Publikationer av Sören Östlund
Refereegranskade
Artiklar
[1]
E. Jungstedt et al., "On the high fracture toughness of wood and polymer-filled wood composites – Crack deflection analysis for materials design," Engineering Fracture Mechanics, vol. 300, 2024.
[2]
M. Kaplan och S. Östlund, "A Numerical Model for Understanding the Development of Adhesion during Drying of Cellulose Model Surfaces," Materials, vol. 16, no. 4, s. 1327, 2023.
[3]
V. Tojaga et al., "Continuum damage micromechanics description of the compressive failure mechanisms in sustainable biocomposites and experimental validation," Journal of the mechanics and physics of solids, vol. 171, s. 105138, 2023.
[4]
E. Jungstedt et al., "Fracture toughness of wood and transparent wood biocomposites in the toughest LT-direction," Materials & design, vol. 231, 2023.
[5]
V. Tojaga et al., "Geometrically exact beam theory with embedded strong discontinuities for the modeling of failure in structures. Part I : Formulation and finite element implementation," Computer Methods in Applied Mechanics and Engineering, vol. 410, 2023.
[6]
G. Marin, M. Nygårds och S. Östlund, "Experimental quantification of differences in damage due to in-plane tensile test and bending of paperboard," Packaging technology & science, vol. 35, no. 1, s. 69-80, 2022.
[7]
V. Tojaga et al., "Hybrid of monolithic and staggered solution techniques for the computational analysis of fracture, assessed on fibrous network mechanics," Computational Mechanics, vol. 71, no. 1, s. 39-54, 2022.
[8]
E. Jungstedt et al., "Mechanical behavior of all-lignocellulose composites—Comparing micro- and nanoscale fibers using strain field data and FEM updating," Composites. Part A, Applied science and manufacturing, vol. 161, s. 107095-107095, 2022.
[9]
C. Esteves et al., "The effects of high alkali impregnation and oxygen delignification of softwood kraft pulps on the yield and mechanical properties," Nordic Pulp & Paper Research Journal, vol. 37, no. 2, s. 223-231, 2022.
[10]
C. V. G. Esteves et al., "The impact of bleaching on the yield of softwood kraft pulps obtained by high alkali impregnation," Nordic Pulp & Paper Research Journal, vol. 0, no. 0, 2022.
[11]
G. Marin et al., "Torsional and compression loading of paperboard packages: Experimental and FE analysis," Packaging technology & science, vol. 36, no. 1, s. 31-44, 2022.
[12]
E. Jungstedt, S. Östlund och L. Berglund, "Transverse fracture toughness of transparent wood biocomposites by FEM updating with cohesive zone fracture modeling," Composites Science And Technology, vol. 225, s. 109492, 2022.
[13]
C. S. V. G. Esteves et al., "Differences and similarities between kraft and oxygen delignification of softwood fibers : effects on mechanical properties," Cellulose, vol. 28, no. 6, s. 3775-3788, 2021.
[14]
C. S. V. G. Esteves et al., "Differences and similarities between kraft and oxygen delignification of softwood fibers: effects on chemical and physical properties," Cellulose, vol. 28, no. 5, s. 3149-3167, 2021.
[15]
G. Marin et al., "Experimental and finite element simulated box compression tests on paperboard packages at different moisture levels," Packaging technology & science, vol. 34, no. 4, s. 229-243, 2021.
[16]
V. Tojaga et al., "Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities - Formulation and staggered algorithm," Computer Methods in Applied Mechanics and Engineering, vol. 384, 2021.
[17]
M. Wallmeier et al., "Phenomenological analysis of constrained in-plane compression of paperboard using micro-computed tomography Imaging," Nordic Pulp & Paper Research Journal, vol. 36, no. 3, s. 491-502, 2021.
[18]
A. Prapavesis et al., "Back calculated compressive properties of flax fibers utilizing the Impregnated Fiber Bundle Test (IFBT)," Composites. Part A, Applied science and manufacturing, vol. 135, no. 105930, 2020.
[19]
V. Tojaga, S. Hazar och S. Östlund, "Compressive failure of fiber composites containing stress concentrations : Homogenization with fiber-matrix interfacial decohesion based on a total Lagrangian formulation (vol 76, 107758, 2019)," Composites Science And Technology, vol. 185, 2020.
[20]
G. Marin, M. Nygårds och S. Östlund, "Elastic-plastic model for the mechanical properties of paperboard as a function of moisture," Nordic Pulp & Paper Research Journal, vol. 35, no. 3, s. 353-361, 2020.
[21]
C. S. V. G. Esteves et al., "Evaluating the Potential to Modify Pulp and Paper Properties through Oxygen Delignification," ACS Omega, vol. 5, no. 23, s. 13703-13711, 2020.
[22]
E. Jungstedt et al., "Mechanical properties of transparent high strength biocomposites from delignified wood veneer," Composites. Part A, Applied science and manufacturing, 2020.
[23]
G. Marin, M. Nygårds och S. Östlund, "Stiffness and strength properties of five paperboards and their moisture dependency," TAPPI Journal, vol. 19, no. 2, s. 71-85, 2020.
[24]
V. Tojaga, S. Hazar och S. Östlund, "Compressive failure of fiber composites containing stress concentrations: Homogenization with fiber-matrix interfacial decohesion based on a total Lagrangian formulation," Composites Science And Technology, vol. 182, 2019.
[25]
E. Linvill, M. Wallmeier och S. Östlund, "A constitutive model for paperboard including wrinkle prediction and post-wrinkle behavior applied to deep drawing," International Journal of Solids and Structures, vol. 117, s. 143-158, 2017.
[26]
E. Linvill, P. A. Larsson och S. Östlund, "Advanced three-dimensional paper structures : Mechanical characterization and forming of sheets made from modified cellulose fibers," Materials & design, vol. 128, s. 231-240, 2017.
[27]
E. Linvill, P. Larsson och S. Östlund, "Dynamic Mechanical Thermal Analysis Data of Sheets Made from Wood-Based Cellulose Fibers Partially Converted to Dialcohol Cellulose," Data in Brief, vol. 14, s. 504-506, 2017.
[28]
E. Linvill och S. Östlund, "Biaxial In-Plane Yield and Failure of Paperboard," Nordic Pulp & Paper Research Journal, vol. 31, no. 4, s. 659-667, 2016.
[29]
O. Girlanda et al., "On the transient out-of-plane behaviour of high-density cellulose-based fibre mats," Journal of Materials Science, vol. 51, no. 17, s. 8131-8138, 2016.
[30]
E. Linvill och S. Östlund, "Parametric Study of Hydroforming of Paper Materials Using the Explicit Finite Element Method with a Moisture-dependent and Temperature-dependent Constitutive Model," Packaging technology & science, vol. 29, no. 3, s. 145-160, 2016.
[31]
D. D. Tjahjanto, O. Girlanda och S. Östlund, "Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials," Journal of the mechanics and physics of solids, vol. 84, s. 1-20, 2015.
[32]
M. Wallmeier et al., "Explicit FEM analysis of the deep drawing of paperboard," Mechanics of materials, vol. 89, s. 202-215, 2015.
[33]
C. A. S. Dominic et al., "Towards a conceptual sustainable packaging development model : A corrugated box case study," Packaging technology & science, vol. 28, no. 5, s. 397-413, 2015.
[34]
E. Linvill och S. Östlund, "The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper," Experimental mechanics, vol. 54, no. 8, s. 1329-1341, 2014.
[35]
A. Svensson et al., "3D-shapeable thermoplastic paper materials," Nordic Pulp & Paper Research Journal, vol. 28, no. 4, s. 602-610, 2013.
[36]
M. S. Magnusson, X. Zhang och S. Östlund, "Experimental Evaluation of the Interfibre Joint Strength of Papermaking Fibres in Terms of Manufacturing Parameters and in Two Different Loading Directions," Experimental mechanics, vol. 53, no. 9, s. 1621-1634, 2013.
[37]
M. S. Magnusson och S. Östlund, "Numerical evaluation of interfibre joint strength measurements in terms of three-dimensional resultant forces and moments," Cellulose, vol. 20, no. 4, s. 1691-1710, 2013.
[38]
P. Makela och S. Östlund, "Cohesive crack modelling of thin sheet material exhibiting anisotropy, plasticity and large-scale damage evolution," Engineering Fracture Mechanics, vol. 79, s. 50-60, 2012.
[39]
C. Fellers, S. Östlund och P. Mäkelä, "Evaluation of the Scott bond test method," Nordic Pulp & Paper Research Journal, vol. 27, no. 2, s. 231-236, 2012.
[40]
A. Jamialahmadi, T. Trost och S. Östlund, "A Proposed Tool to Determine Dynamic Load Distribution between Corrugated Boxes," Packaging technology & science, vol. 24, no. 6, s. 317-329, 2011.
[41]
M. Östlund, S. Borodulina och S. Östlund, "Influence of Paperboard Structure and Processing Conditions on Forming of Complex Paperboard Structures," Packaging technology & science, vol. 24, no. 6, s. 331-341, 2011.
[42]
M. Gimåker et al., "Influence of beating and chemical additives on residual stresses in paper," Nordic Pulp & Paper Research Journal, vol. 26, no. 4, s. 445-451, 2011.
[43]
P. Isaksson, P. Gradin och S. Östlund, "A Simplified Treatise of the Scott Bond Testing Method," Experimental mechanics, vol. 50, no. 6, s. 745-751, 2010.
[44]
M. Nygards, C. Fellers och S. Östlund, "Measuring out-of-plane shear properties of paperboard," Journal of Pulp and Paper Science (JPPS), vol. 33, no. 2, s. 105-109, 2007.
[45]
C. Barbier, P.-L. Larsson och S. Östlund, "On the effect of high anisotropy at folding of coated papers," Composite structures, vol. 72, no. 3, s. 330-338, 2006.
[46]
J. Malmqvist et al., "The Application of CDIO Standards in the Evaluation of Swedish Engineering Degree Programmes," World Transactions on Engineering and Technology Education, vol. 5, no. 2, s. 361-364, 2006.
[47]
J. Malmqvist, S. Östlund och K. Edström, "Using Integrated Programme Descriptions to Support a CDIO Programme Design Process," World Transactions on Engineering and Technology Education, vol. 5, no. 2, s. 259-262, 2006.
[48]
J. Bankel et al., "Benchmarking engineering curricula with the CDIO syllabus," International journal of engineering education, vol. 21, no. 1, s. 121-133, 2005.
[49]
O. Girlanda et al., "Defect sensitivity and strength of paperboard in out-of-plane tension and shear," Journal of Pulp and Paper Science (JPPS), vol. 31, no. 2, s. 100-104, 2005.
[50]
M. Östlund et al., "Experimental determination of residual stresses in paperboard," Experimental mechanics, vol. 45, no. 6, s. 493-497, 2005.
[51]
J. Lif, S. Östlund och C. Fellers, "In-plane hygro-viscoelasticity of paper at small deformations," Nordic Pulp & Paper Research Journal, vol. 20, no. 2, s. 139-149, 2005.
[52]
V. Lobosco, B. Norman och S. Östlund, "Modelling of forming and densification of fibre mats in twin-wire formers," Nordic Pulp & Paper Research Journal, vol. 20, no. 1, s. 16-23, 2005.
[53]
C. Barbier, P.-L. Larsson och S. Östlund, "Numerical investigation of folding of coated papers," Composite structures, vol. 67, no. 4, s. 383-394, 2005.
[54]
C. Barbier, P.-L. Larsson och S. Östlund, "On dynamic effects at folding of coated papers," Composite structures, vol. 67, no. 4, s. 395-402, 2005.
[55]
C. Barbier et al., "On material characterization of paper coating materials by microindentation testing," Journal of Coatings Technology Research, vol. 2, no. 6, s. 463-471, 2005.
[56]
M. Östlund et al., "Residual stresses in paperboard through the manufacturing process," Journal of Pulp and Paper Science (JPPS), vol. 31, no. 4, s. 197-201, 2005.
[57]
M. Östlund et al., "The influence of drying conditions on residual stress build-up in paperboard," Journal of Pulp and Paper Science (JPPS), vol. 30, no. 11, s. 312-316, 2004.
[58]
M. Östlund et al., "The influence of drying restraints and beating degree on residual stress build-up in paperboard," Journal of Pulp and Paper Science (JPPS), vol. 30, no. 11, s. 289-293, 2004.
[59]
K.-F. Berggren et al., "An International Initiative for Reforming Engineering Education," World Transactions on Engineering and Technology Education, vol. 2, no. 1, s. 49-52, 2003.
[60]
P. Makela och S. Östlund, "Orthotropic elastic-plastic material model for paper materials," International Journal of Solids and Structures, vol. 40, no. 21, s. 5599-5620, 2003.
[61]
J. Bankel et al., "The CDIO syllabus: a comparative study of expected student proficiency," European Journal of Engineering Education, vol. 28, no. 3, s. 297-315, 2003.
[62]
J. Alfthan, P. Gudmundson och S. Östlund, "A micromechanical model for mechanosorptive creep in paper," Journal of Pulp and Paper Science (JPPS), vol. 28, no. 3, s. 98-104, 2002.
[63]
C. Barbier, P.-L. Larsson och S. Östlund, "Experimental investigation of damage at folding of coated papers," Nordic Pulp & Paper Research Journal, vol. 17, no. 1, s. 34-38, 2002.
[64]
E. K. Gamstedt och S. Östlund, "Fatigue propagation of fibre-bridged cracks in unidirectional polymer-matrix composites," Applied Composite Materials, vol. 8, no. 6, s. 385-410, 2001.
[65]
N. Stenberg, C. Fellers och S. Östlund, "Measuring the stress-strain properties of paperboard in the thickness direction," Journal of Pulp and Paper Science (JPPS), vol. 27, no. 6, s. 213-221, 2001.
[66]
N. Stenberg, C. Fellers och S. Östlund, "Plasticity in the thickness direction of paperboard under combined shear and normal loading," Journal of engineering materials and technology, vol. 123, no. 2, s. 184-190, 2001.
[67]
S. Östlund och P. Karenlampi, "Structural geometry effect on the size-scaling of strength," International Journal of Fracture, vol. 109, no. 2, s. 141-151, 2001.
[68]
M. Stehr och S. Östlund, "An investigation of the crack tendency on wood surfaces after different machining operations," Holzforschung, vol. 54, no. 4, s. 427-436, 2000.
[69]
J. O. Lif, S. Östlund och C. Fellers, "Applicability of Anisotropic Viscoelasticity of Paper at Small Deformations," Mechanics of time-dependant materials, vol. 2, no. 3, s. 245-267, 1999.
[70]
S. Östlund, K. Niskanen och P. Kärenlampi, "On the prediction of the strength of paper structures with a flaw," Journal of Pulp and Paper Science (JPPS), vol. 25, no. 10, s. 356-360, 1999.
[71]
A. Trädegård, F. Nilsson och S. Östlund, "FEM-remeshing technique applied to crack growth problems," Computer Methods in Applied Mechanics and Engineering, vol. 160, no. 1-2, s. 115-131, 1998.
[72]
A. Trädegård, F. Nilsson och S. Östlund, "J-Q characterization of propagating cracks," International Journal of Fracture, vol. 94, no. 4, s. 357-370, 1998.
[73]
A. Trädegård, F. Nilsson och S. Östlund, "J-Q characterization of propagating cracks by FEM-remeshing," Computational Mechanics, vol. 20, no. 1-2, s. 181-185, 1997.
[74]
S. Östlund, "Fracture modelling of brittle-matrix composites with spatially dependent crack bridging," Fatigue & Fracture of Engineering Materials & Structures, vol. 18, no. 10, s. 1213-1230, 1995.
[75]
A. Jangmalm och S. Östlund, "Modelling of curled fibres in two-dimensional networks," Nordic Pulp & Paper Research Journal, vol. 10, no. 3, s. 156-161, 1995.
[76]
S. Östlund och F. Nilsson, "Cohesive modelling of process regions for cracks in linear elastic structures-fundamental aspects," Fatigue & Fracture of Engineering Materials & Structures, vol. 16, no. 2, s. 215-235, 1993.
[77]
S. Östlund och F. Nilsson, "Cohesive zone modelling of damage at the tip of cracks in slender beam structures," Fatigue & Fracture of Engineering Materials & Structures, vol. 16, no. 6, s. 663-676, 1993.
[78]
P. Gudmundson och S. Östlund, "First Order Analysis of Stiffness Reduction Due to Matrix Cracking.," Journal of composite materials, vol. 26, no. 7, s. 1009-1030, 1992.
[79]
P. Gudmundson och S. Östlund, "Numerical verification of a procedure for calculation of elastic-constants in microcracking composite laminates.," Journal of composite materials, vol. 26, no. 17, s. 2480-2492, 1992.
[80]
S. Östlund och P. Gudmundson, "Numerical-Analysis Of Matrix-Crack-Induced Delaminations In [+/-55-Degrees] Gfrp Laminates.," COMPOSITES ENGINEERING 2, vol. 2, no. 3, s. 161-175, 1992.
[81]
P. Gudmundson och S. Östlund, "Prediction Of Thermoelastic Properties Of Composite Laminates With Matrix Cracks.," Composites Science And Technology, vol. 44, no. 2, s. 95-105, 1992.
[82]
S. Östlund, "Large scale yielding for dynamic crack growth in a strip geometry," International Journal of Fracture, vol. 49, no. 3, s. 219-237, 1991.
[83]
S. Östlund, "On numerical modeling and fracture criteria of dynamic elastic-viscoplastic crack growth," International Journal of Fracture, vol. 44, no. 4, s. 283-299, 1990.
[84]
P. Gudmundson och S. Östlund, "Stress Singularity At The Free-Surface Of A Dynamically Growing Crack.," Journal of applied mechanics, vol. 57, no. 1, s. 112-116, 1990.
[85]
S. Östlund och P. Gudmundson, "Asymptotic crack tip fields for dynamic fracture of linear strain-hardening solids," International Journal of Solids and Structures, vol. 24, no. 11, s. 1141-1158, 1988.
[86]
S. Östlund och P. Gudmundson, "The Application Of Moving Finite-Elements For The Study Of Crack-Propagation In Linear Elastic Solids.," Computers & structures, vol. 25, no. 5, s. 765-774, 1987.
Konferensbidrag
[87]
G. Marin, M. Nygårds och S. Östlund, "Relations Between Material Properties And Performance Of Paperboard Packages," i TAPPICon 2023 : "Rock the Roll: Unleashing the Harmonies of the Paper Industry", 2023.
[88]
V. Tojaga et al., "Staggered Scheme For Fracture Of Beam Structures With Embedded Strong Discontinuities," i COMPLAS 2021 - 16th International Conference on Computational Plasticity : Fundamentals and Applications, 2021.
[89]
G. Marin, M. Nygårds och S. Östlund, "Stiffness and strength properties of five paperboards and their moisture dependency," i Proceedings of the 2019 International Paper Physics Conference, 2019.
[90]
A. Hagman et al., "Experimental and numerical verification of 3D-forming," i ADVANCES INPULP AND PAPERRESEARCH,OXFORD 2017 : Transactions of the 16th Fundamental Research Symposium, Pembroke College, Oxford, England, September 3-8, 2017, 2017, s. 3-26.
[91]
S. Östlund, "Three-Dimensional Deformation and Damage Mechanisms in Forming of Advanced Structures in Paper," i ADVANCES INPULP AND PAPERRESEARCH,OXFORD 2017 : Transactions of the 16th Fundamental Research Symposium, Pembroke College, Oxford, England, September 2017, 2017, s. 489-594.
[92]
O. Girlanda et al., "Modeling and experimental validation of the mechanical behavior of pressboard," i Proceedings of the 2014 Electrical Insulation Conference, 2014, s. 203-207.
[93]
O. Girlanda et al., "Characterization and Modelling of the Mechanical Properties of Pressboard," i 2013 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2013, s. 563-566.
[94]
M. S. Magnusson et al., "Interfibre joint strength under peeling, shearing and tearing types of loading," i Advances in Pulp and Paper Research, Cambridge 2013 : Transactions of the 15th Fundamental ResearchSymposium, 2013, s. 103-124.
[95]
U. Hirn et al., "The Area of Molecular Contact in Fiber-Fiber Bonds," i Advances in Pulp and Paper Reserach, Cambridge 2013 : Transactions of the 15th Fundamental Research Symposium, 2013, s. 201-223.
[96]
M. Nygårds, C. Fellers och S. Östlund, "DEVELOPMENT OF THE NOTCHED SHEAR TEST," i ADVANCES IN PULP AND PAPER RESEARCH, OXFORD 2009, VOLS 1-3, 2009, s. 877-897.
[97]
S. Östlund et al., "Continuous improvement of a CDIO program using management by means," i Proceedings of the 3rd International CDIO Conference, 2007.
[98]
J. Malmqvist, S. Östlund och K. Edström, "Integrated program descriptions : A tool for communicating goals and design of CDIO programs," i Proceedings of the 2nd International CDIO Conference, 2006.
[99]
E. F. Crawley et al., "Curriculum Design based on the CDIO Syllabus," i 8TH UICEE ANNUAL CONFERENCE ON ENGINEERING EDUCATION, CONFERENCE PROCEEDINGS : BRINGING ENGINEERING EDUCATORS TOGETHER, 2005, s. 313-317.
[100]
M. Östlund, P. Mäkelä och S. Östlund, "The influence of through-thickness variation on the mechanics of paper drying," i ADVANCES IN PAPER SCIENCE AND TECHNOLOGY : TRANSACTIONS OF THE 13TH FUNDAMENTAL RESEARCH SYMPOSIUM, VOLS 1-3, 2005, s. 213-240.
[101]
J. Malmqvist et al., "Use of CDIO Standards in Swedish National Evaluation of Engineering Education Programs," i Proceedings of the 1st International CDIO Conference, 2005, s. 134-137.
[102]
C. Barbier et al., "Folding of Printed Papers: Experiments and Numerical Analysis," i Preprints of the 2003 International Paper Physics Conference, 2003, s. 193-196.
Kapitel i böcker
[103]
S. Östlund och P. Mäkelä, "Fracture properties," i Mechanics of Paper Products, Kaarlo Niskanen red., 1. uppl. Berlin : Walter de Gruyter GmbH & Co. KG, 2011, s. 67-89.
[104]
M. Nygårds och S. Östlund, "Mathematical modelling and analysis of converting and end-use," i Pulp and Paper Chemistry and Technology : Volume 4: Paper Products Physics and Technology, Monica Ek, Göran Gellerstedt, Gunnar Henriksson red., 1. uppl. Berlin : Walter de Gruyter GmbH & Co. KG, 2009, s. 315-334.
[105]
K. Edström, S. Gunnarsson och S. Östlund, "Integrated Curriculum Design," i Rethinking Engineering Education: The CDIO Approach, Crawley, E.F., Malmqvist, J., Östlund, S., & Brodeur, D.R. red., : Springer, 2007.
Icke refereegranskade
Artiklar
[106]
P. A. Larsson et al., "Ductile and thermoplastic cellulose with novel application and design opportunities," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
Konferensbidrag
[107]
E. Linvill och S. Östlund, "Biaxial (In-Plane) Failure and Yield of Paperboard," i Progress in Paper Physics Seminar 2016, 22-26 September, 2016, Darmstadt, Germany, 2016.
[108]
S. Östlund, E. Linvill och M. Wallmeier, "Continuum Modeling of Wrinkles and Explicit FEM Modeling of Paperboard Deep-Drawing," i 2016 Progress in Paper Physics Seminars, 2016.
[109]
E. Linvill och S. Östlund, "Explicit Finite Element Simulation of 3D Forming Processes for Paperboard," i Verarbeitungsmaschinen und Verpackungstechnik 2015,March 12-13, 2015, TU Dresden, Germany, 2015.
[110]
D. Tjahjanto et al., "Constitutive model for high-density cellulose-based materials," i Proceedings of 27th Nordic Seminar on Computational Mechanics, 2014.
[111]
H. Huang, M. Nygårds och S. Östlund, "Numerical analysis and experiments for increased understanding of cartonboard creasing and folding," i Verarbeitungsmaschinen und Verpackungstechnik 2012, 2012, s. 295-313.
[112]
S. Östlund och M. Nygårds, "Through-thickness mechanical testing and computational modelling of paper and board for efficient materials design," i Hannu Paulapuro Symposium, March 20, 2009, Esbo, Finland, 2009, s. 69-82.
[113]
A. Jamialahmadi, T. Trost och S. Östlund, "Dynamic performance of corrugated boxes," i Proceedings of the 16th IAPRI World Conference on Packaging, 2008.
[114]
P. Isaksson, P. Gradin och S. Östlund, "A simplified treatise of the Scott-bond testing method," i 2007 International Paper Physics Conference, 2007, s. 1-6.
[115]
P. Mäkelä och S. Östlund, "Cohesive crack modelling of paper materials," i Proceedings of the 2007 International Paper Physics Conference, 2007, s. 357-364.
[116]
J. Lundblad, L. Kari och S. Östlund, "Integrating CDIO experiences into a new program environment," i Proceedings of 3rd International CDIO Conference, 2007.
[117]
G. Meng, T. Trost och S. Östlund, "Stacking misalignment of corrugated boxes - a preliminary study," i Proceedings of the 23rd IAPRI Symposium on Packaging, 2007.
Böcker
[118]
E. F. Crawley et al., Rethinking engineering education : The CDIO approach, second edition. Springer, 2014.
Kapitel i böcker
[119]
S. Östlund och P. Mäkelä, "Fracture properties," i Mechanics of Paper Products, : Walter de Gruyter GmbH, 2021, s. 77-103.
[120]
K. Niskanen och S. Östlund, "The challenge," i Mechanics of Paper Products, : Walter de Gruyter GmbH, 2021, s. 1-3.
Rapporter
[121]
E. Linvill, M. Wallmeier och S. Östlund, "A Constitutive Model for Paperboard Including Wrinkle Prediction and Post-Wrinkle Behavior Applied to Deep Drawing," Stockholm : KTH Royal Institute of Technology, TRITA-HFL. Rapport/ Institutionen för hållfasthetslära, KTH, 606, 2017.
[122]
E. Linvill, P. Larsson och S. Östlund, "Advanced Three-Dimensional Paper Structures : Mechanical Characterization and Forming of Sheets Made from Modied Cellulose Fibers," Stockholm : KTH Royal Institute of Technology, TRITA-HFL. Rapport/ Institutionen för hållfasthetslära, KTH, 607, 2017.
Samlingsverk (redaktörskap)
[123]
"Mechanics of paper products," , Walter de Gruyter GmbH, 2021.
[124]
"Rethinking Engineering Education : The CDIO Approach," 1. uppl. , Springer, 2007.
Övriga
[125]
[126]
N. Asta et al., "Influence of density and chemical additives on paper mechanical properties," (Manuskript).
[127]
E. Jungstedt et al., "Mechanical behavior of all-lignocellulose composites — comparing micro- and nanoscale fibers using strain field data and FEM updating," (Manuskript).
[128]
Senaste synkning med DiVA:
2024-11-19 00:18:14