Hoppa till huvudinnehållet
Till KTH:s startsida

Publikationer av Hedvig Kjellström

Refereegranskade

Artiklar

[1]
C. Li et al., "The Poses for Equine Research Dataset (PFERD)," Scientific Data, vol. 11, no. 1, 2024.
[2]
S. Broomé et al., "Going Deeper than Tracking : A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions," International Journal of Computer Vision, vol. 131, no. 2, s. 572-590, 2023.
[4]
B. Christoffersen et al., "Quasi-Monte Carlo Methods for Binary Event Models with Complex Family Data," Journal of Computational And Graphical Statistics, vol. 32, no. 4, s. 1393-1401, 2023.
[5]
A. Maki et al., "In Memoriam : Jan-Olof Eklundh," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, s. 4488-4489, 2022.
[7]
T. Kucherenko et al., "Moving Fast and Slow : Analysis of Representations and Post-Processing in Speech-Driven Automatic Gesture Generation," International Journal of Human-Computer Interaction, vol. 37, no. 14, s. 1300-1316, 2021.
[10]
P. H. Andersen et al., "Towards Machine Recognition of Facial Expressions of Pain in Horses," Animals, vol. 11, no. 6, 2021.
[11]
M. Klasson, C. Zhang och H. Kjellström, "Using Variational Multi-view Learning for Classification of Grocery Items," Patterns, vol. 1, no. 8, 2020.
[12]
C. Zhang et al., "Advances in Variational Inference," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 8, s. 2008-2026, 2019.
[13]
K. Stefanov et al., "Modeling of Human Visual Attention in Multiparty Open-World Dialogues," ACM Transactions on Human-Robot Interaction, vol. 8, no. 2, 2019.
[14]
A. Pieropan et al., "Robust and adaptive keypoint-based object tracking," Advanced Robotics, vol. 30, no. 4, s. 258-269, 2016.
[15]
J. Romero et al., "Extracting Postural Synergies for Robotic Grasping," IEEE Transactions on robotics, vol. 29, no. 6, s. 1342-1352, 2013.
[16]
J. Romero et al., "Non-parametric hand pose estimation with object context," Image and Vision Computing, vol. 31, no. 8, s. 555-564, 2013.
[17]
. Sanmohan et al., "Primitive-Based Action Representation and Recognition," Advanced Robotics, vol. 25, no. 6-7, s. 871-891, 2011.
[18]
H. Kjellström, J. Romero och D. Kragic, "Visual object-action recognition : Inferring object affordances from human demonstration," Computer Vision and Image Understanding, vol. 115, no. 1, s. 81-90, 2011.
[19]
H. Kjellström och O. Engwall, "Audiovisual-to-articulatory inversion," Speech Communication, vol. 51, no. 3, s. 195-209, 2009.
[20]
S. Ahlberg et al., "An information fusion demonstrator for tactical intelligence processing in network-based defense," Information Fusion, vol. 8, no. 1, s. 84-107, 2007.
[21]
O. Engwall et al., "Designing the user interface of the computer-based speech training system ARTUR based on early user tests," Behavior and Information Technology, vol. 25, no. 4, s. 353-365, 2006.
[22]
D. Ormoneit et al., "Representing cyclic human motion using functional analysis," Image and Vision Computing, vol. 23, no. 14, s. 1264-1276, 2005.
[23]
H. Sidenbladh och M. J. Black, "Learning the statistics of people in images and video," International Journal of Computer Vision, vol. 54, no. 2-Jan, s. 181-207, 2003.

Konferensbidrag

[24]
W. Yin et al., "Controllable Motion Synthesis and Reconstruction with Autoregressive Diffusion Models," i 2023 32ND IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION, RO-MAN, 2023, s. 1102-1108.
[25]
S. Broomé et al., "Recur, Attend or Convolve? : On Whether Temporal Modeling Matters for Cross-Domain Robustness in Action Recognition," i 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, s. 4188-4198.
[26]
M. B. Colomer et al., "To Adapt or Not to Adapt? : Real-Time Adaptation for Semantic Segmentation," i 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, s. 16502-16513.
[27]
O. Mikheeva et al., "Aligned Multi-Task Gaussian Process," i Proceedings of the 25th International Conference on Artificial Intelligence and Statistics, AISTATS 2022, 2022, s. 2970-2988.
[28]
M. Rashid et al., "Equine Pain Behavior Classification via Self-Supervised Disentangled Pose Representation," i 2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, s. 152-162.
[29]
T. Kucherenko et al., "Multimodal analysis of the predictability of hand-gesture properties," i AAMAS '22: Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, 2022, s. 770-779.
[30]
R. Tu et al., "Optimal transport for causal discovery," i ICLR 2022 : 10th International Conference on Learning Representations, International Conference on Learning Representations, 2022.
[31]
R. Nagy et al., "A Framework for Integrating Gesture Generation Models into Interactive Conversational Agents," i 20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)., 2021.
[32]
R. Nagy et al., "A framework for integrating gesture generation models into interactive conversational agents," i Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, 2021, s. 1767-1769.
[33]
B. Christoffersen et al., "Asymptotically Exact and Fast Gaussian Copula Models for Imputation of Mixed Data Types," i Proceedings of Machine Learning Research, 2021, s. 870-885.
[34]
M. M. Sorkhei, G. E. Henter och H. Kjellström, "Full-Glow : Fully conditional Glow for more realistic image generation," i Pattern Recognition : 43rd DAGM German Conference, DAGM GCPR 2021, 2021, s. 697-711.
[35]
J. Mänttäri et al., "Interpreting Video Features : A Comparison of 3D Convolutional Networks and Convolutional LSTM Networks," i 15th Asian Conference on Computer Vision, ACCV 2020, 2021, s. 411-426.
[36]
T. Kucherenko et al., "Speech2Properties2Gestures : Gesture-Property Prediction as a Tool for Generating Representational Gestures from Speech," i IVA '21 : Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, 2021, s. 145-147.
[37]
M. Rashid, H. Kjellström och Y. J. Lee, "Action Graphs : Weakly-supervised Action Localization with Graph Convolution Networks," i 2020 ieee winter conference on applications of computer vision (wacv), 2020, s. 604-613.
[38]
R. Tu et al., "Causal Discovery in the Presence of Missing Data," i 22nd international conference on artificial intelligence and statistics, vol 89, 2020.
[39]
T. Kucherenko et al., "Gesticulator : A framework for semantically-aware speech-driven gesture generation," i ICMI '20: Proceedings of the 2020 International Conference on Multimodal Interaction, 2020.
[40]
C. Ringqvist et al., "Interpolation in Auto Encoders with Bridge Processes," i Proceedings of the 25th International Conference on Pattern Recognition, ICPR 2020, 2020.
[42]
J. Wenger, H. Kjellström och R. Triebel, "Non-Parametric Calibration for Classification," i International Conference on Artificial Intelligence and Statistics, Vol 108, 2020.
[43]
P. L. Dovesi et al., "Real-Time Semantic Stereo Matching," i Proceedings - IEEE International Conference on Robotics and Automation, 2020, s. 10780-10787.
[44]
K. Håkansson et al., "Robot-assisted detection of subclinical dementia : progress report and preliminary findings," i In 2020 Alzheimer's Association International Conference. ALZ., 2020.
[45]
M. Klasson, C. Zhang och H. Kjellström, "A hierarchical grocery store image dataset with visual and semantic labels," i Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019, 2019, s. 491-500.
[46]
T. Kucherenko et al., "Analyzing Input and Output Representations for Speech-Driven Gesture Generation," i 19th ACM International Conference on Intelligent Virtual Agents, 2019.
[47]
S. Eriksson et al., "Dancing with Drones : Crafting Novel Artistic Expressions through Intercorporeality," i Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 2019, s. 617:1-617:12.
[48]
S. Broomé et al., "Dynamics are important for the recognition of equine pain in video," i Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019.
[49]
R. Tu et al., "Neuropathic Pain Diagnosis Simulator for Causal Discovery Algorithm Evaluation," i Advances in neural information processing systems 32 (NIPS 2019), 2019.
[50]
T. Kucherenko et al., "On the Importance of Representations for Speech-Driven Gesture Generation : Extended Abstract," i International Conference on Autonomous Agents and Multiagent Systems (AAMAS '19), May 13-17, 2019, Montréal, Canada, 2019, s. 2072-2074.
[51]
J. Butepage, H. Kjellström och D. Kragic, "Predicting the what and how - A probabilistic semi-supervised approach to multi-task human activity modeling," i IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2019, s. 2923-2926.
[52]
P. Wolfert et al., "Should Beat Gestures Be Learned Or Designed? : A Benchmarking User Study," i ICDL-EPIROB 2019 : Workshop on Naturalistic Non-Verbal and Affective Human-Robot Interactions, 2019.
[53]
C. Hamesse et al., "Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation," i Proceedings of Machine Learning Research 106, 2019.
[54]
C. Hamesse et al., "Simultaneous Measurement Imputation and Outcome Prediction for Achilles Tendon Rupture Rehabilitation," i Proceedings of the 4th Machine Learning for Healthcare Conference, MLHC 2019, 2019, s. 614-640.
[55]
J. Butepage, H. Kjellström och D. Kragic, "Anticipating many futures : Online human motion prediction and generation for human-robot interaction," i 2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, s. 4563-4570.
[56]
P. Haubro Andersen et al., "Can a Machine Learn to See Horse Pain? : An Interdisciplinary Approach Towards Automated Decoding of Facial Expressions of Pain in the Horse," i Measuring Behavior 2018 - 11th International Conference on Methods and Techniques in Behavioral Research 6-8 June, 2018, 2018.
[57]
O. Mikheeva, C. H. Ek och H. Kjellström, "Perceptual facial expression representation," i Proceedings - 13th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2018, 2018, s. 179-186.
[59]
K. Karipidou et al., "Computer Analysis of Sentiment Interpretation in Musical Conducting," i Proceedings - 12th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2017, 2017, s. 400-405.
[60]
J. Butepage et al., "Deep representation learning for human motion prediction and classification," i 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 2017, s. 1591-1599.
[61]
C. Zhang, H. Kjellström och S. Mandt, "Determinantal point processes for mini-batch diversification," i Uncertainty in Artificial Intelligence - Proceedings of the 33rd Conference, UAI 2017, 2017.
[62]
Y. Zhang, J. Beskow och H. Kjellström, "Look but Don’t Stare : Mutual Gaze Interaction in Social Robots," i 9th International Conference on Social Robotics, ICSR 2017, 2017, s. 556-566.
[63]
A. Eriksson och H. Kjellström, "A formal approach to anomaly detection," i ICPRAM 2016 - Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, 2016, s. 317-326.
[64]
S. Caccamo et al., "Active perception and modeling of deformable surfaces using Gaussian processes and position-based dynamics," i IEEE-RAS International Conference on Humanoid Robots, 2016, s. 530-537.
[65]
C. Zhang, S. Mandt och H. Kjellström, "Balanced Population Stochastic Variational Inference," i NIPS Workshop on Advances in Approximate Bayesian Inference, 2016.
[66]
A. Qu et al., "Bridging Medical Data Inference to Achilles Tendon Rupture Rehabilitation," i NIPS Workshop on Machine Learning for Health, 2016.
[67]
C. Zhang et al., "Diagnostic Prediction Using Discomfort Drawing with IBTM," i Machine Learning in Health Care, 2016.
[68]
C. Zhang, H. Kjellström och B. C. Bertilson, "Diagnostic Prediction Using Discomfort Drawings," i NIPS Workshop on Machine Learning for Health, 2016.
[69]
C. Zhang, H. Kjellström och C. H. Ek, "Inter-battery topic representation learning," i Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2016, s. 210-226.
[70]
A. Pieropan et al., "Robust tracking of unknown objects through adaptive size estimation and appearance learning," i Proceedings - IEEE International Conference on Robotics and Automation, 2016, s. 559-566.
[71]
J. Butepage, H. Kjellström och D. Kragic, "Social Affordance Tracking over Time - A Sensorimotor Account of False-Belief Tasks," i Proceedings of the 38th Annual Meeting of the Cognitive Science Society, CogSci 2016, 2016, s. 1014-1019.
[72]
R. Güler et al., "Estimating the Deformability of Elastic Materials using Optical Flow and Position-based Dynamics," i Humanoid Robots (Humanoids), 2015 IEEE-RAS 15th International Conference on, 2015, s. 965-971.
[73]
A. Pieropan et al., "Robust 3D tracking of unknown objects," i Proceedings - IEEE International Conference on Robotics and Automation, 2015, s. 2410-2417.
[74]
A. Pieropan et al., "Audio-Visual Classification and Detection of Human Manipulation Actions," i 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014, s. 3045-3052.
[75]
A. Pieropan, C. H. Ek och H. Kjellström, "Recognizing Object Affordances in Terms of Spatio-Temporal Object-Object Relationships," i Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on, 2014, s. 52-58.
[76]
A. Pieropan et al., "Robust Tracking through Learning," i 32nd Annual Conference of the Robotics Society of Japan, 2014, 2014.
[77]
A. Pieropan och H. Kjellström, "Unsupervised object exploration using context," i The 23rd IEEE International Symposium on Robot and Human Interactive Communication, 2014 RO-MAN, 2014.
[78]
D. Geronimo och H. Kjellström, "Unsupervised surveillance video retrieval based on human action and appearance," i Proceedings - International Conference on Pattern Recognition, 2014, s. 4630-4635.
[79]
C. Zhang, D. Song och H. Kjellström, "Contextual Modeling with Labeled Multi-LDA," i 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2013, s. 2264-2271.
[80]
C. Zhang et al., "Factorized Topic Models," i 1st International Conference on Learning Representations, ICLR 2013, 2-4 May 2013, Scottsdale, United States, 2013.
[81]
A. Pieropan, C. H. Ek och H. Kjellström, "Functional Object Descriptors for Human Activity Modeling," i 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, s. 1282-1289.
[82]
A. Thippur, C. H. Ek och H. Kjellström, "Inferring hand pose : A comparative study of visual shape features," i 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, FG 2013, 2013, s. 6553698.
[83]
M. Hjelm et al., "Sparse Summarization of Robotic Grasping Data," i 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, s. 1082-1087.
[84]
C. Zhang et al., "Supervised Hierarchical Dirichlet Processes with Variational Inference," i 2013 IEEE International Conference on Computer Vision Workshops (ICCVW), 2013, s. 254-261.
[85]
F. T. Pokorny et al., "Persistent Homology for Learning Densities with Bounded Support," i Advances in Neural Information Processing Systems 25 : 26th Annual Conference on Neural Information Processing Systems 2012, 2012, s. 1817-1825.
[86]
F. T. Pokorny et al., "Topological Constraints and Kernel-Based Density Estimation," i Advances in Neural Information Processing Systems 25, Workshop on Algebraic Topology and Machine Learning, December 8th, Nevada, USA, 2012.
[87]
J. Romero, H. Kjellström och D. Kragic, "Hands in Action : Real-Time 3D Reconstruction of Hands in Interaction with Objects," i 2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, s. 458-463.
[88]
J. Romero et al., "Spatio-Temporal Modeling of Grasping Actions," i IEEE/RSJ 2010 INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2010), 2010, s. 2103-2108.
[89]
H. Kjellström, D. Kragic och M. J. Black, "Tracking People Interacting with Objects," i 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, s. 747-754.
[90]
M. Do et al., "Grasp recognition and mapping on humanoid robots," i 9th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS09, 2009, s. 465-471.
[91]
J. Romero, H. Kjellström och D. Kragic, "Modeling and Evaluation of Human-to-Robot Mapping of Grasps," i ICAR : 2009 International Conference on Advanced Robotics, 2009, s. 228-233.
[92]
J. Romero, H. Kjellström och D. Kragic, "Monocular Real-Time 3D Articulated Hand Pose Estimation," i 9th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS09, 2009, s. 87-92.
[93]
J. Romero, H. Kjellström och D. Kragic, "Human-to-Robot Mapping of Grasps," i 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Nice, France. September 22 - 26 2008, 2008.
[94]
H. Kjellström et al., "Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects," i Computer Vision - Eccv 2008, Pt Ii, Proceedings, 2008, s. 336-349.
[95]
H. Kjellström, J. Romero och D. Kragic, "Visual Recognition of Grasps for Human-to-Robot Mapping," i 2008 IEEE/RSJ International Conference On Robots And Intelligent Systems, Vols 1-3, Conference Proceedings, 2008, s. 3192-3199.
[96]
H. Kjellström et al., "Audio-visual phoneme classification for pronunciation training applications," i INTERSPEECH 2007 : 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, 2007, s. 57-60.
[97]
O. Engwall et al., "Feedback management in the pronunciation training system ARTUR," i Proceedings of CHI 2006, 2006, s. 231-234.
[98]
H. Kjellström, O. Engwall och O. Bälter, "Reconstructing Tongue Movements from Audio and Video," i INTERSPEECH 2006 AND 9TH INTERNATIONAL CONFERENCE ON SPOKEN LANGUAGE PROCESSING, Vol. 1-5, 2006, s. 2238-2241.
[99]
H. Sidenbladh, P. Svenson och J. Schubert, "Comparing future situation pictures," i 2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 2005, s. 963-968.
[100]
E. Eriksson et al., "Design Recommendations for a Computer-Based Speech Training System Based on End User Interviews," i Proceedings of the Tenth International Conference on Speech and Computers, 2005, s. 483-486.
[101]
J. Schubert och H. Sidenbladh, "Sequential clustering with particle filters - estimating the number of clusters from data," i 2005 7th International Conference on Information Fusion (FUSION), Vols 1 and 2, 2005, s. 122-129.
[102]
J. Grahn och H. Kjellström, "Using SVM for efficient detection of human motion," i 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, 2005, s. 231-238.
[103]
[104]
H. Sidenbladh, P. Svenson och J. Schubert, "Comparing multi-target trackers on different force unit levels," i SIGNAL PROCESSING, SENSOR FUSION, AND TARGET RECOGNITION XIII, 2004, s. 306-314.
[105]
H. Sidenbladh, "Detecting human motion with support vector machines," i PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, s. 188-191.
[106]
J. Schubert et al., "Methods and system design of the IFD03 information fusion demonstrator," i Ninth International Command and Control Research and Technology Symposium, 2004, s. 1-29.
[107]
S. Ahlberg et al., "The IFD03 information fusion demonstrator," i Proceedings of the Seventh International Conference on Information Fusion, FUSION 2004, 2004, s. 936-943.
[108]
P. Svenson och H. Sidenbladh, "Determining possible avenues of approach using ANTS," i FUSION 2003 : PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, s. 1110-1117.
[109]
H. Sidenbladh, "Multi-target particle filtering for the probability hypothesis density," i FUSION 2003 : PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, s. 800-806.
[110]
H. Sidenbladh och S.-L. Wirkander, "Tracking random sets of vehicles in terrain," i Proceedings of the 2003 IEEE Workshop on Multi-Object Tracking, 2003.
[111]
H. Sidenbladh, M. J. Black och L. Sigal, "Implicit probabilistic models of human motion for synthesis and tracking," i COMPUTER VISON - ECCV 2002, PT 1, 2002, s. 784-800.
[112]
M. Bray, H. Sidenbladh och J.-O. Eklundh, "Recognition of gestures in the context of speech," i 16th International Conference on Pattern Recognition, 2002. Proceedings., 2002.
[113]
D. Ormoneit et al., "Learning and tracking cyclic human motion," i Advances in Neural Information Processing Systems 13, 2001.
[114]
H. Sidenbladh och M. J. Black, "Learning image statistics for Bayesian tracking," i Proceedings of the IEEE International Conference on Computer Vision, 2001, s. 709-716.
[115]
H. Sidenbladh, F. De la Torre och M. J. Black, "A framework for modeling the appearance of 3D articulated figures," i IEEE International Conference on Automatic Face and Gesture Recognition, 2000.
[116]
D. Ormoneit et al., "Learning and tracking human motion using functional analysis," i IEEE Workshop on Human Modeling, Analysis and Synthesis, 2000.
[117]
D. Ormoneit, H. Sidenbladh och M. J. Black, "Stochastic modeling and tracking of human motion," i Learning 2000, 2000.
[118]
H. Sidenbladh, M. J. Black och D. J. Fleet, "Stochastic tracking of 3D human figures using 2D image motion," i European Conference on Computer Vision, 2000.
[119]
H. Sidenbladh, D. Kragic och H. I. Christensen, "Person following behaviour for a mobile robot," i Proceedings - IEEE International Conference on Robotics and Automation, 1999, s. 670-675.

Kapitel i böcker

[120]
C. Zhang och H. Kjellström, "How to Supervise Topic Models," i Computer Vision - ECCV 2014 Workshops : Zurich, Switzerland, September 6-7 and 12, 2014, Proceedings, Part II, Agapito, Bronstein, Rother red., Zurich : Springer Publishing Company, 2014, s. 500-515.

Icke refereegranskade

Konferensbidrag

[121]
S. B. Wang et al., "Multimodal communication error detection for driver-car interaction," i ICINCO 2007: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL RA-1: ROBOTICS AND AUTOMATION, VOL 1, 2007, s. 365-371.

Kapitel i böcker

[122]
H. Kjellström, "Contextual Action Recognition," i Visual Analysis of Humans : Looking at People, T. B. Moeslund, A. Hilton, V. Krüger and L. Sigal red., : Springer, 2011, s. 355-376.
[123]
H. Kjellström, "Datorer som ser människor," i Sinnen, signaler och tolkningar av verkligheten, Lindberg, Bo red., Göteborg : Kungliga vetenskaps- och vitterhetssamhället, 2007.

Övriga

[126]
J. Bütepage, H. Kjellström och D. Kragic, "A Probabilistic Semi-Supervised Approach to Multi-Task Human Activity Modeling," (Manuskript).
[127]
M. Klasson, H. Kjellström och C. Zhang, "Learn the Time to Learn : Replay Scheduling in Continual Learning," (Manuskript).
[128]
M. Klasson, H. Kjellström och C. Zhang, "Policy Learning for Replay Scheduling in Continual Learning," (Manuskript).
[129]
A. Pieropan et al., "Robust 3D tracking of unknown objects," (Manuskript).
Senaste synkning med DiVA:
2024-11-20 01:08:03