Till KTH:s startsida Till KTH:s startsida

Visa version

Version skapad av Serguei Dödsbo Shimorin 2014-08-19 11:39

Visa nästa >
Jämför nästa >

Examination

Kursen är indelad i tre moduler.
På var och en av dessa ges möjlighet att redovisa sina kunskaper medelst kontrollskrivningar respektive inlämningsuppgifter.

Modul 1   KS1   Introduktion till differentialekvationer.
Första ordningens differentialekvationer.
Modeller med första ordningens ODE.
Modul 2   KS2   Differentialekvationer av högre ordning
System av linjära första ordningens ODE.
Plana autonoma system och stabilitet.
Modul 3   INL1   Laplacetransformen
Partiella differentialekvationer och randvärdesproblem.
Ortogonala funktioner och Fourierserier.


Modul 1 och 2 redovisas medelst kontrollskrivningar. Modul 3 redovisas genom inlämningsuppgifter, vilka redovisas skriftligt och muntligt i grupper om tre deltagare.

Godkänd KS1 ger godkänd modul 1 på tentamen.
Godkänd KS2 ger godkänd modul 2 på tentamen.
Godkänd INL1 ger godkänd modul 3 på tentamen.

Om tre moduler är godkända erhålles betyg E utan tentamen.

För att få högre betyg (d v s D, C, B eller A) skall man vara godkänd på tre moduler och skaffa poäng på del 2 av skriftlig tentamen.