a graph by drawing a dot for each vertex and if {u, v} ∈ E we draw
this as a line between u and v.

Definition E.1.2. A directed graph
−→
G = (V ,A ) is a pair of disjoint sets

such that A ⊆ V ×V . We call the elements of A arcs or arrows and picture
(u, v) ∈ A by drawing an arrow from u to v.

Note that in Definition E.1.2 (u, v) 6= (v, u).

Definition E.1.3. Let G = (V ,E ) be a graph (directed graph). If G′ =
(V ′,E ′) is a graph (directed graph) such that V ′ ⊆ V and E ′ ⊆ E , then we
call G′ a subgraph of G, and we write this as G′ ⊆ G.

Definition E.1.4. A directed graph G = (V ,A ) is called bidirectional if
for any (u, v) ∈ A we have that (v, u) ∈ A .

Definition E.1.5. Given a graph G = (V ,E ), two vertices u, v ∈ V are
said to be neighbors if {u, v} ∈ E .

Definition E.1.6. The degree of a vertex u ∈ V is defined as

deg(u) = |{v ∈ V : {u, v} ∈ E }|
i.e. the degree of u is the number of neighbors of u.

Definition E.1.7. A path in a graph G = (V ,E ), is a non-empty graph P
of the form

V (P ) = {x0, x1, . . . , xn}, E (P ) =
{
{x0, x1}, {x1, x2}, . . . , {xn−1, xn}

}
.

We say that P is a path from x0 to xn and we refer to P as the sequence of
V (P ), that is P = x0x1 . . . xn. By the length of P we mean n− 1.
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Definition E.1.8. A directed path in a directed graph
−→
G = (V ,A ), is a

non-empty directed graph P of the form

V (P ) = {x0, x1, . . . , xn}, A (P ) =
{

(x0, x1), (x1, x2), . . . , (xn−1, xn)
}
.

As in Definition E.1.7 we refer to P as its sequence of vertices, that is P =
x0x1 . . . xn. By the length of P we mean |A (P )|.

Definition E.1.9. A graph G = (V ,E ) is connected if, for any two u, v ∈ V ,
there exists a path from u to v.

Definition E.1.10. A directed graph
−→
G = (V ,A ) is strongly connected if,

for any two u, v ∈ V , there exists a directed path from u to v and a directed
path from v to u.

Definition E.1.11. Let G = (V ,E ) be a graph. Two vertices u, v are said
to be k-connected in G if and only if there are at least k distinct, node disjoint
paths from u to v.

Definition E.1.12. A graph G = (V ,E ) is said to be complete if for any
two vertices u, v ∈ V , {u, v} ∈ E .

Definition E.1.13. A cycle C is a path P = x0x1 . . . xn together with the
edge e = {xn, x0}.

Definition E.1.14. A forest is a graph not containing any cycles.

Definition E.1.15. A tree is a connected forest.

Note that a tree T is a connected graph with n− 1 edges, where n is the
number of vertices of T and if T is a plane graph then T has only one face,
namely the outer face of T . Plane graphs and faces are defined below.

Definition E.1.16. Given a connected graph G = (V ,E ), a spanning tree
of G is a tree T = (V ,ET ) such that ET ⊆ E .

Definition E.1.17. Given a directed graph
−→
G = (V ,A ), an arborescence

of
−→
G rooted at u ∈ V , is a directed graph

−→
T = (V ,AT ) with AT ⊆ A and

such that for any v ∈ V there exists a unique directed path from u to v.

Definition E.1.18. An edge-weighted graph (arc-weighted directed graph) is
a graph (directed graph) G = (V ,E ) together with a function w : E → R+.
We write G = (V ,E , w).

Definition E.1.19. Given an edge-weighted graph G = (V ,E , w), the cost
C of G is defined as

C(G) =
∑
e∈E

w(E ) .
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Definition E.1.20. Given a connected edge-weighted graph G = (V ,E , w),
a minimal spanning tree (MST) of G is a spanning tree T = (V ,ET , w) such
that for any other spanning tree T ′ of G we have that C(T ) ≤ C(T ′).

Definition E.1.21. Let G = (V ,E ) be a connected graph where V ⊂ Rd
for some d ∈ N. A Euclidean minimal spanning tree (EMST) of G is a
minimal spanning tree T = (V ,ET , w) of G with edge-weight w defined by
w({u, v}) = δ(u, v), for any {u, v} ∈ E .

Definition E.1.22. A plane graph is a pair (V ,E ) of sets with the following
properties:

1. V ⊂ R2,

2. every e ∈ E is an arc between two v1, v2 ∈ V ,

3. suppose e1 = {u1, u2} ∈ E and e2 = {v1, v2} ∈ E . If u1 = v1 then
u2 6= v2 and if u2 = v2 then u1 6= v1.

4. the interior of any e ∈ E contains no v ∈ V and no points of any e′ ∈ E
such that e 6= e′.

Definition E.1.23. Two graphs G = (V ,E ) and H = (V ′,E ′) are said to
be isomorphic if there is a bijection ψ : V → V ′ such that {u, v} ∈ E if and
only if {ψ(u), ψ(v)} ∈ E ′.

Definition E.1.24. A graph is called planar if it is isomorphic to a plane
graph.

Definition E.1.25. Let G = (V ,E ) be any plane graph. G divides R2 into
a number of regions that we call faces. The unique face which contains a
circle with all vertices and edges of G in its interior disc is called the outer
face and all other faces are called inner faces.

Theorem E.1.26 (Menger 1927). Let G = (V ,E ) be a graph and V1,V2 ⊆
V . Then the minimum number of vertices separating V1 from V2 is equal to
the maximum number of disjoint V1 − V2 paths in G.

For a proof of Theorem E.1.26, see (Diestel, 2005) page 62.

Definition E.1.27. Let G = (V ,E ) and let U ⊆ V . We say that U is a
vertex cover of E if every edge in G is incident with a vertex in U .

E.2 Proximity Graphs

Definition E.2.1. Given a graph G = (V ,E ), V ⊂ R2 and two vertices
u, v ∈ V , lune(u, v) is the intersection of the two discs of radius δ(u, v)
centered at u and v respectively.
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Figure E.1 Gabriel graph (left) and relative neighbor graph (right).

Definition E.2.2 (RNG). Given a set V ⊂ R2, the Relative neighbor Graph
of V , denoted by RNG(V ), is the graph (V ,E ) such that for any two vertices
u, v ∈ V , {u, v} ∈ E if and only if the interior of lune(u, v) contains no vertex
v′ ∈ V . Formally:

∀u, v ∈ V , {u, v} ∈ E iff ¬∃w ∈ V : max{δ(u,w), δ(v, w)} < δ(u, v) ,

where ¬ means negation (”not”).

Definition E.2.3 (GG). Given a set V ⊂ R2, the Gabriel Graph of V ,
denoted by GG(V ), is the graph (V ,E ) such that for any two vertices u, v ∈
V , {u, v} ∈ E if and only if the disc with diameter uv contains no vertex
v′ ∈ V in its interior. Formally:

∀u, v ∈ V , {u, v} ∈ E iff ¬∃w ∈ V : δ(u,w)2 + δ(v, w)2 < δ(u, v) .

In Figure E.1 we see the GG and the RNG built on the same set of
vertices.

Definition E.2.4 (DYGk). Given a set V ⊂ R2 and a positive integer k,
the Directed Yao Graph of V , denoted by DYGk(V ), is the graph (V ,Ak)
constructed as follows. For each u ∈ V , divide the plane into k sectors,
each of angle 2π/k, originated at u and denote the set of sectors by Su =
{Su,1,Su,2, . . . ,Su,k} (

⋃
i Su,i = R2). For any v ∈ V , (u, v) ∈ Ak if and

only if ∃Su,i ∈ Su such that for any vertex w ∈ V satisfying w ∈ Su,i, we
have that δ(u, v) ≤ δ(u,w), i.e. v is the vertex, closest to u in Su,i.
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Definition E.2.5 (Y Gk). Given a set V ⊂ R2 and a positive integer k, the
Yao Graph of V , denoted by Y Gk(V ), is the graph (V ,Ek) constructed as
follows. Let DYGk(V ) = (V ,Ak) be the Directed Yao Graph. For any two
vertices u, v ∈ V , {u, v} ∈ Ek if and only if (u, v) ∈ Ak and (v, u) ∈ Ak.

Definition E.2.6. Let X be a metric space with metric d and S a set of
points in X. Given s ∈ S the Voronoi region V(s) is defined as follows:

V(s) = {x ∈ X : d(x, s) ≤ d(x, p),∀p ∈ S }.

Definition E.2.7. Let X be a metric space with metric d and S a set of
points in X. The Voronoi diagram of S is the graph V D(S ) = (V ,E ) such
that for any two points x, y ∈ X, x ∈ V if and only if x is in the Voronoi
region of at least 3 distinct points in S and {x, y} ∈ E if and only if the
straight line between x and y is the intersection of two Voronoi regions of
S .

Definition E.2.8. Let V a set of points in R2. The Delaunay graph of V ,
denoted by DG(V ), is the graph G = (V ,E ) such that for any two vertices
u, v ∈ V , {u, v} ∈ E if and only if |V(u) ∩ V(v)| > 1.

Definition E.2.9 (DT ). Given a set V ⊂ R2, a Delaunay triangulation of
V is any triangulation (V ,E ) obtained by adding edges to the Delaunay
graph.

Proposition E.2.10. If V contains no four points on a circle, then the
Delaunay graph DG(V ) is a triangulation. We denote this Delaunay trian-
gulation by DT (V ).

Proof. If V contains no four points on a circle, then there is no points con-
tained in more than three Voronoi regions and hence every vertex in V D(V )
has degree three. Every face in DG(V ) corresponds to a vertex in V D(V )
and since every such vertex has degree 3, every face in DG(V ) must be a
triangle.

Theorem E.2.11. Let V be a subset of R2 and DG(V ) = (V ,E ) the De-
launay graph of V .

1. Three vertices u, v, w ∈ V are of the same face of DG(V ) if and only
if the circle through u, v and w contains no points of V in its interior
disc.

2. For any two vertices u, v ∈ V , {u, v} ∈ E if and only if there is a
closed disc which contains u and v on its boundary and contains no
other vertex in V .
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Proof. 1. If u, v, w are on the same face ofDG(V ), then V(u)∩V(v)∩V(w) 6=
∅. Let x be the unique point in V(u)∩V(v)∩V(w). Then δ(x, u) = δ(x, v) =
δ(x,w) = d and there are no vertices closer than d to x. Hence the disc
centered at x contains no vertices in its interior.

Conversely, assume that the circle C containing u, v, w contains no ver-
tices in its interior disc. Let x be the center of C. Then x ∈ V(u)∩V(v)∩V(w)
and hence u, v, w are on the same face of DT (V ).

2. Suppose that D is a closed disc containing u, v on its boundary but
no other vertices. Let x be the center of D . We want to show that |V(u) ∩
V(v)| > 1. Since x ∈ V(u) ∩ V(v) we need only show that there is one more
point in V(u) ∩ V(v). We know that x is either a vertex in V D(V ), or a
point on an edge in V D(V ). By part 1, the previous is not possible since D
contains only 2 vertices on its boundary. Hence |V(u) ∩ V(v)| > 1.

Conversely, assume that {u, v} ∈ E . Then |V(u) ∩ V(v)| > 1. Pick any
point p ∈ V(u)∩V(v) that is not a vertex in V D(V ). Then the largest closed
disc centered at p, that contains no vertices in its interior, contains only u
and v on its boundary.
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WSNs Programming

F.1 TinyOS

Sensor networks are exciting emerging domain of deeply networked sys-
tems. The nodes of WSN are also known as wireless motes which are small
low-powered devices having tiny amount of CPU and memory. Several kind
of motes have been built with a drive towards miniaturization and low power.
Eventual goal is to build micro-electromechanical systems(MEMS) sensors
having dimension of 1 mm3. The motes used in this course would be Berkeley
Mica mote that are widely used by research groups all over the world.

Like other hardware systems (for example laptops, cell phones, etc.) OS
and programming language are required to write any software for sensor
nodes. TinyOS is a very small operating system specifically designed for
sensor networks(especially popular in academia) whose core OS requires only
396 bytes of memory. It facilitates in building sensor networks application
by providing important service and abstraction, such as sensing, communi-
cation, storage and timers. It has component oriented architecture and it
defines a concurrent execution model, so developers can build applications
out of reusable services and components without having to worry about
unforseen interactions. It supports many components needing to act at the
same time while requiring little RAM due to the concurrent execution model.
Every I/O call in TinyOS is split phase: rather than block until completion,
a request returns immediately and the caller gets a callback when the I/O
completes. TinyOS only needs one stack, and not threads, as the stack is
not tied up waiting for I/O calls to complete.

TinyOS and its applications are written in nesC(network embedded sys-
tems C) which is a dialect of C with support for components. The basic
unit of nesC code is a component. Components connect via interfaces;
they use and provide interfaces. So a component uses function of other com-
ponents and provides its functionality to others as well. This is shown in
Figure F.1

361
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Figure F.1 nesC components and interfaces.

NesC interfaces are bidirectional and contain commands and events. A
command is a function call from one component requesting service from
another while an event is a function call indicating completion of service by
a component. Inter-component protocols are elucidated by grouping of these
commands/events together. Interfaces also contain the API for the current
application.

There are two types of nesC components modules and configurations.
Modules contain implementation code that is divided into ‘Specification’and
‘Implementation’. Specification lists the interfaces that are used/provided
by the component and implementation contains commands of provided inter-
faces and events of used interfaces. Configurations are used to wire together
components to create application. It can contain multiple sub-components,
modules or configurations (nesting). Interface, module and configuration are
exemplify next.
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Example: Sample code for an application in nesC



Programming Tips  

Here is a list of FAQs which might help you for programming tasks.  

1. Download and install vmware player.  

2. Download vmware image  

3. Follow Installation howto(for both windows and linux).  

How to run a test application  

Now we want to connect a sensor node and run a test application  
1. Connect the motes to the USB port and acticvate them. To connect to motes, 

you will have to tell the virtual machine that you would like it to recognize 
them. Once you have your motes connected and you have started XubunTOS, 
you can select which ones you would like to connect to. They should be listed 
at the top of the screen, with depressed buttons indicating a connection, and 
undepressed buttons indicating that no connection has been made. You may 
connect or disconnect them as you wish.  

2. Go to test folder by typing following line in the Terminal environment  
 

3. Test if the motes are connected by following line  

 

4. Make and install the Blink app on the mote by following code  

 
Now your mote should blink!!!  

Appendix F. WSNs Programming 364



what is the Photo sensor class for telosb motes?  

  

What Components do i need to be able to send and receive 
broadcast messages?  

  

  

  

Which Interfaces do i need to implement for 
broadcasting?  

  

  

  

  

How to wire message sending compenents into 
MyTheftApp?  

  

  

  

  

Reference  

Use RadioSenseToLeds app under tinyOs totorial as a base for your 
implementations!.  
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Problems
Problem 6.1 Hello world
Implement a Hello world program in TinyOS. Implement a timer and toggle the
blue LED every 2 sec.

Problem 6.2 Counter
Implement a counter using 3 LEDs. Use binary code to count-up every 1 seconds.
Change the application to reset after it reaches 7.

Problem 6.3 Ping Pong
(a) Develop an application where two sensor nodes start to exchange a message

in a ping pong manner. For this task you are not allowed to use Node IDs.
(hint: probably you need to use broadcast message once. then upon receiving
the message use unicast to ping pong message between sender and receiver.)

(b) Change the application such that only two nodes out of many nodes can ping
pong. (hint: you might use a sequence number inside the packet!)

Problem 6.4 Dissemination Protocol
(a) The task is propagating a command in the sensor network. The command

could be toggling a LED. Node ID 1 every 10 second sends a command to
turn ON/OFF a selected LEDs. Receivers act accordingly and re-broadcast
the command.

(b) How to avoid redundant commands? (hint: use a sequence counter to detect
duplicate commands).



Bibliography

(2006). Tmote Sky Data Sheet. Moteiv, San Francisco, CA.

(2013). Principles of wireless sensor networks. [Online]. Available:
https://www.kth.se/social/upload/510a5af2f2765403372ba230/lec3.pdf.

(2013). Rice distribution. [Online]. Available:
http://en.wikipedia.org/wiki/Rice distribution.

(2020). About fading. [Online]. Available:
http://wireless.agilent.com/wireless /helpfiles/n5106a/about fad-
ing.htm.

Akyildiz, I. F. and Vuran, M. C. (2010). Wireless Sensor Networks. Wiley.

Åström, K. J. and Wittenmark, B. (1997). Computer Controlled Systems.
Prentice Hall, 3 edition.

Bahlmann, C., Haasdonk, B., and Burkhardt, H. (2002). Online handwrit-
ing recognition with support vector machines-a kernel approach. In
Frontiers in Handwriting Recognition, 2002. Proceedings. Eighth Inter-
national Workshop on, pages 49–54. IEEE.

Bar-Shalom, Y. (1981). On the track-to-track correlation problem. Auto-
matic Control, IEEE Transactions on, 26(2):571 – 572.

Bar-Shalom, Y. and Campo, L. (1986). The effect of the common process
noise on the two-sensor fused-track covariance. Aerospace and Electronic
Systems, IEEE Transactions on, AES-22(6):803 –805.

Ben-Hur, A. and Noble, W. S. (2005). Kernel methods for predicting protein–
protein interactions. Bioinformatics, 21(suppl 1):i38–i46.

Berg, T. and Durrant-Whyte, H. (1992). Distributed and decentralized esti-
mation. In Intelligent Control and Instrumentation, 1992. SICICI ’92.
Proceedings., Singapore International Conference on, volume 2, pages
1118 –1123.

367



Bibliography 368

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge
University Press.

Cagalj, M., Hubaux, J., and Enz, C. (2002). Minimum-energy broadcast in
all-wireless networks: Np- completeness and distribution issues. Proc.
ACM Mobicom 02, Atlanta, GA, pages 172–182.

Carlson, N. (1990). Federated square root filter for decentralized parallel
processors. Aerospace and Electronic Systems, IEEE Transactions on,
26(3):517 –525.

Chair, Z. and Varshney, P. (1986). Optimal data fusion in multiple sensor
detection systems. IEEE Transactions on Aerospace Electronic Systems,
22(1).

Chang, K., Saha, R., and Bar-Shalom, Y. (1997). On optimal track-to-
track fusion. Aerospace and Electronic Systems, IEEE Transactions on,
33(4):1271 –1276.

Chong, C. Y. (1979). Hierarchical estimation. In Proceedings of the 2nd
MIT/ONR C3 Workshop.

Chong, C.-Y., Mori, S., Barker, W., and Chang, K.-C. (2000). Architec-
tures and algorithms for track association and fusion. Aerospace and
Electronic Systems Magazine, IEEE, 15(1):5 –13.

Chong, C.-Y., Mori, S., and Chang, K.-C. (1985). Information fusion in
distributed sensor networks. In American Control Conference, 1985,
pages 830 –835.

Clemeniti, A., Crescenzi, P., Penna, P., Rossi, G., and Vocca, P. (2001).
A worst-case analysis of an MST-based heuristic to construct energy-
efficient broadcast trees in wireless sensor networks. Tech. Report 010,
Univ. of Rome "Tor Vergata", Math Department, Italy, pages 172–182.

D. Willner, C. B. C. and Dunn, K. P. (1976). Kalman filter algorithms for a
multisensor system. In Proceedings of the 15th Conference on Decision
and Control.

Dargie, W. and Poellabauer, C. (2010). Fundamentals of Wireless Sensor
Networks: Theory and Practice. Wiley.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. (2008). Com-
putational Geometry. Springer, 3:rd edition.

Diestel, R. (2005). Graph Theory. Springer, 3:d edition.

Drummond, O. E. (1997). Tracklets and a hybrid fusion with process noise.
In Proceedings of the SPIE, Signal and Data Processing of Small Targets.



Bibliography 369

Fischione, C., Park, P., Di Marco, P., and Johansson, K. H. (2011). Wireless
Network Based Control, chapter Design Principles of Wireless Sensor
Networks Protocols for Control Applications, pages 203–237. Springer.

Fuchs, B. (2006). On the Hardness of Range Assigmnment Problems. Algo-
rithms And Complexity, 3998:127–138.

Garey, M. R. and Johnson, D. (1979). Computers and Intractability: A
Guide to the Theory of NP-Completeness. Freeman, 1:st edition.

Garey, M. R. and Johnson, D. S. (1977). The Rectilinear Steiner Tree Prob-
lem is NP-Complete. SIAM J. APPL. MATH., pages 826–834.

Gay, D., Levis, P., and Culler, D. (2005). Software Design Patterns for
TinyOS. ACM LCTES.

Glad, T. and Ljung, L. (1981). Reglerteknik : grundläggande teori. Springer,
1 edition.

Gupta, V., Hassibi, B., and Murray, R. M. (2007). Optimal LQG control
across packet-dropping links. Systems and Control Letters, 56(6):439–
446.

Gupta, V. and Martins, N. C. (2009). On fusion of information from multiple
sensors in the presence of analog erasure links. In Proceedings of the
IEEE Conference on Decision and Control (CDC), 2009.

Gupta, V., Martins, N. C., and Baras, J. S. (2009). Stabilization over era-
sure channels using multiple sensors. IEEE Transactions on Automatic
Control, 54(7):1463–1476.

Gustafsson, F. (2012). Statistical Sensor Fusion. Studentlitteratur, 2nd
edition.

Hashemipour, H., Roy, S., and Laub, A. (1988). Decentralized structures
for parallel kalman filtering. Automatic Control, IEEE Transactions on,
33(1):88 –94.

Hassan, M., Salut, G., Singh, M., and Titli, A. (1978). A decentralized com-
putational algorithm for the global kalman filter. Automatic Control,
IEEE Transactions on, 23(2):262 – 268.

Haykin, S. and Liu, K. R. (2009). Handbook on array processing and sensor
networks. John Wiley & Sons.

Hovareshti, P., Gupta, V., and Baras, J. S. (2007). On sensor scheduling
using smart sensors. In Proceedings of the IEEE Conference on Decision
and Control (CDC), 2007.



Bibliography 370

Huang, C. and Tseng, Y. (2005). The Coverage Problem in a Wireless Sensor
Network. Mobile Netw. Appl., pages 519–528.

Jadbabaie, A., Lin, J., and Morse, A. (2003). Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules. Automatic Control,
IEEE Transactions on, 48(6):988 – 1001.

Kallik, R. (2010). A new statistical model of the complex nakagami-m fading
gain. IEEE Transactions on Communications, 58(9).

Kao, C.-Y. and Lincoln, B. (2004). Simple stability criteria for systems
withtime-varying delays. Automatica.

Kirousis, L. M., Kranakis, E., Krizanc, D., and Pelc, A. (2000). Power
consumption in packet radio networks. Theoretical Computer Science,
243:289–305.

Kumar, S., Lao, T. H., and Arora, A. (2005). Barrier Coverage with Wireless
Sensors. Proc. AMC Conf. Mobile Comput. Netw., pages 284–298.

Levy, B. C., Castañon, D. A., Verghese, G. C., and Willsky, A. S. (1983). A
scattering framework for decentralized estimation problems. Automat-
ica, 19(4):373 – 384.

Li, M., Cheng, W., Liu, K., He, Y., Li, X., and Liao, X. (2012). Sweep
Coverage with Mobile Sensors. Proc. IEEE Int. Symp. Parallel Distrib.
Process, pages 1611–1619.

Li, M., Li, Z., and Vasilakos, A. V. (2013). A Survey on Topology Control in
Wireless Sensor Networks: Taxonomy, Comparative Study, and Open
Issues. Proceedings of the IEEE, 101(12):2538–2557.

Li, X., Wan, P., and Wang, Y. (2003). Integrated Coverage and Connectiv-
ity for Energy Conservation in Wireless Sensor Networks. Proc. Tenth
International Conf. on Comput. Comm. and Netw, pages 564–567.

Liggins, M.E., I., Chong, C.-Y., Kadar, I., Alford, M., Vannicola, V., and
Thomopoulos, S. (1997). Distributed fusion architectures and algo-
rithms for target tracking. Proceedings of the IEEE, 85(1):95 – 107.

Luo, Z. Q. (2005a). An Isotropic Universal Decentralized Estimation Scheme
for a Bandwidth Constrained Ad Hoc Sensor Network. Selected Areas
in Communications, IEEE Journal on, 23(4):735–744.

Luo, Z. Q. (2005b). Universal Decentralized Estimation in a Bandwidth Con-
strained Sensor Network. IEEE Transactions on Information Theory,
51(6):2210–2219.



Bibliography 371

Mao, X., Miao, X., He, Y., Li, X., and Liu, Y. (2012). CitySee: Urban CO2

Monitoring with Sensors. Proc. IEEE INFOCOM, pages 1611–1619.

Marina, M. and Das, S. (2002). Routing performance in the presence of
unidirectional links in multihop wireless networks. Proc. ACM Mobihoc
02, pages 12–23.

Mo, L., He, Y., Liu, Y., Zhao, J., Tang, S., Li, X., and Dai, G. (2009).
Canopy Closure Estimates with GreenOrbs: Sustainable Sensing in the
Forest. Proc. AMC Conf. Embedded Netw. Sens. Syst., pages 99–112.

Montestruque, L. A. and Antsaklis, P. J. (2004). Stability of model-based
networked control systems with time-varying transmission times. IEEE
Transactions on Automatic Control.

Mori, S., Barker, W., Chong, C.-Y., and Chang, K.-C. (2002). Track associa-
tion and track fusion with nondeterministic target dynamics. Aerospace
and Electronic Systems, IEEE Transactions on, 38(2):659 –668.

Niu, R. and Varshney, P. (2005). Distributed detection and fusion in a large
wireless sensor network of random size. EURASIP Journal on Wireless
Communications and Networking, 4:462–472.

Olfati-Saber, R., Fax, J. A., and Murray, R. M. (2007). Consensus and
cooperation in networked multi-agent systems. Proceedings of the IEEE,
95(1):215–233.

Olfati-Saber, R. and Murray, R. (2004). Consensus problems in networks
of agents with switching topology and time-delays. Automatic Control,
IEEE Transactions on, 49(9):1520 – 1533.

Pajic, M., Sundaram, S., Pappas, G. J., and Mangharam, R. (2011). The
wireless control network: A new approach for control over networks.
IEEE Transactions on Automatic Control.

Pantos, G., Kanatas, A., and Constantinou, P. (2008). Mobile Communica-
tion Systems. Papasotiriou.

Pottie, G. and Kaiser, W. (2005). Principles of Embedded Networked Systems
Design. Cambridge University Press.

Predd, J. B., Kulkarni, S. R., and Poor, H. V. (2005). Regression in sensor
networks: Training distributively with alternating projections. In Op-
tics & Photonics 2005, pages 591006–591006. International Society for
Optics and Photonics.

Predd, J. B., Kulkarni, S. R., and Poor, H. V. (2006a). Consistency in models
for distributed learning under communication constraints. Information
Theory, IEEE Transactions on, 52(1):52–63.



Bibliography 372

Predd, J. B., Kulkarni, S. R., and Poor, H. V. (2006b). Distributed kernel
regression: An algorithm for training collaboratively. In Information
Theory Workshop, 2006. ITW’06 Punta del Este. IEEE, pages 332–336.
IEEE.

Rao, B. and Durrant-Whyte, H. (1991). Fully decentralised algorithm for
multisensor kalman filtering. Control Theory and Applications, IEE
Proceedings D, 138(5):413 –420.

Ren, W. and Beard, R. (2005). Consensus seeking in multiagent systems
under dynamically changing interaction topologies. Automatic Control,
IEEE Transactions on, 50(5):655 – 661.

Ribeiro, A., Giannakis, G. B., and Roumeliotis, S. (2006). SOI-KF : Dis-
tributed Kalman Filtering with Low-cost Communications using the
Sign of Innovations. In Acoustics, Speech and Signal Processing, 2006.
ICASSP 2006 Proceedings. 2006 IEEE International Conference on,
number 2, pages 153–156, Toulouse.

Richard, C., Honeine, P., Snoussi, H., Ferrari, A., and Theys, C. (2010).
Distributed learning with kernels in wireless sensor networks for physical
phenomena modeling and tracking. In Proc. 30th IEEE International
Geoscience and Remote Sensing Symposium (IGARSS).

Roecker, J. and McGillem, C. (1988). Comparison of two-sensor track-
ing methods based on state vector fusion and measurement fusion.
Aerospace and Electronic Systems, IEEE Transactions on, 24(4):447 –
449.

Santi, P. (2005). Topology Control in Wireless Ad Hoc and Sensor Networks.
Wiley, 1:st edition.

Sayed, A. H. (2012). Diffusion adaptation over networks. arXiv preprint
arXiv:1205.4220.

Sayed, A. H., Tu, S.-Y., Chen, J., Zhao, X., and Towfic, Z. J. (2013). Diffu-
sion strategies for adaptation and learning over networks: an examina-
tion of distributed strategies and network behavior. Signal Processing
Magazine, IEEE, 30(3):155–171.

Scholkopf, B., Guyon, I., and Weston, J. (2003). Statistical learning and
kernel methods in bioinformatics. Nato Science Series Sub Series III
Computer and Systems Sciences, 183:1–21.

Schölkopf, B. and Smola, A. J. (2002). Learning with kernels. MIT Press,
Cambridge, MA.



Bibliography 373

Shanmuganthan, S., Ghobakhlou, A., Sallis, P., and Mastorakis, N. (2008).
Sensors for modeling the effects of climate change on grapevine growth
and wine quality. In WSEAS International Conference. Proceedings.
Mathematics and Computers in Science and Engineering, number 12.
World Scientific and Engineering Academy and Society.

Song, W., Wang, Y., Li, X., and Frieder, O. (2004). Localized algorithms
for energy efficient topology in wireless ad hoc networks. Proc. ACM
MobiHoc, pages 98–108.

Spanos, D., Olfati-Saber, R., and Murray, R. (2006). Dynamic consensus on
mobile networks. In Information Processing in IFAC World Congress.

Speyer, J. (1979). Computation and transmission requirements for a decen-
tralized linear-quadratic-gaussian control problem. Automatic Control,
IEEE Transactions on, 24(2):266 – 269.

Swami, A., Zhao, Q., Hong, Y.-W., and Tong, L. (2007). Wireless Sensor
Networks: Signal Processing and Communications. John Wiley & Sons.

Tamassia, R. and Tollis, I. G. (1989). Planar grid embedding in linear time.
IEEE Transactions on Circuits and Systems, 36(9):1230–1234.

Tiberi, U., Fischione, C., Johansson, K. H., and Di Benedetto, M. (2013).
Enegy-efficiency sampling of networked control systems over IEEE
802.15.4 wireless networks. Automatica, 13.

Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., and Gill, C. (2003). Inte-
grated Coverage and Connectivity for Energy Conservation in Wireless
Sensor Networks. Proc. ACM Int. Conf. Embedded Netw. Sens. Syst.,
pages 28–39.

Wieselthier, J., Nguyen, G., and Ephremides, A. (2000). On the construction
of energy-efficient broadcast and multicast trees in wireless networks.
Proc. IEEE Infocom 00, Tel Aviv, pages 585–594.

Willsky, A., Bello, M., Castanon, D., Levy, B., and Verghese, G. (1982).
Combining and updating of local estimates and regional maps along
sets of one-dimensional tracks. Automatic Control, IEEE Transactions
on, 27(4):799 – 813.

Xiao, J.-J., Ribeiro, A., Luo, Z.-Q., and Giannakis, G. (2006). Distributed
compression-estimation using wireless sensor networks. Signal Process-
ing Magazine, IEEE, 23(4):27 – 41.

Xiao, L., Boyd, S., and Lall, S. (2005). A scheme for robust distributed
sensor fusion based on average consensus. In Information Processing in
Sensor Networks, 2005. IPSN 2005. Fourth International Symposium
on, pages 63 – 70.



Bibliography 374

Xie, S., Low, K. S., and Gunawan, E. (2014). An adaptive tuning algorithm
for ieee 802.15.4 based network control systems. In 2014 IEEE ninth In-
ternational Conference on Intelligent Sensor Network and Information
Processing (ISSSNIP).

Zhang, H., Yang, L., Deng, W., and Guo, J. (2008). Handwritten chinese
character recognition using local discriminant projection with prior in-
formation. In Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on, pages 1–4. IEEE.

Zhang, W., Branicky, M. S., and Phillips, S. M. (2001). Stability of Net-
worked Control Systems. IEEE Control Systems Magazine.

Zhao, X. and Sayed, A. H. (2012). Performance limits for distributed estima-
tion over lms adaptive networks. Signal Processing, IEEE Transactions
on, 60(10):5107–5124.


	List of Acronyms
	Preface
	Introduction to WSNs
	WSN Architecture and Protocol Stack
	Challenges and Constraints
	WSN Applications
	WSN Integration with the Internet
	Problems

	Wireless Channel
	Physical Sources of Distortion
	Attenuation (Path Loss)
	Reflection and refraction
	Diffraction
	Scattering

	Statistical fading models
	Large Scale Fading
	Path Loss
	Shadowing

	Small Scale Fading
	Multipath Fading
	Doppler Spread

	Conclusion
	Problems

	Physical Layer
	Basic Components
	Modulation
	Binary Phase Shift Keying (BPSK)
	Quadrature Phase Shift Keying (QPSK)
	Amplitude Shift Keying

	Communication over Gaussian Channel
	Error Probability for BPSK
	Error Probability for 4-PAM
	Error Probability for QAM

	Communication over Fading Channel
	Channel Coding (Error Control Coding)
	Block Codes

	Problems

	Medium Access Control
	Introduction
	Problems and Performance Requirements for MAC Protocols
	Energy Efficiency
	The Hidden Terminal Problem
	The Exposed Terminal Problem
	Characteristics of MAC Protocols

	Definition and Classification of MAC Protocols
	Schedule-based MAC Protocols
	Contention-based MAC Protocols

	The IEEE 802.15.4 Standard for WSNs
	Overview
	An IEEE 802.15.4 Network
	Physical Layer
	MAC Layer

	Problems

	Routing
	Introduction
	Routing Challenges
	Routing Protocols Classification
	Network Structure
	Route Discovery
	Protocol Operation
	In-network Data Processing

	The Shortest Path Routing
	The Shortest Path Optimization Problem
	The Generic Shortest Path Algorithm
	Routing Metrics

	RPL Routing Protocol
	Problems

	Topology Control
	Introduction
	Connectivity Problems
	Range Assignment Problems
	Unicast and Broadcast Topologies

	Coverage Problems
	Full coverage
	Barrier coverage
	Sweep covarage

	Contents
	Exercises

	Distributed Detection
	Basic Theory of Detection
	Detection from Single Sensor in Additive Noise
	Detection from Multiple Sensors
	Problems

	Distributed Estimation
	Optimal Mean Square Estimate of a Random Variable
	Network with a Star Topology
	Static Sensor Fusion
	Dynamic Sensor Fusion

	Non-ideal Networks with Star Topology
	Sensor Fusion in Presence of Message Loss
	Sensor Fusion with Limited Bandwidth

	Network with Arbitrary Topology
	Static Sensor Fusion with Limited CommunicationRange

	Computational Complexity and Communication Cost
	On Computational Complexity
	On Communication Cost
	Summary of the computational complexity and communication cost

	Conclusion
	Problems

	Distributed Learning
	Learning in General
	Supervised Learning
	ARMA-time Series
	Optimization in Learning Algorithms

	Learning in WSNs
	Star Topology
	General Topology
	Distributed Learning Using Kernel Methods
	Distributed Learning Using ARMA-time Series
	Convergence Speed and Precision

	Conclusions
	Consulted Material
	Problems

	Positioning and Localization
	Introduction
	Challenges
	Physical Layer Measurements
	Computational Constraints
	Lack of GPS
	Low-End Sensor Node

	Ranging Techniques
	Time of Arrival
	Time Difference of Arrival
	Angle of Arrival
	Received Signal Strength

	Range-Based Localization
	Triangulation
	Trilateration
	Iterative and Collaborative Multilateration

	Range-Free Localization
	Problems

	Time Synchronization
	Node Clocks and Synchronization Problem
	Challenges for Time Synchronization

	Basics of Time Synchronization
	One-Way Message Exchange
	Two-Way Message Exchange
	Receiver-Receiver Synchronization

	Time Synchronization Protocols
	MMSE Technique in Time Synchronization Protocols
	The Network Time Protocol
	Timing-Sync Protocol for Sensor Networks
	Lightweight Tree-Based Synchronization
	Flooding Time Synchronization Protocol
	Reference Broadcast Synchronization protocol
	Time-Diffusion Synchronization Protocol
	Mini-Sync and Tiny-Sync

	The Gradient Time Synchronization Protocol
	Problems

	Wireless Sensor Network Control Systems
	Preliminaries
	State space representation
	Stability of difference equations

	The Wireless Sensor Network Control System
	Definition
	Model

	Challanges for system stability
	Network delay
	Packet losses
	Multiple-packet transmission

	Sampling methods
	Event-triggered sampling
	Self-triggered sampling
	Adaptive self-triggered sampling

	System design
	The Top-down approach
	The Bottom-up approach
	The System-level approach

	Model based network control system
	A model of the MB-NCS
	MB-NCS stability

	WSN-CS with Multiple Sensors
	WCN Model
	WSN-CS stability
	Advantages of the WCN

	Problems

	Appendix Random Variables
	Basic Definitions
	Random Variables
	Probability Distribution

	Appendix Sampling Theory
	Sampling
	Reconstruction
	Z-Transform

	Appendix Optimization Theory
	Optimization Theory
	Basic Tools of Numerical Analysis
	Convex Optimizations
	Non-convex Optimizations

	Appendix Matrix Algebra
	Matrix Inversion Formula

	Appendix Graph Theory
	Basic definitions
	Proximity Graphs

	Appendix WSNs Programming
	TinyOS
	Problems

	Bibliography

