Du är inte inloggad på KTH så innehållet är inte anpassat efter dina val.
While the thermal, mechanical and neutronic properties of nuclear fuels and associated materials are covered in most common textbooks and nuclear engineering courses, the areas of inorganic and physical chemistry are often neglected or explained by rules of thumb that have proven useful for traditional reactor systems. With the ongoing development of new reactor types, unorthodox fuel materials, non-aqueous coolants and higher operating temperatures, it will be necessary to have a proper understanding of the principles and mechanisms governing the changes in and reactions between materials under extreme conditions and in untested combinations. This course aims to bridge the gap between basic university-level chemistry and advanced treatises on some particular aspect of nuclear fuel chemistry.
General theory and its application on nuclear materials will be interleaved throughout the run of the course. Since the participants may have varying need to refresh some concepts fundamental to the course, such as different nuclear reactor designs and basic university chemistry, those parts will largely be in the form of self-studies. The lectures will center on how such knowledge can be complemented and extended to deal with less common materials under non-standard conditions and explain complex physico-chemical processes in the reactor core. Following this course, you will learn how to:
The necessary training of calculation skills will be performed in group as well as in the form of home assignments. Lectures and texts will be in English only.
Passing the course typically means that you have attended 50 hours of meetings, and spent 150 hours on group assignments, exercises and reading.
To pass the course you should, as far as possible, participate in all course meetings. Besides the lectures there will be exercises and problem solving in class and as home assignments. These will count towards your grade. If you cannot attend a meeting, report this in advance, and you will receive a corresponding individual assignment.
You are further required to, in pairs or alone, compose and present a lecture going into more depth on one out of a selection of topics covered during the course. At the end of the course there is a written examination, technically composed of two separate parts.
Due to the comprehensive nature of this course, some basics are covered in a course compendium, "The Chemistry and Physics of Nuclear Fuels", while the specifics on each topic will be found in separate reference texts, essays, book chapters, research papers and tables handed out during the course.