Hoppa till huvudinnehållet
Till KTH:s startsida Till KTH:s startsida

Publikationer av Jiantong Li

Refereegranskade

Artiklar

[2]
V. Mishukova et al., "Microsupercapacitors Working at 250 °C," Batteries & Supercaps, 2023.
[4]
K. Jiang et al., "Covalent Triazine Frameworks and Porous Carbons : Perspective from an Azulene-Based Case," Macromolecular rapid communications, vol. 43, no. 20, 2022.
[5]
Z. Li et al., "Inkjet Printed Disposable High-Rate On-Paper Microsupercapacitors," Advanced Functional Materials, vol. 32, no. 1, s. 2108773, 2022.
[6]
H. Xue et al., "Ocean wave energy generator based on graphene/TiO2 nanoparticle composite films†," Nanoscale Advances, vol. 4, no. 6, s. 1533-1537, 2022.
[7]
T. Yu et al., "Catechol-Coordinated Framework Film-based Micro-Supercapacitors with AC Line Filtering Performance," Chemistry - A European Journal, vol. 27, no. 20, s. 6340-6347, 2021.
[9]
C. Chen et al., "Mass Transport Behaviors in Graphene and Polyaniline Heterostructure-Based Microsupercapacitors," Advanced energy and sustainability research, vol. 2, no. 5, 2021.
[10]
J. Huang et al., "Perovskite oxide and polyazulene–based heterostructure for high–performance supercapacitors," Journal of Applied Polymer Science, vol. 138, no. 41, 2021.
[12]
[14]
Y. Zhou et al., "Versatile Functionalization of Carbon Nanomaterials by Ferrate(VI)," Nano-Micro Letters, vol. 12, no. 1, 2020.
[16]
S. S. Delekta, M. Östling och J. Li, "Wet Transfer of Inkjet Printed Graphene for Microsupercapacitors on Arbitrary Substrates," ACS Applied Energy Materials, vol. 2, no. 1, s. 158-163, 2019.
[17]
P. Loiko et al., "Inkjet-printing of graphene saturable absorbers for similar to 2 mu m bulk and waveguide lasers," Optical Materials Express, vol. 8, no. 9, s. 2803-2814, 2018.
[18]
S. S. Delekta et al., "Inkjet printed highly transparent and flexible graphene micro-supercapacitors," Nanoscale, vol. 9, no. 21, s. 6998-7005, 2017.
[20]
J. Li, V. Mishukova och M. Östling, "All-solid-state micro-supercapacitors based on inkjet printed graphene electrodes," Applied Physics Letters, vol. 109, no. 12, 2016.
[21]
G. Lobov et al., "Dynamic Manipulation of Optical Anisotropy of Suspended Poly-3-hexylthiophene Nanofibers," Advanced Optical Materials, vol. 4, no. 10, s. 1651-1656, 2016.
[22]
J. Li och M. Ostling, "Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses," Physica A : Statistical Mechanics and its Applications, vol. 462, s. 940-950, 2016.
[23]
G. S. Lobov et al., "Size Impact of Ordered P3HT Nanofibers on Optical Anisotropy," Macromolecular Chemistry and Physics, vol. 217, no. 9, s. 1089-1095, 2016.
[24]
J. Li och M. Östling, "Conductivity scaling in supercritical percolation of nanoparticles : not a power law," Nanoscale, vol. 7, no. 8, s. 3424-3428, 2015.
[25]
G. S. Lobov et al., "Electric field induced optical anisotropy of P3HT nanofibers in a liquid solution," Optical Materials Express, vol. 5, no. 11, s. 2642-2647, 2015.
[26]
S. K. Del et al., "Optimizing the optical and electrical properties of graphene ink thin films by laser-annealing," Current Opinion in Chemical Engineering, vol. 2, no. 1, 2015.
[27]
J. Li och M. Östling, "Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics," Electronics, vol. 4, no. 4, s. 1033-1061, 2015.
[28]
J. Li, M. C. Lemme och M. Östling, "Inkjet Printing of 2D Layered Materials," ChemPhysChem, vol. 15, no. 16, s. 3427-3434, 2014.
[29]
J. Li et al., "Inkjet Printing of MoS2," Advanced Functional Materials, vol. 24, no. 41, s. 6524-6531, 2014.
[30]
J. Li et al., "Efficient inkjet printing of graphene," Advanced Materials, vol. 25, no. 29, s. 3985-3992, 2013.
[31]
J. Li och M. Östling, "Percolation thresholds of two-dimensional continuum systems of rectangles," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 88, no. 1, s. 012101, 2013.
[32]
J. Li och M. Östling, "Prevention of graphene restacking for performance boost of supercapacitors-a review," Crystals, vol. 3, no. 1, s. 163-190, 2013.
[33]
J. Li et al., "A simple route towards high-concentration surfactant-free graphene dispersions," Carbon, vol. 50, no. 8, s. 3113-3116, 2012.
[34]
J. Li och M. Östling, "Corrected finite-size scaling in percolation," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 86, no. 4, s. 040105, 2012.
[35]
J. Li et al., "Threshold of hierarchical percolating systems," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, vol. 85, no. 2, s. 021109, 2012.
[36]
J. Li et al., "Ink-jet printed thin-film transistors with carbon nanotube channels shaped in long strips," Journal of Applied Physics, vol. 109, no. 8, 2011.
[37]
Z. Liu et al., "On gate capacitance of nanotube networks," IEEE Electron Device Letter, vol. 32, no. 5, s. 641-643, 2011.
[38]
M. Qu et al., "Charge-Injection-Induced Time Decay in Carbon Nanotube Network-Based FETs," IEEE Electron Device Letters, vol. 31, no. 10, s. 1098-1100, 2010.
[39]
J. Li och S.-L. Zhang, "Conductivity exponents in stick percolation," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics : Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 81, no. 021120, 2010.
[40]
[41]
J. Li och S.-L. Zhang, "Finite-size scaling in stick percolation," Physical Review E. Statistical, Nonlinear, and Soft Matter Physics : Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, vol. 80, no. 4, 2009.
[42]
Z. Zhang et al., "Photo-Activated Interaction Between P3HT and Single-Walled Carbon Nanotubes Studied by Means of Field-Effect Response," IEEE Electron Device Letters, vol. 30, no. 12, s. 1302-1304, 2009.
[43]
J. Li och S.-L. Zhang, "Understanding doping effects in biosensing using carbon nanotube network field-effect transistors," Physical Review B. Condensed Matter and Materials Physics, vol. 79, no. 155434, 2009.
[44]
J. Li et al., "Contact-electrode insensitive rectifiers based on carbon nanotube network transistors," IEEE Electron Device Letters, vol. 29, no. 5, s. 500-502, 2008.
[47]
J. Li, Z. Zhang och S.-L. Zhang, "Percolation in random networks of heterogeneous nanotubes," Applied Physics Letters, vol. 91, no. 253127, 2007.

Konferensbidrag

[48]
P. Loiko et al., "Inkjet-Printing of Graphene Saturable Absorbers for similar to 2 mu m Bulk and Waveguide Lasers," i 2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017.
[49]
P. Loiko et al., "Inkjet-printing of graphene saturable absorbers for ~2 μm bulk and waveguide lasers," i Optics InfoBase Conference Papers, 2017.
[50]
M. Östling et al., "Emerging graphene device technologies," i Emerging Nanomaterials and Devices, 2016, s. 17-35.
[51]
G. S. Lobov et al., "Electro-optical response of P3HT nanofibers in liquid solution," i Asia Communications and Photonics Conference, ACPC 2015, 2015.
[52]
G. Lobov et al., "Optical birefringence from P3HT nanofibers in alternating electric field," i Optics InfoBase Conference Papers, 2014.
[53]
M. C. Lemme et al., "Graphene for More Moore and More Than Moore applications," i IEEE Silicon Nanoelectronics Workshop, SNW, 2012, s. 6243322.

Kapitel i böcker

[54]
J. Li och M. Östling, "Photodetectors Based on Emerging Materials," i Springer Handbook of Semiconductor Devices, Massimo Rudan, Rossella Brunetti, Susanna Reggiani red., : Springer Nature, 2023, s. 777-805.
Senaste synkning med DiVA:
2024-05-10 01:05:15