Hoppa till huvudinnehållet
Till KTH:s startsida

Publikationer av Pär Olsson

Refereegranskade

Artiklar

[1]
E. Mansouri och P. Olsson, "First-principles predictions of structural and magnetic phase stability in irradiated α -Fe," Materials Research Letters, vol. 12, no. 7, s. 477-483, 2024.
[2]
E. Mansouri och P. Olsson, "Modeling of irradiation-induced microstructure evolution in Fe: Impact of Frenkel pair distribution," Computational materials science, vol. 236, 2024.
[6]
M. Lindroos et al., "Micromechanical modeling of single crystal and polycrystalline UO2 at elevated temperatures," Journal of Nuclear Materials, vol. 573, s. 154127, 2023.
[10]
D. R. Costa et al., "Coated ZrN sphere-UO2 composites as surrogates for UN-UO2 accident tolerant fuels," Journal of Nuclear Materials, vol. 567, s. 153845, 2022.
[12]
Q. Yang et al., "Cu precipitation in electron-irradiated iron alloys for spent-fuel canisters," Journal of Nuclear Materials, vol. 572, 2022.
[13]
D. Bathellier et al., "Effect of cationic chemical disorder on defect formation energies in uranium-plutonium mixed oxides," Journal of Applied Physics, vol. 132, no. 17, s. 175103, 2022.
[14]
[16]
E. Toijer, P. A. T. Olsson och P. Olsson, "Ab initio modelling of intergranular fracture of nickel containing phosphorus : Interfacial excess properties," Nuclear Materials and Energy, vol. 28, 2021.
[17]
H. Liu et al., "Accommodation and diffusion of Nd in uranium silicide - U3Si2," Journal of Nuclear Materials, vol. 547, 2021.
[19]
Q. Yang och P. Olsson, "Full energy range primary radiation damage model," Physical Review Materials, vol. 5, no. 7, 2021.
[22]
L. Malerba, P. Olsson och J. Zhao, "Multiscale modelling for fusion and fission materials : The M4F project," Nuclear Materials and Energy, vol. 29, s. 101051, 2021.
[24]
[26]
L. G. Gonzalez Fonseca et al., "Application of SPS in the fabrication of UN and (U,Th)N pellets from microspheres," Journal of Nuclear Materials, vol. 536, 2020.
[28]
D. R. Costa et al., "UN microspheres embedded in UO2 matrix : An innovative accident tolerant fuel," Journal of Nuclear Materials, vol. 540, 2020.
[29]
H. Liu et al., "Choosing the correct strong correlation correction for U3Si2 : Influence of magnetism," Journal of Nuclear Materials, vol. 527, 2019.
[30]
[31]
C. S. Becquart et al., "A DFT study of the stability of SIAs and small SIA clusters in the vicinity of solute atoms in Fe," Journal of Nuclear Materials, vol. 500, s. 92-109, 2018.
[33]
A. Bakaev et al., "Effect of isotropic stress on dislocation bias factor in bcc iron : an atomistic study," Philosophical Magazine, vol. 98, no. 1, s. 54-74, 2018.
[34]
S. Middleburgh et al., "Solution of hydrogen in accident tolerant fuel candidate material : U3Si2," Journal of Nuclear Materials, vol. 501, s. 234-237, 2018.
[35]
G. Bonny et al., "Density functional theory-based cluster expansion to simulate thermal annealing in FeCrW alloys," Philosophical Magazine, vol. 97, no. 5, s. 299-317, 2017.
[37]
G. Bonny et al., "Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels," Journal of Nuclear Materials, vol. 484, s. 42-50, 2017.
[39]
M. Chiapetto et al., "Nanostructure evolution of neutron-irradiated reactor pressure vessel steels: Revised Object kinetic Monte Carlo model," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol. 393, s. 105-109, 2017.
[40]
T. Schuler et al., "Transport properties of C and O in UN fuels," Physical Review B, vol. 95, no. 9, 2017.
[41]
P. Olsson, C. S. Becquart och C. Domain, "Ab initio threshold displacement energies in iron," Materials Research Letters, vol. 4, no. 4, s. 219-225, 2016.
[42]
D. A. Lopes, A. Claisse och P. Olsson, "Ab-initio study of C and O impurities in uranium nitride," Journal of Nuclear Materials, vol. 478, s. 112-118, 2016.
[43]
L. Messina et al., "An object kinetic Monte Carlo model for the microstructure evolution of neutron-irradiated reactor pressure vessel steels," Physica Status Solidi (a) applications and materials science, vol. 213, no. 11, s. 2974-2980, 2016.
[47]
A. Claisse et al., "Transport properties in dilute UN(X) solid solutions (X = Xe, Kr)," Physical Review B, vol. 94, no. 17, 2016.
[48]
Z. Chang et al., "Anomalous bias factors of dislocations in bcc iron," Journal of Nuclear Materials, vol. 461, s. 221-229, 2015.
[49]
Z. Chang et al., "Assessment of the dislocation bias in fcc metals and extrapolation to austenitic steels," Journal of Nuclear Materials, vol. 465, 2015.
[50]
J. Ejenstam et al., "Microstructural stability of Fe–Cr–Al alloys at 450–550 °C," Journal of Nuclear Materials, vol. 457, s. 291-297, 2015.
[51]
N. Sandberg et al., "Modeling of the magnetic free energy of self-diffusion in bcc Fe," Physical Review B. Condensed Matter and Materials Physics, vol. 92, no. 18, 2015.
[52]
L. Messina, L. Malerba och P. Olsson, "Stability and mobility of small vacancy-solute complexes in Fe-MnNi and dilute Fe-X alloys : A kinetic Monte Carlo study," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol. 352, s. 61-66, 2015.
[53]
C. Roedl et al., "Wurtzite silicon as a potential absorber in photovoltaics : Tailoring the optical absorption by applying strain," Physical Review B. Condensed Matter and Materials Physics, vol. 92, no. 4, 2015.
[54]
L. Messina et al., "Exact ab initio transport coefficients in bcc Fe-X (X=Cr, Cu, Mn, Ni, P, Si) dilute alloys," Physical Review B. Condensed Matter and Materials Physics, vol. 90, no. 10, s. 104203, 2014.
[55]
J. B. Piochaud et al., "First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy," Physical Review B. Condensed Matter and Materials Physics, vol. 89, no. 2, s. 024101, 2014.
[56]
Z. Chang et al., "Multiscale calculation of dislocation bias in fcc Ni and bcc Fe model lattices," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, 2014.
[57]
D. Costa et al., "Vacancy migration energy dependence on local chemical environment in Fe-Cr alloys : A Density Functional Theory study," Journal of Nuclear Materials, vol. 452, no. 1-3, s. 425-433, 2014.
[58]
L. Messina, Z. Chang och P. Olsson, "Ab initio modelling of vacancy-solute dragging in dilute irradiated iron-based alloys," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol. 303, s. 28-32, 2013.
[59]
Z. Chang et al., "Dislocation bias factors in fcc copper derived from atomistic calculations," Journal of Nuclear Materials, vol. 441, no. 1-3, s. 357-363, 2013.
[60]
A. Claisse och P. Olsson, "First-principles calculations of (Y, Ti, O) cluster formation in body centred cubic iron-chromium," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol. 303, s. 18-22, 2013.
[61]
M. Pukari, P. Olsson och N. Sandberg, "He, Kr and Xe diffusion in ZrN : An atomic scale study," Journal of Nuclear Materials, vol. 438, no. 1/3, s. 7-14, 2013.
[62]
P. Olsson, J. Vidal och D. Lincot, "Ab initio study of II-(VI)(2) dichalcogenides," Journal of Physics : Condensed Matter, vol. 23, no. 40, s. 405801, 2011.
[63]
D. Terentyev et al., "Further development of large-scale atomistic modelling techniques for Fe-Cr alloys," Journal of Nuclear Materials, vol. 409, no. 2, s. 167-175, 2011.
[65]
C. J. Ortiz et al., "Simulation of defect evolution in electron-irradiated dilute FeCr alloys," Journal of Nuclear Materials, vol. 417, no. 1-3, s. 1078-1081, 2011.
[66]
L. Malerba et al., "Ab initio calculations and interatomic potentials for iron and iron alloys : Achievements within the Perfect Project," Journal of Nuclear Materials, vol. 406, no. 1, s. 7-18, 2010.
[67]
P. Olsson, T. P. C. Klaver och C. Domain, "Ab initio study of solute transition-metal interactions with point defects in bcc Fe," Physical Review B. Condensed Matter and Materials Physics, vol. 81, no. 5, s. 054102, 2010.
[68]
T. P. C. Klaver et al., "Benchmarking FeCr empirical potentials against density functional theory data," Modelling and Simulation in Materials Science and Engineering, vol. 18, no. 7, s. 075004, 2010.
[69]
L. Malerba et al., "Comparison of empirical interatomic potentials for iron applied to radiation damage studies," Journal of Nuclear Materials, vol. 406, no. 1, s. 19-38, 2010.
[71]
F. Djurabekova et al., "Kinetics versus thermodynamics in materials modeling : The case of the di-vacancy in iron," Philosophical Magazine, vol. 90, no. 19, s. 2585-2595, 2010.
[73]
P. Olsson, "Ab initio study of interstitial migration in Fe-Cr alloys," Journal of Nuclear Materials, vol. 386-88, no. C, s. 86-89, 2009.
[74]
D. Terentyev och P. Olsson, "Aspects Of Radiation Damage Effects In Fe-Cr Alloys From The Point Of View Of Atomistic Modeling," PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, no. 4, s. 68-79, 2009.
[75]
D. Terentyev, P. Olsson och L. Malerba, "Diffusion of 3D-migrating self-interstitial clusters in diluted and concentrated Fe-Cr alloys," Journal of Nuclear Materials, vol. 386-88, no. C, s. 140-142, 2009.
[76]
P. Olsson, C. Domain och J.-F. Guillemoles, "Ferromagnetic Compounds for High Efficiency Photovoltaic Conversion : The Case of AlP:Cr," Physical Review Letters, vol. 102, no. 22, s. 227204, 2009.
[78]
D. J. Hepburn, G. J. Ackland och P. Olsson, "Rescaled potentials for transition metal solutes in α-iron," Philosophical Magazine, vol. 89, s. 3393-3411, 2009.
[79]
C. Pareige, C. Domain och P. Olsson, "Short- and long-range orders in Fe-Cr : A Monte Carlo study," Journal of Applied Physics, vol. 106, no. 10, 2009.
[80]
D. Terentyev et al., "Formation of stable sessile interstitial complexes in reactions between glissile dislocation loops in bcc Fe," Journal of Nuclear Materials, vol. 382, no. 2-3, s. 126-133, 2008.
[82]
D. A. Terentyev et al., "Self-trapped interstitial-type defects in iron," Physical Review Letters, vol. 100, no. 14, 2008.
[83]
C. Björkas et al., "Simulation of displacement cascades in Fe90Cr10 using a two band model potential," Journal of Nuclear Materials, vol. 372, no. 2-3, s. 312-317, 2008.
[84]
J. Rousset et al., "Structure and Optoelectronics of Electrodeposited Cadmium Ditelluride (CdTe(2))," Chemistry of Materials, vol. 20, no. 20, s. 6550-6555, 2008.
[85]
P. Olsson, C. Domain och J. Wallenius, "Ab initio study of Cr interactions with point defects in bcc Fe," Physical Review B. Condensed Matter and Materials Physics, vol. 75, no. 1, s. 014110, 2007.
[87]
T. P. C. Klaver, P. Olsson och M. W. Finnis, "Interstitials in FeCr alloys studied by density functional theory," Physical Review B. Condensed Matter and Materials Physics, vol. 76, no. 21, s. 214110, 2007.
[88]
J. Wallenius et al., "Simulation of thermal ageing and radiation damage in Fe-Cr," Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms, vol. 255, no. 1, s. 68-74, 2007.
[89]
D. A. Terentyev et al., "Displacement cascades in Fe-Cr : A molecular dynamics study," Journal of Nuclear Materials, vol. 349, no. 1-2, s. 119-132, 2006.
[90]
D. Terentyev et al., "Effect of the interatomic potential on the features of displacement cascades in alpha-Fe : A molecular dynamics study," Journal of Nuclear Materials, vol. 351, no. 03-jan, s. 65-77, 2006.
[91]
P. Olsson, I. A. Abrikosov och J. Wallenius, "Electronic origin of the anomalous stability of Fe-rich bcc Fe-Cr alloys," Physical Review B. Condensed Matter and Materials Physics, vol. 73, no. 10, s. 104416, 2006.
[92]
A. E. Kissavos et al., "Total energy calculations for systems with magnetic and chemical disorder," Computational materials science, vol. 35, no. 1, s. 1-5, 2006.
[93]
P. Olsson et al., "Two-band modeling of alpha-prime phase formation in Fe-Cr," Physical Review B. Condensed Matter and Materials Physics, vol. 72, no. 21, s. 1-6, 2005.
[94]
J. Wallenius et al., "Development of an EAM potential for simulation of radiation damage in Fe-Cr alloys," Journal of Nuclear Materials, vol. 329-33, s. 1175-1179, 2004.
[95]
J. Wallenius et al., "Modeling of chromium precipitation in Fe-Cr alloys," Physical Review B Condensed Matter, vol. 69, s. 094103, 2004.
[96]
L. Malerba et al., "Molecular dynamics simulation of displacement cascades in Fe-Cr alloys," Journal of Nuclear Materials, vol. 329-33, s. 1156-1160, 2004.
[97]
P. Olsson et al., "Ab initio formation energies of Fe-Cr alloys," Journal of Nuclear Materials, vol. 321, no. 1, s. 84-90, 2003.

Konferensbidrag

[98]
D. R. Costa et al., "Coated UN microspheres embedded in UO2 matrix as an innovative advanced technology fuel: Early progress," i TopFuel 2021 Light Water Reactor Fuel Performance Conference, Santander, Spain, October 24-28, 2021., 2021.
[99]
P. Olsson och L. Malerba, "Radiation response in FeCr alloys : The state-of- The- Art," i 2014 Annual Meeting on Transactions of the American Nuclear Society and Embedded Topical Meeting: Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors, NSFM 2014, 15 June 2014 through 19 June 2014, Reno, NV, 2014, s. 975-976.
[100]
Z. Chang et al., "Interaction Energy Calculations of Edge Dislocation with Point Defects in FCC Cu," i International Conference on Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), 2013.
[101]
F. Nouchy, A. Claisse och P. Olsson, "Carbon Effect on Thermal Ageing Simulations in Ferrite Steels," i Actinides And Nuclear Energy Materials, 2012, s. 49-55.
[102]
I. A. Abrikosov, P. Olsson och A. V. Ponomareva, "Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys : Ab initio modeling," i MATERIALS ISSUES FOR GENERATION IV SYSTEMS : STATUS, OPEN QUESTIONS AND CHALLENGES, 2008, s. 153-168.
[103]
L. Malerba et al., "Modelling of Radiation Damage in Fe-Cr Alloys," i EFFECTS OF RADIATION ON MATERIALS : 23RD INTERNATIONAL SYMPOSIUM, 2008, s. 159-176.
[104]
J. Wallenius, P. Olsson och C. Lagerstedt, "Relation between thermal expansion and interstitial formation energy in Fe and Cr," i NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, s. 122-125.

Icke refereegranskade

Övriga

[109]
[112]
A. Claisse, D. Adorno Lopes och P. Olsson, "Investigation of the ground- and metastable states of AnN (An=Th..Pu)," (Manuskript).
[116]
T. Schuler et al., "Transport properties of C and O in UN fuels," (Manuskript).
Senaste synkning med DiVA:
2024-12-22 04:24:14