Publikationer av David B Haviland
Refereegranskade
Artiklar
[1]
A. K. Roos et al., "Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications," Beilstein Journal of Nanotechnology, vol. 15, s. 242-255, 2024.
[2]
J. Biznarova et al., "Intermodulation spectroscopy and the nonlinear response of two-level systems in superconducting coplanar-waveguide resonators," Physical Review Applied, vol. 22, no. 1, 2024.
[3]
E. Scarano et al., "Intrinsic Kerr amplification for microwave electromechanics," Applied Physics Letters, vol. 124, 2024.
[4]
E. Arvidsson et al., "Sensing force gradients with cavity optomechanics while evading backaction," Physical Review A: covering atomic, molecular, and optical physics and quantum information, vol. 110, no. 4, 2024.
[5]
E. Scarano et al., "Temperature dependence of microwave losses in lumped-element resonators made from superconducting nanowires with high kinetic inductance," Superconductor Science and Technology, vol. 37, no. 7, 2024.
[6]
A. K. Roos et al., "Kinetic Inductive Electromechanical Transduction for Nanoscale Force Sensing," Physical Review Applied, vol. 20, no. 2, 2023.
[7]
S. W. Jolin et al., "Multipartite Entanglement in a Microwave Frequency Comb," Physical Review Letters, vol. 130, no. 12, 2023.
[8]
M. O. Tholen et al., "Measurement and control of a superconducting quantum processor with a fully integrated radio-frequency system on a chip," Review of Scientific Instruments, vol. 93, no. 10, s. 104711, 2022.
[9]
M. Kudra et al., "Robust Preparation of Wigner-Negative States with Optimized SNAP-Displacement Sequences," PRX QUANTUM, vol. 3, no. 3, 2022.
[10]
G. Andersson et al., "Squeezing and Multimode Entanglement of Surface Acoustic Wave Phonons," PRX Quantum, vol. 3, no. 1, 2022.
[11]
P.-A. Thorén et al., "High-Velocity Shear and Soft Friction at the Nanometer Scale," FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, vol. 7, 2021.
[12]
S. W. Jolin et al., "Calibration of mixer amplitude and phase imbalance in superconducting circuits," Review of Scientific Instruments, vol. 91, no. 12, 2020.
[13]
T. Weissl et al., "A general characterization method for nonlinearities in superconducting circuits," New Journal of Physics, vol. 21, 2019.
[14]
R. Borgani et al., "Fast Multifrequency Measurement of Nonlinear Conductance," Physical Review Applied, vol. 11, no. 4, 2019.
[15]
R. Borgani och D. B. Haviland, "Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale," Review of Scientific Instruments, vol. 90, no. 1, 2019.
[16]
S. M. Sah et al., "A combined averaging and frequency mixing approach for force identification in weakly nonlinear high-Q oscillators : Atomic force microscope," Mechanical systems and signal processing, vol. 101, s. 38-54, 2018.
[17]
P.-A. Thorén et al., "Calibrating torsional eigenmodes of micro-cantilevers for dynamic measurement of frictional forces," Review of Scientific Instruments, vol. 89, no. 7, 2018.
[18]
P.-A. Thorén et al., "Modeling and Measuring Viscoelasticity with Dynamic Atomic Force Microscopy," Physical Review Applied, vol. 10, no. 2, 2018.
[19]
H. G. Kassa et al., "Nano-mechanical properties of interphases in dynamically vulcanized thermoplastic alloy," Polymer, vol. 135, s. 348-354, 2018.
[20]
F. Crippa et al., "Probing nano-scale viscoelastic response in air and in liquid with dynamic atomic force microscopy," Soft Matter, vol. 14, no. 19, s. 3998-4006, 2018.
[21]
R. Borgani et al., "Background-Force Compensation in Dynamic Atomic Force Microscopy," Physical Review Applied, vol. 7, no. 6, 2017.
[22]
P. M. Claesson et al., "From force curves to surface nanomechanical properties," Physical Chemistry, Chemical Physics - PCCP, vol. 19, no. 35, s. 23642-23657, 2017.
[23]
H. Huang et al., "Local surface mechanical properties of PDMS-silica nanocomposite probed with Intermodulation AFM," Composites Science And Technology, vol. 150, s. 111-119, 2017.
[24]
C. Musumeci et al., "Multiparameter investigation of bulk heterojunction organic photovoltaics," RSC Advances, vol. 7, no. 73, s. 46313-46320, 2017.
[25]
D. B. Haviland, "Quantitative force microscopy from a dynamic point of view," Current Opinion in Colloid & Interface Science, vol. 27, s. 74-81, 2017.
[26]
A. Ergül et al., "Spatial and temporal distribution of phase slips in Josephson junction chains," Scientific Reports, vol. 7, 2017.
[27]
P.-A. Thorén et al., "Imaging high-speed friction at the nanometer scale," Nature Communications, vol. 7, 2016.
[28]
R. Borgani et al., "Local Charge Injection and Extraction on Surface-Modified Al2O3Nanoparticles in LDPE," Nano letters (Print), vol. 16, no. 9, s. 5934-5937, 2016.
[29]
J. Bergqvist et al., "New method for lateral mapping of bimolecular recombination in thin-film organic solar cells," Progress in Photovoltaics, vol. 24, no. 8, s. 1096-1108, 2016.
[30]
D. B. Haviland et al., "Probing viscoelastic response of soft material surfaces at the nanoscale," Soft Matter, vol. 12, no. 2, s. 619-624, 2016.
[31]
D. B. Haviland et al., "Probing viscoelastic response of soft material surfaces at the nanoscale (vol 12, pg 619, 2016)," Soft Matter, vol. 12, no. 2, s. 625-625, 2016.
[32]
P. P. Aurino et al., "Retention of Electronic Conductivity in LaAlO3/SrTiO3 Nanostructures Using a SrCuO2 Capping Layer," PHYSICAL REVIEW APPLIED, vol. 6, no. 2, 2016.
[33]
D. Forchheimer, R. Forchheimer och D. B. Haviland, "Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy," Nature Communications, vol. 6, 2015.
[34]
D. Forchheimer et al., "Determining surface properties with bimodal and multimodal AFM," Nanotechnology, vol. 25, no. 48, s. 485708, 2014.
[35]
S. S. Borysov, D. Forchheimer och D. B. Haviland, "Dynamic calibration of higher eigenmode parameters of a cantilever in atomic force microscopy by using tip-surface interactions," Beilstein Journal of Nanotechnology, vol. 5, s. 1899-1904, 2014.
[36]
E. Tholén et al., "Gain, noise and intermodulation in a nonlinear superconducting resonator," EPJ Quantum Technology, vol. 1, no. 1, 2014.
[37]
R. Borgani et al., "Intermodulation electrostatic force microscopy for imaging surface photo-voltage," Applied Physics Letters, vol. 105, no. 14, s. 143113, 2014.
[38]
N. Sanandaji et al., "Inkjet printing as a possible route to study confined crystal structures," European Polymer Journal, vol. 49, no. 1, s. 203-208, 2013.
[39]
D. Platz et al., "Interaction imaging with amplitude-dependence force spectroscopy," Nature Communications, vol. 4, s. 1360, 2013.
[40]
D. Platz et al., "Interpreting motion and force for narrow-band intermodulation atomic force microscopy," Beilstein Journal of Nanotechnology, vol. 4, s. 45-56, 2013.
[41]
A. Ergül et al., "Localizing quantum phase slips in one-dimensional Josephson junction chains," New Journal of Physics, vol. 15, s. 095014, 2013.
[42]
A. Ergül et al., "Phase sticking in one-dimensional Josephson junction chains," Physical Review B. Condensed Matter and Materials Physics, vol. 88, no. 10, s. 104501, 2013.
[43]
D. Platz et al., "Polynomial force approximations and multifrequency atomic force microscopy," Beilstein Journal of Nanotechnology, vol. 4, no. 1, s. 352-360, 2013.
[44]
S. S. Borysov et al., "Reconstruction of tip-surface interactions with multimodal intermodulation atomic force microscopy," Physical Review B. Condensed Matter and Materials Physics, vol. 88, no. 11, s. 115405, 2013.
[45]
D. Forchheimer et al., "Simultaneous imaging of surface and magnetic forces," Applied Physics Letters, vol. 103, no. 1, s. 013114, 2013.
[46]
D. Forchheimer et al., "Model-based extraction of material properties in multifrequency atomic force microscopy," Physical Review B. Condensed Matter and Materials Physics, vol. 85, no. 19, s. 195449, 2012.
[47]
D. Platz et al., "The role of nonlinear dynamics in quantitative atomic force microscopy," Nanotechnology, vol. 23, no. 26, s. 265705, 2012.
[48]
C. Hutter et al., "Josephson junction transmission lines as tunable artificial crystals," Physical Review B. Condensed Matter and Materials Physics, vol. 83, no. 1, s. 014511, 2011.
[49]
E. Tholén et al., "Note : The intermodulation lockin analyzer," Review of Scientific Instruments, vol. 82, no. 2, s. 026109, 2011.
[50]
D. Platz et al., "Phase imaging with intermodulation atomic force microscopy," Ultramicroscopy, vol. 110, no. 6, s. 573-577, 2010.
[51]
C. Hutter et al., "Reconstructing nonlinearities with intermodulation spectroscopy," Physical Review Letters, vol. 104, no. 5, s. 050801, 2010.
[52]
D. Haviland, "SUPERCONDUCTING CIRCUITS Quantum phase slips," Nature Physics, vol. 6, no. 8, s. 565-566, 2010.
[53]
D. Platz et al., "Intermodulation atomic force microscopy," Applied Physics Letters, vol. 92, s. 153106, 2008.
[54]
N. Poli et al., "Spin injection and relaxation in a mesoscopic superconductor," Physical Review Letters, vol. 100, no. 13, s. 136601, 2008.
[55]
D. Pesen et al., "Electron beam patterning of fibronectin nanodots that support focal adhesion formation," Soft Matter, vol. 3, no. 10, s. 1280-1284, 2007.
[56]
J. Rundqvist et al., "High fidelity functional patterns of an extracellular matrix protein by electron beam-based inactivation," Journal of the American Chemical Society, vol. 129, no. 1, s. 59-67, 2007.
[57]
D. Pesen et al., "Image reversal for direct electron beam patterning of protein coated surfaces," Lab on a Chip, vol. 7, no. 11, s. 1603-1606, 2007.
[58]
E. Tholén et al., "Nonlinearities and parametric amplification in superconducting coplanar waveguide resonators," Applied Physics Letters, vol. 90, no. 25, s. 253509, 2007.
[59]
J. Walter et al., "Pulse and Hold Strategy for Switching Current Measurements," Physical Review B. Condensed Matter and Materials Physics, vol. 75, no. 9, s. 094515, 2007.
[60]
A. Iovan et al., "Tunneling spectroscopy of magnetic double barrier junctions," IEEE transactions on magnetics, vol. 43, no. 6, s. 2818-2820, 2007.
[61]
S. Corlevi et al., "Coulomb blockade of Cooper pair tunneling and parity effects in the Cooper pair transistor," Physical Review B. Condensed Matter and Materials Physics, vol. 74, no. 22, 2006.
[62]
A. Iovan, D. B. Haviland och V. Korenivski, "Diode effect in asymmetric double-tunnel barriers with single-metal nanoclusters," Applied Physics Letters, vol. 88, no. 16, 2006.
[63]
M. Urech et al., "Direct demonstration of decoupling of spin and charge currents in nanostructures," Nano letters (Print), vol. 6, no. 4, s. 871-874, 2006.
[64]
J. Rundqvist, J. H. Hoh och D. B. Haviland, "Directed Immobilization of Protein-Coated Nanospheres toNanometer-Scale Patterns Fabricated by Electron Beam Lithographyof Poly(ethylene glycol) Self-Assembled Monolayers," Langmuir, vol. 22, no. 11, s. 5100-5107, 2006.
[65]
J. Johansson et al., "Enhanced spin accumulation in superconductors," Journal of Applied Physics, vol. 99, no. 8, s. 08M513, 2006.
[66]
J. Sjöstrand et al., "Phase Space Topology of a Switching Current Detector," Physical Review B. Condensed Matter and Materials Physics, vol. 73, s. 132511, 2006.
[67]
S. Corlevi et al., "Phase-Charge duality of a Josephson junction in a fluctuating electromagnetic environment," Physical Review Letters, vol. 97, no. 9, 2006.
[68]
A. Iovan, V. Korenivski och D. B. Haviland, "Rectification of current for tunneling through metallic nano-particles," Journal of Applied Physics, vol. 99, no. 8, 2006.
[69]
N. Poli et al., "Spin-flip scattering at Al surfaces," Journal of Applied Physics, vol. 99, no. 8, s. 08H701, 2006.
[70]
J. Rundqvist, J. H. Hoh och D. B. Haviland, "Substrate effects in poly(ethylene glycol) self-assembled monolayers on granular and flame-annealed gold," Journal of Colloid and Interface Science, vol. 301, no. 1, s. 337-341, 2006.
[71]
J. Rundqvist, J. H. Hoh och D. B. Haviland, "Poly(ethylene glycol) Self-Assembled Monolayer Island Growth," Langmuir, vol. 21, s. 2981-2987, 2005.
[72]
J. Johansson et al., "Giant fluctuations of superconducting order parameter in ferromagnet-superconductor single-electron transistors," Physical Review Letters, vol. 93, no. 21, 2004.
[73]
M. Urech et al., "Spin injection in ferromagnet-superconductor/ normal-ferromagnet structures," Journal of Magnetism and Magnetic Materials, vol. 272-276/ Suppl, s. 1469-1470, 2004.
[74]
K. Andersson och D. B. Haviland, "Escape from a zero-current state in a one-dimensional array of Josephson junctions," Physical Review B. Condensed Matter and Materials Physics, vol. 67, no. 9, 2003.
[75]
M. Urech et al., "Evidence for Suppression of Superconductivity by Spin Imbalance in Co-Al-Co Single-Electron Transistors," Physical Review Letters, vol. 91, no. 14, s. 149701, 2003.
[76]
M. Watanabe och D. B. Haviland, "Quantum effects in small-capacitance single Josephson junctions," Physical Review B. Condensed Matter and Materials Physics, vol. 67, no. 9, 2003.
[77]
J. Johansson et al., "Suppression of superconductivity due to spin imbalance in Co/Al/Co single electron transistor," Journal of Applied Physics, vol. 93, s. 8650-8652, 2003.
[78]
M. Urech, V. Korenivski och D. B. Haviland, "Magnetic switching and magnetoresistance in nanoscale spin tunnel junctions," Journal of Applied Physics, vol. 92, no. 10, s. 6062-6065, 2002.
[79]
M. Urech, V. Korenivski och D. B. Haviland, "Magnetoresistance in Co/AlOx/Co tunnel junction arrays," Journal of Magnetism and Magnetic Materials, vol. 249, s. 513-518, 2002.
[80]
M. Watanabe och D. B. Haviland, "Quantum phase transition and Coulomb blockade with one-dimensional SQUID arrays," Journal of Physics and Chemistry of Solids, vol. 63, no. 08-jun, s. 1307-1310, 2002.
[81]
V. Schollmann et al., "Sample and hold strategy for quantum measurements of Josephson charge qubits," Physical Review B. Condensed Matter and Materials Physics, vol. 65, no. 2, 2002.
[82]
P. Ågren, J. Walter och D. B. Haviland, "Switching Current of a Cooper Pair Transistor with Tunable Josephson Junctions," Physical Review B. Condensed Matter and Materials Physics, vol. 66, no. 1, s. 14510, 2002.
[83]
M. Watanabe, D. B. Haviland och R. L. Kautz, "Control of the electromagnetic environment for single Josephson junctions using arrays of dc SQUIDs," Superconductors Science and Technology, vol. 14, no. 10, s. 870-874, 2001.
[84]
M. Watanabe och D. B. Haviland, "Coulomb blockade and coherent single-Cooper-pair tunneling in single Josephson junctions," Physical Review Letters, vol. 86, no. 22, s. 5120-5123, 2001.
[85]
P. Agren, K. Andersson och D. B. Haviland, "Kinetic inductance and Coulomb blockade in one dimensional Josephson junction arrays," Journal of Low Temperature Physics, vol. 124, no. 02-jan, s. 291-304, 2001.
[86]
D. B. Haviland et al., "Quantum phase transition in one-dimensional Josephson junction arrays," Physica. C, Superconductivity, vol. 352, no. 04-jan, s. 55-60, 2001.
[87]
J. Johansson och D. B. Haviland, "Random background charges and Coulomb blockade in one-dimensional tunnel junction arrays," Physical Review B Condensed Matter, vol. 6301, no. 1, 2001.
[88]
V. Schollmann et al., "Coulomb blockade effects in anodically oxidized titanium wires," Journal of Applied Physics, vol. 88, no. 11, s. 6549-6553, 2000.
[89]
J. Johannson et al., "Coulomb blockade in anodised titanium nanostructures," Physica. B, Condensed matter, vol. 284, s. 1796-1797, 2000.
[90]
T. Bergsten, P. Delsing och D. B. Haviland, "Hall resistance in two-dimensional arrays of Josephson junctions," Physica. B, Condensed matter, vol. 284, s. 1818-1819, 2000.
[91]
P. Agren et al., "Hysteretic current-voltage characteristics and Coulomb blockade in 1D-arrays of Josephson junctions," Physica. B, Condensed matter, vol. 280, no. 04-jan, s. 414-415, 2000.
[92]
D. B. Haviland, E. Chow och P. Delsing, "Quantum-phase transition in 1D Josephson junction arrays," Physica. B, Condensed matter, vol. 284, s. 1808-1809, 2000.
[93]
D. B. Haviland, K. Andersson och P. Agren, "Superconducting and insulating behavior in one-dimensional Josephson junction arrays," Journal of Low Temperature Physics, vol. 118, no. 06-maj, s. 733-749, 2000.
[94]
K. Andersson, P. Delsing och D. B. Haviland, "Synchronous Cooper pair tunneling in a 1D-array of Josephson junctions," Physica. B, Condensed matter, vol. 284, s. 1816-1817, 2000.
Konferensbidrag
[95]
I. Ignat et al., "Nanosized vacuum gap electromechanical devices with integrated piezoelectric actuator," i MikroSystemTechnik Kongress 2023 - Mikroelektronik, Mikrosystemtechnik und ihre Anwendungen - Nachhaltigkeit und Technologiesouveranitat, Proceedings, 2023, s. 413-416.
[96]
T. Weissl, S. W. Jolin och D. Haviland, "Quantum correlations in microwave frequency combs," i Optics InfoBase Conference Papers, 2017.
[97]
D. Platz et al., "Effect of material stiffness on intermodulation response in dynamic atomic force microscopy," i ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2010, s. 499-506.
[98]
E. Tholén et al., "Parametric amplification with weak-link nonlinearity in superconducting microresonators," i Nobel Symposium 141: Qubits for Future Quantum Information; Gothenburg; 25 May 2009 through 28 May 2009, 2009.
[99]
S. Corlevi, W. Guichard och D. B. Haviland, "Cooper pair transistor in a tunable environment," i Quantum Computation in Solid State Systems : proceedings of the conference Macroscopic QuantumCoherence and Computing, 2005.
[100]
J. Walter, S. Corlevi och D. Haviland, "Fast Switching Current Detection at low Critical Currents," i Realizing Controllable Quantum States - MESOSCOPIC SUPERCONDUCTIVITY AND SPINTRONICS, 2005, s. 255-262.
[101]
P. Ågren et al., "Switching Currents and Quasi-Particle Poisoning in the Superconducting Single Electron Transistor," i INTERNATIONAL WORKSHOP ON SUPERCONDUCTING NANO-ELECTRONICS DEVICES, 2002, s. 25-31.
Icke refereegranskade
Artiklar
[102]
A. Erlandsson et al., "Nanopatterned surfaces for effective cochlear implants," Tissue engineering, vol. 13, no. 4, s. 893-893, 2007.
[103]
D. Pesen et al., "Patterning of protein templates by electron beam lithography," Biophysical Journal, s. 163A-163A, 2007.
Kapitel i böcker
[104]
S. Corlevi, W. Guichard och D. B. Haviland, "Cooper pair transistor in a tunable environment," i Quantum Computing in Solid State Systems, : Springer-Verlag New York, 2006, s. 63-69.
[105]
J. Sjöstrand et al., "Time domain analysis of dynamical switching in a josephson junction," i Quantum Computing in Solid State Systems, : Springer, 2006, s. 54-62.
Övriga
[106]
A. K. Roos et al., "Design, fabrication, and characterization of kinetic-inductive force sensors for scanning probe applications," (Manuskript).
[107]
J. Sjöstrand et al., "Time Domain Analysis of Dynamical Switching in a Josephson Junction," (Manuskript).
[108]
P.-A. Thorén et al., "Calibrating torsional eigenmodes of micro cantileversfor dynamic measurement of frictional forces," (Manuskript).
[109]
M. O. Tholen et al., "Characterization and benchmarking of a phase-sensitive two-qubit gate using direct digital synthesis," (Manuskript).
[110]
H. Huang et al., "Comparison between AFM-based methods for assesing local surface mechanical properties of PDMS-silica composite layers," (Manuskript).
[111]
[112]
E. Tholén et al., "Gain, noise and intermod-ulation in a nonlinear superconducting resonator," (Manuskript).
[113]
R. Borgani och D. B. Haviland, "Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale," (Manuskript).
[114]
H. Huang et al., "Local surface mechanical properties of PDMS-silica nanocomposite probed with Intermodulation AFM," (Manuskript).
[115]
P.-A. Thorén et al., "On modeling and measuring viscoelasticity with dynamic Atomic Force Microscopy," (Manuskript).
[116]
E. Arvidsson et al., "Sensing force gradients with cavity optomechanics while evading backaction," (Manuskript).
[117]
Senaste synkning med DiVA:
2024-11-20 01:11:06