VR Starting Grant (2019-05197_VR): Hybrid electro-optical terahertz systems: multiplexing and beamforming
The terahertz (THz) band contains significant potential for advanced applications. However, current individual technologies have limitations and hyrid electro-optical methods appear to be a good candidate to overcome them. The purpose of this research project is to explore the untapped characteristics of hybrid electro-optical THz systems for ultrafast information delivery and sensing, focusing on the capacity, energy efficiency and flexibility with multi-dimension multiplexing and beamforming techniques.
The project is hosted by KTH Applied Physics Department, starting from Mar. 2020 and last for 4 years. The project contains: Theoretical analysis and numerical modeling of optical and THz elements and separate technologies; Subsystem and system-level simulation and experimental characterization of various technology options for multiplexing and beamforming techniques, with a focus on potential convergence between them; Experimental investigations and optimization for both point-to-point and multiplexed THz system for converged transmission and sensing. The proposed research is challenging with high risk and high uncertainty, yet the research effort will be rewarding with potential breakthroughs in THz science and technologies. Dr. Pang work jointly with researchers from SPOC centre at DTU, Zhejiang University in China, and Kista High Speed Transmission Lab to deliver the tasks defined in the project. The collaborators are running relevant projects with their own funding.
Publications supported in part by the VR Starting Grant (No. 2019-05197_VR) :
A selection of recent publications is listed below, partly including their final (pre-print) manuscripts according to the IEEE and OSA open-access agreement:
Peer-reviewed journal papers:
[1]. (Invited) X. Pang, O. Ozolins, S. Jia, L. Zhang, R. Schatz, A. Udalcovs, V. Bobrovs, H. Hu, T. Morioka, Y.-T. Sun, J. Chen, S. Lourdudoss, L. Oxenlowe, S. Popov and X. Yu, “Bridging the Terahertz Gap: Photonics-Assisted Free-Space Communications From the Submillimeter-Wave to the Mid-Infrared,” Journal of Lightwave Technology, vol. 40, no. 10, 2022, pp. 3149-3162; DOI 10.1109/jlt.2022.3153139. PDF
[2] X. Pang, R. Schatz, M. Joharifar, A. Udalcovs, V. Bobrovs, L. Zhang, X. Yu, Y.-T. Sun, G. Maisons, M. Carras, S. Popov, S. Lourdudoss and O. Ozolins, “Direct Modulation and Free-Space Transmissions of up to 6 Gbps Multilevel Signals With a 4.65-$\mu$m Quantum Cascade Laser at Room Temperature,” Journal of Lightwave Technology, vol. 40, no. 8, 2022, pp. 2370-2377; DOI 10.1109/jlt.2021.3137963. PDF
[3] S. Jia*, M.-C. Lo, L. Zhang, O. Ozolins, A. Udalcovs, D. Kong, X. Pang*, R. Guzman, X. Yu, S. Xiao, S. Popov, J. Chen, G. Carpintero*, T. Morioka, H. Hu* and L.K. Oxenløwe, “Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications,” Nature Communications, vol. 13, no. 1, 2022, pp. 1388; DOI 10.1038/s41467-022-29049-2. PDF
[4] M. Qiao, L. Zhang, S. Wang, W. Li, Z. Lu, X. Pang, L. Zhang, S. Zheng, X. Jin, X. Zhang and X. Yu, “60 Gbit/s PAM-4 wireless transmission in the 310 GHz band with nonlinearity tolerant signal processing,” Optics Communications, vol. 492, 2021; DOI 10.1016/j.optcom.2021.126988. PDF
[5] H. Zhang, L. Zhang, S. Wang, Z. Lu, Z. Yang, S. Liu, M. Qiao, Y. He, X. Pang, X. Zhang and X. Yu, “Tbit/s Multi-Dimensional Multiplexing THz-Over-Fiber for 6G Wireless Communication,” Journal of Lightwave Technology, vol. 39, no. 18, 2021, pp. 5783-5790; DOI 10.1109/jlt.2021.3093628. PDF
[6] X. Pang, O. Ozolins, L. Zhang, R. Schatz, A. Udalcovs, X. Yu, G. Jacobsen, S. Popov, J. Chen and S. Lourdudoss, “Free-Space Communications Enabled by Quantum Cascade Lasers,” physica status solidi (a), vol. 218, no. 3, 2021, pp. 2000407; DOI https://doi.org/10.1002/pssa.202000407. PDF
[7] L. Zhang, X. Pang, S. Jia, S. Wang and X. Yu, “Beyond 100 Gb/s Optoelectronic Terahertz Communications: Key Technologies and Directions,” IEEE Communications Magazine, vol. 58, no. 11, 2020, pp. 34-40; DOI 10.1109/mcom.001.2000254. PDF
[8] L. Zhang, M. Qiao, S. Wang, Z. Lu, L. Zhang, X. Pang, X. Zhang and X. Yu, “Nonlinearity-aware optoelectronic terahertz discrete multitone signal transmission with a zero-bias diode,” Optics Letters, vol. 45, no. 18, 2020, pp. 5045-5048; DOI 10.1364/OL.401414. PDF
[9] S. Jia, L. Zhang, S. Wang, W. Li, M. Qiao, Z. Lu, N.M. Idrees, X. Pang, H. Hu, X. Zhang, L.K. Oxenlowe and X. Yu, “2 × 300 Gbit/s Line Rate PS-64QAM-OFDM THz Photonic-Wireless Transmission,” Journal of Lightwave Technology, vol. 38, no. 17, 2020, pp. 4715-4721; DOI 10.1109/jlt.2020.2995702. PDF
[10] S. Wang, Z. Lu, W. Li, S. Jia, L. Zhang, M. Qiao, X. Pang, N. Idrees, M. Saqlain, X. Gao, X. Cao, C. Lin, Q. Wu, X. Zhang and X. Yu, “26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals,” APL Photonics, vol. 5, no. 5, 2020; DOI 10.1063/5.0003998. PDF
Peer-reviewed conference papers:
[1] (Postdeadline) X. Pang, H. Dely, R. Schatz, D. Gacemi, M. Joharifar, T. Salgals, A. Udalcovs, Y.T. Sun, Y. Fan, L. Zhang, E. Rodriguez, S. Spolitis, V. Bobrovs, X. Yu, S. Lourdudoss, S. Popov, O. Ozolins, A. Vasanelli and C. Sirtori, “11 Gb/s LWIR FSO Transmission at 9.6 µm using a Directly-Modulated Quantum Cascade Laser and an Uncooled Quantum Cascade Detector,” Proc. 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022, paper Th4B.5. PDF