Hoppa till huvudinnehållet
Till KTH:s startsida

Publikationer av Jakob Wohlert

Refereegranskade

Artiklar

[1]
N. K. Karna et al., "Capillary forces exerted by a water bridge on cellulose nanocrystals : the effect of an external electric field," Physical Chemistry, Chemical Physics - PCCP, vol. 25, no. 8, s. 6326-6332, 2023.
[2]
Y. Chen et al., "The thermodynamics of enhanced dope stability of cellulose solution in NaOH solution by urea," Carbohydrate Polymers, vol. 311, s. 120744, 2023.
[3]
L. Solhi et al., "Understanding Nanocellulose-Water Interactions : Turning a Detriment into an Asset," Chemical Reviews, vol. 123, no. 5, s. 1925-2015, 2023.
[4]
A. Srikanth Sridhar, L. Berglund och J. Wohlert, "Wetting of native and acetylated cellulose by water and organic liquids from atomistic simulations," Cellulose, vol. 30, no. 13, s. 8089-8106, 2023.
[5]
M. Wohlert et al., "Cellulose and the role of hydrogen bonds : not in charge of everything," Cellulose, vol. 29, no. 1, s. 1-23, 2022.
[6]
H. Mianehrow, L. Berglund och J. Wohlert, "Interface effects from moisture in nanocomposites of 2D graphene oxide in cellulose nanofiber (CNF) matrix – A molecular dynamics study," Journal of Materials Chemistry A, vol. 10, no. 4, s. 2122-2132, 2022.
[8]
P. Ramamohan, I. Furo och J. Wohlert, "Timescales for convergence in all-atom molecular dynamics simulations of hydrated amorphous xylan," Carbohydrate Polymers, vol. 286, s. 119263-119263, 2022.
[9]
P. Chen et al., "Water as an Intrinsic Structural Element in Cellulose Fibril Aggregates," The Journal of Physical Chemistry Letters, vol. 13, no. 24, s. 5424-5430, 2022.
[10]
E. Heinonen et al., "Xylan adsorption on cellulose : Preferred alignment and local surface immobilizing effect," Carbohydrate Polymers, vol. 285, s. 119221-119221, 2022.
[11]
L. Cederholm et al., "“Like Recycles Like” : Selective Ring-Closing Depolymerization of Poly(L-Lactic Acid) to L-Lactide," Angewandte Chemie International Edition, vol. 61, no. 33, 2022.
[12]
N. K. Karna et al., "Electroassisted Filtration of Microfibrillated Cellulose : Insights Gained from Experimental and Simulation Studies," Industrial & Engineering Chemistry Research, vol. 60, no. 48, s. 17663-17676, 2021.
[13]
S. Kishani et al., "Entropy drives the adsorption of xyloglucan to cellulose surfaces-A molecular dynamics study," Journal of Colloid and Interface Science, vol. 588, s. 485-493, 2021.
[14]
A. Ruda, G. Widmalm och J. Wohlert, "O-Methylation in Carbohydrates : An NMR and MD Simulation Study with Application to Methylcellulose," Journal of Physical Chemistry B, vol. 125, no. 43, s. 11967-11979, 2021.
[15]
P. Chen, Y. Nishiyama och J. Wohlert, "Quantifying the influence of dispersion interactions on the elastic properties of crystalline cellulose," Cellulose, vol. 28, no. 17, s. 10777-10786, 2021.
[16]
N. K. Karna et al., "Wettability of cellulose surfaces under the influence of an external electric field," Journal of Colloid and Interface Science, vol. 589, s. 347-355, 2021.
[17]
A. Y. Mehandzhiyski et al., "A novel supra coarse-grained model for cellulose," Cellulose, vol. 27, no. 8, s. 4221-4234, 2020.
[18]
J. Berglund et al., "Acetylation and Sugar Composition Influence the (In)Solubility of Plant beta-Mannans and Their Interaction with Cellulose Surfaces," ACS Sustainable Chemistry and Engineering, vol. 8, no. 27, s. 10027-10040, 2020.
[20]
[22]
P. Chen et al., "Quantifying Localized Macromolecular Dynamics within Hydrated Cellulose Fibril Aggregates," Macromolecules, vol. 52, no. 19, s. 7278-7288, 2019.
[26]
K. Löbmann et al., "Cellulose Nanopaper and Nanofoam for Patient-Tailored Drug Delivery," Advanced Materials Interfaces, vol. 4, no. 9, 2017.
[27]
A. Martinez-Abad et al., "Regular Motifs in Xylan Modulate Molecular Flexibility and Interactions with Cellulose Surfaces," Plant Physiology, vol. 175, no. 4, s. 1579-1592, 2017.
[28]
[30]
P. Chen et al., "Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose," Journal of Physical Chemistry B, vol. 121, no. 10, s. 2244-2251, 2017.
[32]
M. Bergenstrahle-Wohlert et al., "On the anomalous temperature dependence of cellulose aqueous solubility," Cellulose, vol. 23, no. 4, s. 2375-2387, 2016.
[34]
J. Wohlert, L. K. Tolonen och M. Bergenstråhle-Wohlert, "A simple model for cellulose solubility in supercritical water," Nordic Pulp & Paper Research Journal, vol. 30, no. 1, s. 14-19, 2015.
[36]
C. Djahedi, L. Berglund och J. Wohlert, "Molecular deformation mechanisms in cellulose allomorphs and the role of hydrogen bonds," Carbohydrate Polymers, vol. 130, s. 175-182, 2015.
[37]
J. Kapla et al., "Molecular dynamics simulations and NMR spectroscopy studies of trehalose-lipid bilayer systems," Physical Chemistry, Chemical Physics - PCCP, vol. 17, no. 34, s. 22438-22447, 2015.
[38]
Y. Wang et al., "Molecular mechanisms for the adhesion of chitin and chitosan to montmorillonite clay," RSC Advances, vol. 5, no. 67, s. 54580-54588, 2015.
[39]
L. K. Tolonen et al., "Solubility of Cellulose in Supercritical Water Studied by Molecular Dynamics Simulations," Journal of Physical Chemistry B, vol. 119, no. 13, s. 4739-4748, 2015.
[40]
A. Sjöstedt et al., "Structural changes during swelling of highly charged cellulose fibres," Cellulose, vol. 22, no. 5, s. 2943-2953, 2015.
[41]
T. A. d'Ortoli et al., "Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers," Journal of Physical Chemistry B, vol. 119, no. 30, s. 9559-9570, 2015.
[42]
M. Chen et al., "Molecular Dynamics Simulations of the Ionic Liquid 1-n-Butyl-3-Methylimidazolium Chloride and Its Binary Mixtures with Ethanol," Journal of Chemical Theory and Computation, vol. 10, no. 10, s. 4465-4479, 2014.
[43]
Y. Wang et al., "Molecular dynamics simulation of strong interaction mechanisms at wet interfaces in clay-polysaccharide nanocomposites," Journal of Materials Chemistry A, vol. 2, no. 25, s. 9541-9547, 2014.
[46]
J. Kapla et al., "Molecular Dynamics Simulations of Membrane-Sugar Interactions," Journal of Physical Chemistry B, vol. 117, no. 22, s. 6667-6673, 2013.
[48]
J. Wohlert, M. Bergenstråhle-Wohlert och L. A. Berglund, "Deformation of cellulose nanocrystals : entropy, internal energy and temperature dependence," Cellulose, vol. 19, no. 6, s. 1821-1836, 2012.
[49]
J. Wohlert och L. A. Berglund, "A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose," Journal of Chemical Theory and Computation, vol. 7, no. 3, s. 753-760, 2011.
[50]
J. Wohlert, U. Schnupf och J. W. Brady, "Free energy surfaces for the interaction of D-glucose with planar aromatic groups in aqueous solution," Journal of Chemical Physics, vol. 133, no. 15, s. 155103, 2010.
[51]
M. Bergenstråhle et al., "Simulation studies of the insolubility of cellulose," Carbohydrate Research, vol. 345, no. 14, s. 2060-2066, 2010.
[52]
M. Bergenstråhle et al., "Dynamics of Cellulose-Water Interfaces : NMR Spin-Lattice Relaxation Times Calculated from Atomistic Computer Simulations," Journal of Physical Chemistry B, vol. 112, no. 9, s. 2590-2595, 2008.
[54]
J. Wohlert et al., "Free energy of a trans-membrane pore calculated from atomistic molecular dynamics simulations," Journal of Chemical Physics, vol. 124, s. 154905, 2006.
[55]
J. Wohlert och O. Edholm, "The range and shielding of dipole-dipole interactions in phospholipid bilayers," Biophysical Journal, vol. 87, no. 4, s. 2433-2445, 2004.

Konferensbidrag

[56]
H. Mianehrow, L. Berglund och J. Wohlert, "MOISTURE EFFECTS IN NANOCOMPOSITES OF 2D GRAPHENE OXIDE IN CELLULOSE NANOFIBER (CNF) MATRIX : A MOLECULAR DYNAMICS STUDY," i ECCM 2022 : Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability, 2022, s. 718-725.
[57]
M. V. Tavares da Costa, J. Wohlert och L. Berglund, "Mechanical modelling to assess stiffness, strength and toughness of nacre-inspired nano composites," i 18th European Mechanics of Materials Conference (EMMC18), April 4 - 6, 2022, Oxford, UK, 2022.

Icke refereegranskade

Artiklar

[58]
J. Berglund et al., "Computer modeling of the structure and dynamics of hemicelluloses," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[59]
P. Chen et al., "Heterogeneous dynamics in cellulose from molecular dynamics simulations," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[60]
A. Martinez-Abad et al., "Spruce hemicelluloses (galactoglucomannan and arabinoglucuronoxylan) : Interplay with cellulose and lignin in softwoods," Abstracts of Papers of the American Chemical Society, vol. 257, 2019.
[61]
A. Martinez-Abad et al., "Influence of the molecular structure of wood hemicelluloses on the recalcitrance of lignocellulosic biomass," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[62]
G. Henriksson et al., "Non-cellulose wood polysaccharides - a need for a stricter structural and functional classification?," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[63]
S. Kishani et al., "Solubility and adsorption of different xyloglucan fractions to model surfaces," Abstracts of Papers of the American Chemical Society, vol. 255, 2018.
[64]
A. J. Svagan et al., "Cellulose nanofiber - towards tailored release of small molecules," Abstracts of Papers of the American Chemical Society, vol. 253, 2017.
[65]
T. Larsson, J. Wohlert och M. Bergenstråhle, "Changes in the supra-molecular structure of cellulose I during TEMPO-oxidation. Bringing together NMR, MD, and XRD results," Abstracts of Papers of the American Chemical Society, vol. 253, 2017.

Avhandlingar

[68]
J. Wohlert, "Atomistic computer simulations of lipid bilayers," Doktorsavhandling Stockholm : KTH, Trita-FYS, 2006:82, 2006.
[69]
J. Wohlert, "Electrostatics in lipid membranes : a computer simulation study," Licentiatavhandling Stockholm : Fysik, Trita-FYS, 2004:35, 2004.

Övriga

Senaste synkning med DiVA:
2024-11-21 00:13:12