Till KTH:s startsida Till KTH:s startsida

Ändringar mellan två versioner

Här visas ändringar i "Föreläsningar" mellan 2014-11-05 22:23 av Johan Boye och 2014-11-11 00:12 av Johan Boye.

Visa < föregående | nästa > ändring.

Föreläsningar

Föreläsningsbilder kommer finnas för nedladdning från denna sida senast dagen innan respektive föreläsning.

# Innehåll Boken Bilder 1 Introduktion till logik s 1-5 F1 2 Satslogik: syntax, naturlig deduktion 1.2, 1.3 F2, regler

3 Satslogik: semantik 1.4 F3 4 Predikatlogik: introduktion, syntax 2.1, 2.2 F4 5 Predikatlogik: naturlig deduktion 2.3 F5, regler 6 Mängder och andra diskreta strukturer Se fotnot 1 F6 7 Predikatlogik: semantik, sundhet, fullständighet, avgörbarhet 2.4, 2.5, 2.6 F7 8 Predikatlogik: axiomatiseringar Se fotnot 2 F8 9 Matematisk induktion 1.4.2, 1.4.3 F9 10 Strukturell induktion - F10 11 Temporallogik: syntax och semantik 3.1, 3.4 12 Temporallogik: modellprovning - 13 Hoare-logik och programspecifikation 4.2 14 Hoare-logik och programverifikation 4.3 15 Verktygsdemonstration, tillämpningar, sammanfattning

Fotnot 1: Mängder och relationer är egentligen sådant som brukar läras ut i en kurs i diskret matematik. För denna kurs räcker materialet som presenteras på föreläsningsbilderna. Om man föredrar att läsa en text snarare än föreläsningsbilder kan man läsa här och här.

Fotnot 2: Peanos axiom förklaras bra här (dock mycket mer utförligt än vad som krävs i kursen). För den som vill veta mer om axiomatiseringar och Gödels teorem kan man konsultera Peter Smith: Introduction to Gödel's theorems, 2nd edition (Cambridge). Här är kapitel 1 (rekommenderad läsning: sid 1-4).