Publikationer av Gastón Adrián Crespo Paravano
Refereegranskade
Artiklar
[1]
X. Xuan et al., "Demonstration of a Validated Direct Current Wearable Device for Monitoring Sweat Rate in Sports," Sensors, vol. 24, no. 22, 2024.
[2]
A. Molina Osorio, G. A. Crespo och M. Cuartero, "Evidence of transient potentials in ion-selective electrodes based on thin-layer ion-exchange membranes," Electrochimica Acta, vol. 484, 2024.
[3]
Q. Wang et al., "Intradermal Lactate Monitoring Based on a Microneedle Sensor Patch for Enhanced In Vivo Accuracy," ACS Sensors, vol. 9, no. 6, s. 3115-3125, 2024.
[4]
A. Wiorek et al., "Reversible electrochemical pH modulation in thin-layer compartments using poly(aniline-co-o-aminophenol)," Sensors and actuators. B, Chemical, vol. 419, 2024.
[5]
Q. Wang et al., "Unveiling Potassium and Sodium Ion Dynamics in Living Plants with an In-Planta Potentiometric Microneedle Sensor," ACS Sensors, 2024.
[6]
Y. Liu, G. A. Crespo och M. Cuartero, "Voltammetric Ion-Selective Electrodes in Thin-Layer Samples : Absolute Detection of Ions Using Ultrathin Membranes," Analytical Chemistry, vol. 96, no. 3, s. 1147-1155, 2024.
[7]
X. Xuan et al., "A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring," Analysis & Sensing, vol. 3, no. 4, 2023.
[8]
W. Deenin et al., "Electrochemical lateral-flow device for rapid COVID-19 antigen-diagnostic testing," Bioelectrochemistry, vol. 152, 2023.
[9]
X. Xuan et al., "Fully Integrated Wearable Device for Continuous Sweat Lactate Monitoring in Sports," ACS Sensors, vol. 8, no. 6, s. 2401-2409, 2023.
[10]
A. Wiorek et al., "Imaging of CO2 and Dissolved Inorganic Carbon via Electrochemical Acidification–Optode Tandem," ACS Sensors, vol. 8, no. 7, s. 2843-2851, 2023.
[11]
A. Molinero Fernandez et al., "In Vivo Transdermal Multi-Ion Monitoring with a Potentiometric Microneedle-Based Sensor Patch," ACS Sensors, vol. 8, no. 1, s. 158-166, 2023.
[12]
J. Kumsab et al., "Integrated lateral flow immunoassays using trimethylsilyl cellulose barriers for the enhanced sensitivity of COVID-19 diagnosis," Journal of Science: Advanced Materials and Devices, vol. 8, no. 4, 2023.
[13]
C. Chen et al., "Portable All-in-One Electrochemical Actuator-Sensor System for the Detection of Dissolved Inorganic Phosphorus in Seawater," Analytical Chemistry, vol. 95, no. 8, s. 4180-4189, 2023.
[14]
A. Wiorek, M. Cuartero och G. A. Crespo, "Selective Deionization of Thin-Layer Samples Using Tandem Carbon Nanotubes-Polymeric Membranes," Analytical Chemistry, vol. 95, no. 42, s. 15681-15689, 2023.
[15]
I. Robayo Molina, G. A. Crespo och M. Cuartero, "Usefulness of the Distribution of Relaxation Time Method in Electroanalytical Systems : The Case of Voltammetric Ion-Selective Electrodes," ACS Omega, 2023.
[16]
F. Steininger et al., "Imaging Sample Acidification Triggered by Electrochemically Activated Polyaniline," Analytical Chemistry, vol. 94, no. 40, s. 13647-13651, 2022.
[17]
N. Colozza et al., "Insights into Tripodal Tris(pyrazolyl) Compounds as Ionophores for Potentiometric Ammonium Ion Sensing," ChemElectroChem, vol. 9, no. 18, 2022.
[18]
Q. Wang et al., "Intradermal Glycine Detection with a Wearable Microneedle Biosensor : The First In Vivo Assay," Analytical Chemistry, vol. 94, no. 34, s. 11856-11864, 2022.
[19]
A. Wiorek, M. Cuartero och G. A. Crespo, "Selective Ion Capturing via Carbon Nanotubes Charging," Analytical Chemistry, vol. 94, no. 21, s. 7455-7459, 2022.
[20]
Y. Liu, G. A. Crespo och M. Cuartero, "Spectroelectrochemistry with Ultrathin lon-Selective Membranes : Three Distinct Ranges for Analytical Sensing," Analytical Chemistry, vol. 94, no. 25, s. 9140-9148, 2022.
[21]
K. Xu et al., "Ultrathin ion-selective membranes for trace detection of lead, copper and silver ions," Electrochimica Acta, vol. 427, 2022.
[22]
K. Xu et al., "Anodic Stripping Voltammetry with the Hanging Mercury Drop Electrode for Trace Metal Detection in Soil Samples," chemosensors, vol. 9, s. 107, 2021.
[23]
K. Van Hoovels et al., "Can Wearable Sweat Lactate Sensors Contribute to Sports Physiology?," ACS Sensors, vol. 6, no. 10, s. 3496-3508, 2021.
[24]
T. Fuoco et al., "Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors," Biomacromolecules, vol. 22, no. 2, s. 949-960, 2021.
[25]
Q. Wang et al., "Electrochemical biosensor for glycine detection in biological fluids," Biosensors & bioelectronics, vol. 182, 2021.
[26]
[27]
X. Xuan et al., "Lactate Biosensing for Reliable On-Body Sweat Analysis," ACS Sensors, vol. 6, no. 7, s. 2763-2771, 2021.
[28]
J. J. Garcia-Guzman et al., "Microneedle based electrochemical (Bio)Sensing : Towards decentralized and continuous health status monitoring," TrAC. Trends in analytical chemistry, vol. 135, 2021.
[29]
A. Molina Osorio et al., "Modelling electrochemical modulation of ion release in thin-layer samples," JOURNAL OF ELECTROANALYTICAL CHEMISTRY, vol. 903, s. 115851, 2021.
[30]
M. Aref et al., "Potentiometric pH Nanosensor for Intracellular Measurements : Real-Time and Continuous Assessment of Local Gradients," Analytical Chemistry, vol. 93, no. 47, s. 15744-15751, 2021.
[31]
A. Wiorek et al., "Reagentless Acid–Base Titration for Alkalinity Detection in Seawater," Analytical Chemistry, vol. 93, no. 42, s. 14130-14137, 2021.
[32]
Y. Liu, G. A. Crespo och M. Cuartero, "Semi-empirical treatment of ionophore-assisted ion-transfers in ultrathin membranes coupled to a redox conducting polymer," Electrochimica Acta, vol. 388, s. 138634, 2021.
[33]
J. J. Garcia-Guzman et al., "Toward In Vivo Transdermal pH Sensing with a Validated Microneedle Membrane Electrode," ACS Sensors, vol. 6, no. 3, s. 1129-1137, 2021.
[34]
S. Sandin et al., "Deactivation and selectivity for electrochemical ozone production at Ni- and Sb-doped SnO2 / Ti electrodes," Electrochimica Acta, vol. 335, 2020.
[35]
A. Wiorek et al., "Epidermal Patch with Glucose Biosensor : pH and Temperature Correction toward More Accurate Sweat Analysis during Sport Practice," Analytical Chemistry, vol. 92, no. 14, s. 10153-10161, 2020.
[36]
W. Ning et al., "Magnetizing lead-free halide double perovskites," Science Advances, vol. 6, no. 45, 2020.
[37]
Y. Guo et al., "Molybdenum and boron synergistically boosting efficient electrochemical nitrogen fixation," Nano Energy, vol. 78, 2020.
[38]
B. Endrodi et al., "Selective electrochemical hydrogen evolution on cerium oxide protected catalyst surfaces," Electrochimica Acta, vol. 341, 2020.
[39]
Y. Liu et al., "Spectroelectrochemical Evidence of Interconnected Charge and Ion Transfer in Ultrathin Membranes Modulated by a Redox Conducting Polymer," Analytical Chemistry, vol. 92, no. 20, s. 14085-14093, 2020.
[40]
K. Xu, M. Cuartero och G. A. Crespo, "Subnanomolar detection of ions using thin voltammetric membranes with reduced Exchange capacity," Sensors and actuators. B, Chemical, vol. 321, 2020.
[41]
S. Ciftci et al., "The sweet detection of rolling circle amplification : Glucose-based electrochemical genosensor for the detection of viral nucleic acid," Biosensors & bioelectronics, vol. 151, 2020.
[42]
Y. Liu et al., "Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences," Analytical Chemistry, vol. 92, no. 4, s. 3315-3323, 2020.
[43]
C. Pérez Ràfols et al., "Why Not Glycine Electrochemical Biosensors?," Sensors, vol. 20, no. 14, 2020.
[44]
M. Cuartero et al., "Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors - an overview of the progress in the last 20 years," The Analyst, vol. 145, no. 9, s. 3188-3210, 2020.
[45]
R. Cánovas et al., "Cytotoxicity Study of Ionophore-Based Membranes : Toward On Body and in Vivo Ion Sensing," ACS Sensors, vol. 4, no. 9, s. 2524-2535, 2019.
[46]
Q. Meng et al., "Efficient BiVO4 Photoanodes by Postsynthetic Treatment : Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification," Angewandte Chemie International Edition, vol. 58, no. 52, s. 19027-19033, 2019.
[47]
M. Cuartero et al., "Ferrocene self assembled monolayer as a redox mediator for triggering ion transfer across nanometer-sized membranes," Electrochimica Acta, vol. 315, s. 84-93, 2019.
[48]
K. Xu, M. Cuartero och G. A. Crespo, "Lowering the limit of detection of ion-selective membranes backside contacted with a film of poly(3-octylthiophene)," Sensors and actuators. B, Chemical, vol. 297, 2019.
[49]
R. Cánovas, M. Cuartero och G. A. Crespo, "Modern creatinine (Bio)sensing : Challenges of point-of-care platforms," Biosensors & bioelectronics, vol. 130, s. 110-124, 2019.
[50]
A. Wiorek et al., "Polyaniline Films as Electrochemical-Proton Pump for Acidification of Thin Layer Samples," Analytical Chemistry, vol. 91, no. 23, s. 14951-14959, 2019.
[51]
B. Endrodi et al., "Selective Hydrogen Evolution on Manganese Oxide Coated Electrodes : New Cathodes for Sodium Chlorate Production," ACS Sustainable Chemistry and Engineering, vol. 7, no. 14, s. 12170-12178, 2019.
[52]
M. Parrilla et al., "Wearable All-Solid-State Potentiometric Microneedle Patch for Intradermal Potassium Detection," Analytical Chemistry, vol. 91, no. 2, s. 1578-1586, 2019.
[53]
M. Parrilla et al., "Wearable Potentiometric Ion Patch for On-Body Electrolyte Monitoring in Sweat : Toward a Validation Strategy to Ensure Physiological Relevance," Analytical Chemistry, vol. 91, no. 13, s. 8644-8651, 2019.
[54]
M. Cuartero, M. Parrilla och G. A. Crespo, "Wearable Potentiometric Sensors for Medical Applications," Sensors, vol. 19, no. 2, 2019.
[55]
M. Parrilla, M. Cuartero och G. A. Crespo, "Wearable potentiometric ion sensors," TrAC. Trends in analytical chemistry, vol. 110, s. 303-320, 2019.
[56]
M. C. Crespi et al., "Agarose hydrogel containing immobilized pH buffer microemulsion without increasing permselectivity," Talanta : The International Journal of Pure and Applied Analytical Chemistry, vol. 177, s. 191-196, 2018.
[57]
M. Cuartero och G. A. Crespo, "All-solid-state potentiometric sensors : A new wave for in situ aquatic research," Current Opinion in Electrochemistry, vol. 10, s. 98-106, 2018.
[58]
M. Cuartero et al., "Electron Hopping between Fe 3d States in Ethynylferrocene-doped Poly(Methyl Methacrylate)-poly(Decyl Methacrylate) Copolymer Membranes," Electroanalysis, vol. 30, no. 4, s. 596-601, 2018.
[59]
T. Paulraj et al., "Porous Cellulose Nanofiber-Based Microcapsules for Biomolecular Sensing," ACS Applied Materials and Interfaces, vol. 10, no. 48, s. 41146-41154, 2018.
[60]
M. Cuartero och G. A. Crespo, "Using Potentiometric Electrodes Based on Nonselective Polymeric Membranes as Potential Universal Detectors for Ion Chromatography : Investigating an Original Research Problem from an Inquiry-Based-Learning Perspective," Journal of Chemical Education, vol. 95, no. 12, s. 2172-2181, 2018.
[61]
M. Cuartero et al., "Electrochemical Mechanism of Ferrocene-Based Redox Molecules in Thin Film Membrane Electrodes," Electrochimica Acta, vol. 238, s. 357-367, 2017.
[62]
N. Pankratova et al., "Fluorinated tripodal receptors for potentiometric chloride detection in biological fluids," Biosensors and Bioelectronics, vol. 99, s. 70-76, 2017.
[63]
M. Cuartero et al., "In Situ Detection of Species Relevant to the Carbon Cycle in Seawater with Submersible Potentiometric Probes," ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, vol. 4, no. 10, s. 410-415, 2017.
[64]
N. Pankratova et al., "In-Line Acidification for Potentiometric Sensing of Nitrite in Natural Waters," Analytical Chemistry, vol. 89, no. 1, s. 571-575, 2017.
[65]
M. Guzinski et al., "PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes : The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times," Analytical Chemistry, vol. 89, no. 6, s. 3508-3516, 2017.
[66]
G. A. Crespo, "Recent Advances in Ion-selective membrane electrodes for in situ environmental water analysis," Electrochimica Acta, vol. 245, s. 1023-1034, 2017.
[67]
R. Athavale et al., "Robust Solid-Contact Ion Selective Electrodes for High-Resolution In Situ Measurements in Fresh Water Systems," ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS, vol. 4, no. 7, s. 286-291, 2017.
[68]
D. J. Yuan et al., "Voltammetric Thin-Layer Ionophore-Based Films : Part 2. Semi-Empirical Treatment," Analytical Chemistry, vol. 89, no. 1, s. 595-602, 2017.
[69]
D. J. Yuan et al., "Voltammetric Thin-Layer lonophore-Based Films : Part 1. Experimental Evidence and Numerical Simulations," Analytical Chemistry, vol. 89, no. 1, s. 586-594, 2017.
[70]
S. Jansod et al., "Alkalinization of Thin Layer Samples with a Selective Proton Sink Membrane Electrode for Detecting Carbonate by Carbonate-Selective Electrodes," Analytical Chemistry, vol. 88, no. 7, s. 3444-3448, 2016.
[71]
M. Cuartero et al., "Electrochemical Ion Transfer with Thin Films of Poly(3-octylthiophene)," Analytical Chemistry, vol. 88, no. 13, s. 6939-6946, 2016.
[72]
M. Cuartero et al., "Evidence of double layer/capacitive charging in carbon nanomaterial-based solid contact polymeric ion-selective electrodes," Chemical Communications, vol. 52, no. 62, s. 9703-6, 2016.
[73]
M. G. Afshar, G. A. Crespo och E. Bakker, "Flow Chronopotentiometry with Ion-Selective Membranes for Cation, Anion, and Polyion Detection," Analytical Chemistry, vol. 88, no. 7, s. 3945-3952, 2016.
[74]
M. Cuartero, G. A. Crespo och E. Bakker, "Ionophore-Based Voltammetric Ion Activity Sensing with Thin Layer Membranes," Analytical Chemistry, vol. 88, no. 3, s. 1654-1660, 2016.
[75]
N. Pankratova et al., "Local Acidification of Membrane Surfaces for Potentiometric Sensing of Anions in Environmental Samples," ACS Sensors, vol. 1, no. 1, s. 48-54, 2016.
[76]
S. Jansod et al., "Phenytoin speciation with potentiometric and chronopotentiometric ion-selective membrane electrodes," Biosensors & bioelectronics, vol. 79, s. 114-120, 2016.
[77]
M. Cuartero, G. A. Crespo och E. Bakker, "Polyurethane Ionophore-Based Thin Layer Membranes for Voltammetric Ion Activity Sensing," Analytical Chemistry, vol. 88, no. 11, s. 5649-5654, 2016.
[78]
D. Yuan et al., "All-Solid-State Potentiometric Sensors with a Multiwalled Carbon Nanotube Inner Transducing Layer for Anion Detection in Environmental Samples," Analytical Chemistry, vol. 87, no. 17, s. 8640-8645, 2015.
[79]
G. A. Crespo et al., "Characterization of Salophen Co(III) Acetate Ionophore for Nitrite Recognition," Electrochimica Acta, vol. 179, s. 16-23, 2015.
[80]
M. G. Afshar, G. A. Crespo och E. Bakker, "Coulometric Calcium Pump for Thin Layer Sample Titrations," Analytical Chemistry, vol. 87, no. 19, s. 10125-10130, 2015.
[81]
S. Jeanneret et al., "GalvaPot, a custom-made combination galvanostat/potentiostat and high impedance potentiometer for decentralized measurements of ionophore-based electrodes," Sensors and actuators. B, Chemical, vol. 207, s. 631-639, 2015.
[82]
R. Athavale et al., "In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes," Analytical Chemistry, vol. 87, no. 24, s. 11990-11997, 2015.
[83]
M. Cuartero, G. A. Crespo och E. Bakker, "Paper-Based Thin-Layer Coulometric Sensor for Halide Determination," Analytical Chemistry, vol. 87, no. 3, s. 1981-1990, 2015.
[84]
N. Pankratova et al., "Potentiometric sensing array for monitoring aquatic systems," Environmental Science : Processes & Impacts, vol. 17, no. 5, s. 906-914, 2015.
[85]
M. Cuartero, G. A. Crespo och E. Bakker, "Tandem Electrochemical Desalination-Potentiometric Nitrate Sensing for Seawater Analysis," Analytical Chemistry, vol. 87, no. 16, s. 8084-8089, 2015.
[86]
M. G. Afshar et al., "Thin Layer Coulometry of Nitrite with Ion-Selective Membranes," Electroanalysis, vol. 27, no. 3, s. 609-615, 2015.
[87]
G. A. Crespo, M. Cuartero och E. Bakker, "Thin Layer Ionophore-Based Membrane for Multianalyte Ion Activity Detection," Analytical Chemistry, vol. 87, no. 15, s. 7729-7737, 2015.
[88]
M. Cuartero, G. A. Crespo och E. Bakker, "Thin Layer Samples Controlled by Dynamic Electrochemistry," CHIMIA, vol. 69, no. 4, s. 203-206, 2015.
[89]
M. G. Afshar, G. A. Crespo och E. Bakker, "Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection," Angewandte Chemie International Edition, vol. 54, no. 28, s. 8110-8113, 2015.
[90]
D. Dorokhin et al., "A low-cost thin layer coulometric microfluidic device based on an ion-selective membrane for calcium determination," The Analyst, vol. 139, no. 1, s. 48-51, 2014.
[91]
T. Guinovart et al., "A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements," Analytica Chimica Acta, vol. 821, s. 72-80, 2014.
[92]
B. Neel et al., "Camping Burner-Based Flame Emission Spectrometer for Classroom Demonstrations," Journal of Chemical Education, vol. 91, no. 10, s. 1655-1660, 2014.
[93]
Z. Jarolimova et al., "Chronopotentiometric Carbonate Detection with All-Solid-State lonophore-Based Electrodes," Analytical Chemistry, vol. 86, no. 13, s. 6307-6314, 2014.
[94]
G. A. Crespo, M. G. Afshar och E. Bakker, "Chronopotentiometry of pure electrolytes with anion-exchange donnan exclusion membranes," Journal of Electroanalytical Chemistry, vol. 731, s. 100-106, 2014.
[95]
M. G. Afshar, G. A. Crespo och E. Bakker, "Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis," Biosensors & bioelectronics, vol. 61, s. 64-69, 2014.
[96]
M. G. Afshar et al., "Direct Alkalinity Detection with Ion-Selective Chronopotentiometry," Analytical Chemistry, vol. 86, no. 13, s. 6461-6470, 2014.
[97]
E. Bakker et al., "Environmental Sensing of Aquatic Systems at the University of Geneva," CHIMIA, vol. 68, no. 11, s. 772-777, 2014.
[98]
M. Cuartero et al., "Exhaustive Thin-Layer Cyclic Voltammetry for Absolute Multianalyte Halide Detection," Analytical Chemistry, vol. 86, no. 22, s. 11387-11395, 2014.
[99]
X. Xie et al., "Ionophore-Based Ion-Selective Optical NanoSensors Operating in Exhaustive Sensing Mode," Analytical Chemistry, vol. 86, no. 17, s. 8770-8775, 2014.
[100]
B. Neel et al., "Nitrite-Selective Electrode Based On Cobalt( II) tert-ButylSalophen Ionophore," Electroanalysis, vol. 26, no. 3, s. 473-480, 2014.
[101]
X. Xie et al., "Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane," Nature Chemistry, vol. 6, no. 3, s. 202-207, 2014.
[102]
X. Xie et al., "Potassium-selective optical microsensors based on surface modified polystyrene microspheres," Chemical Communications, vol. 50, no. 35, s. 4592-4595, 2014.
[103]
G. A. Crespo et al., "Thin Layer Coulometry Based on Ion-Exchanger Membranes for Heparin Detection in Undiluted Human Blood," Analytical Chemistry, vol. 86, no. 3, s. 1357-1360, 2014.
[104]
Z. Jarolimova et al., "All solid state chronopotentiometric ion-selective electrodes based on ferrocene functionalized PVC," Journal of Electroanalytical Chemistry, vol. 709, s. 118-125, 2013.
[105]
E. Bakker et al., "Detecting Heparin in Whole Blood for Point of Care Anticoagulation Control During Surgery," CHIMIA, vol. 67, no. 5, 2013.
[106]
G. A. Crespo och E. Bakker, "Dynamic electrochemistry with ionophore based ion-selective membranes," RSC Advances, vol. 3, no. 48, s. 25461-25474, 2013.
[107]
M. Soleimani et al., "High-Selective Tramadol Sensor Based on Modified Molecularly Imprinted Polymer-Carbon Paste Electrode with Multiwalled Carbon Nanotubes," Electroanalysis, vol. 25, no. 5, s. 1159-1168, 2013.
[108]
X. Xie, G. A. Crespo och E. Bakker, "Oxazinoindolines as Fluorescent H+ Turn-On Chromoionophores For Optical and Electrochemical Ion Sensors," Analytical Chemistry, vol. 85, no. 15, s. 7434-7440, 2013.
[109]
M. Pawlak et al., "PVC-Based Ion-Selective Electrodes with Enhanced Biocompatibility by Surface Modification with "Click" Chemistry," Electroanalysis, vol. 25, no. 8, s. 1840-1846, 2013.
[110]
G. Mistlberger et al., "Photoresponsive Ion Extraction/Release Systems : Dynamic Ion Optodes for Calcium and Sodium Based on Photochromic Spiropyran," Analytical Chemistry, vol. 85, no. 5, s. 2983-2990, 2013.
[111]
E. Grygolowicz-Pawlak et al., "Potentiometric Sensors with Ion-Exchange Donnan Exclusion Membranes," Analytical Chemistry, vol. 85, no. 13, s. 6208-6212, 2013.
[112]
T. Guinovart et al., "Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes," The Analyst, vol. 138, no. 18, s. 5208-5215, 2013.
[113]
G. A. Crespo, M. G. Afshar och E. Bakker, "Direct Detection of Acidity, Alkalinity, and pH with Membrane Electrodes," Analytical Chemistry, vol. 84, no. 23, s. 10165-10169, 2012.
[114]
M. G. Afshar, G. A. Crespo och E. Bakker, "Direct Ion Speciation Analysis with Ion-Selective Membranes Operated in a Sequential Potentiometric/Time Resolved Chronopotentiometric Sensing Mode," Analytical Chemistry, vol. 84, no. 20, s. 8813-8821, 2012.
[115]
G. A. Crespo, G. Mistlberger och E. Bakker, "Electrogenerated Chemiluminescence for Potentiometric Sensors," Journal of the American Chemical Society, vol. 134, no. 1, s. 205-207, 2012.
[116]
G. A. Crespo och E. Bakker, "Ionophore-based ion optodes without a reference ion : electrogenerated chemiluminescence for potentiometric sensors," The Analyst, vol. 137, no. 21, s. 4988-4994, 2012.
[117]
G. Kerric et al., "Nanostructured assemblies for ion-sensors : functionalization of multi-wall carbon nanotubes with benzo-18-crown-6 for Pb2+ determination," Journal of Materials Chemistry, vol. 22, no. 32, s. 16611-16617, 2012.
[118]
M. Novell et al., "Paper-Based Ion-Selective Potentiometric Sensors," Analytical Chemistry, vol. 84, no. 11, s. 4695-4702, 2012.
[119]
G. Mistlberger et al., "Photodynamic ion sensor systems with spiropyran : photoactivated acidity changes in plasticized poly(vinyl chloride)," Chemical Communications, vol. 48, no. 45, s. 5662-5664, 2012.
[120]
G. A. Crespo, M. G. Afshar och E. Bakker, "Reversible Sensing of the Anticoagulant Heparin with Protamine Permselective Membranes," Angewandte Chemie International Edition, vol. 51, no. 50, s. 12575-12578, 2012.
[121]
J. Sa et al., "The oxidation state of copper in bimetallic (Pt-Cu, Pd-Cu) catalysts during water denitration," Catalysis Science & Technology, vol. 2, no. 4, s. 794-799, 2012.
[122]
G. A. Crespo, G. Mistlberger och E. Bakker, "Towards Ion-Selective Membranes with Electrogenerated Chemiluminescence Detection : Visualizing Selective Ru(bpy)(3)(2+) Transport Across a Plasticized Poly(vinyl chloride) Membrane," Electroanalysis, vol. 24, no. 1, s. 61-68, 2012.
[123]
E. Bakker et al., "Advancing Membrane Electrodes and Optical Ion Sensors," CHIMIA, vol. 65, no. 3, s. 141-149, 2011.
[124]
E. J. Parra et al., "An effective nanostructured assembly for ion-selective electrodes : An ionophore covalently linked to carbon nanotubes for Pb2+ determination," Chemical Communications, vol. 47, no. 8, s. 2438-2440, 2011.
[125]
G. A. Crespo, G. Mistlberger och E. Bakker, "Electrogenerated chemiluminescence triggered by electroseparation of Ru(bpy)(3)(2+) across a supported liquid membrane," Chemical Communications, vol. 47, no. 42, s. 11644-11646, 2011.
[126]
A. Duezguen et al., "Nanostructured materials in potentiometry," Analytical and Bioanalytical Chemistry, vol. 399, no. 1, s. 171-181, 2011.
[127]
F. Xavier Rius-Ruiz et al., "Potentiometric Strip Cell Based on Carbon Nanotubes as Transducer Layer : Toward Low-Cost Decentralized Measurements," Analytical Chemistry, vol. 83, no. 22, s. 8810-8815, 2011.
[128]
A. P. Washe et al., "Potentiometric Online Detection of Aromatic Hydrocarbons in Aqueous Phase Using Carbon Nanotube-Based Sensors," Analytical Chemistry, vol. 82, no. 19, s. 8106-8112, 2010.
[129]
J. Ampurdanes et al., "Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes," Biosensors & bioelectronics, vol. 25, no. 2, s. 344-349, 2009.
[130]
E. J. Parra et al., "Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate," The Analyst, vol. 134, no. 9, s. 1905-1910, 2009.
[131]
G. A. Crespo et al., "Solid-contact pH-selective electrode using multi-walled carbon nanotubes," Analytical and Bioanalytical Chemistry, vol. 395, no. 7, s. 2371-2376, 2009.
[132]
G. A. Crespo et al., "Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes," Analytical Chemistry, vol. 81, no. 2, s. 676-681, 2009.
[133]
G. A. Crespo, S. Macho och F. Xavier Rius, "Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers," Analytical Chemistry, vol. 80, no. 4, s. 1316-1322, 2008.
[134]
G. A. Crespo et al., "Kinetic method for the determination of trace amounts of copper(II) in water matrices by its catalytic effect on the oxidation of 1,5-diphenylcarbazide," Analytica Chimica Acta, vol. 539, no. 1-2, s. 317-325, 2005.
Kapitel i böcker
[135]
G. Mistlberger, G. A. Crespo och E. Bakker, "Ionophore-based optical sensors," i Ionophore-Based Optical Sensors, Annual Review of Analytical Chemistry red., 7. uppl. : ANNUAL REVIEWS, 2014, s. 483-512.
Icke refereegranskade
Artiklar
[136]
X. Xuan et al., "A Wearable Biosensor for Sweat Lactate as a Proxy for Sport Performance Monitoring," Analysis & Sensing, vol. 3, no. 4, 2023.
[137]
T. Paulraj, G. Crespo och A. Svagan, "Cage-like cellulose nanofiber-based microcapsules for electrochemical and biosensor applications," Abstracts of Papers of the American Chemical Society, vol. 256, 2018.
Avhandlingar
[138]
G. A. Crespo, "Solid Contact Ion Selective Electrodes Based on Carbon Nanotubes," Doktorsavhandling Tarragona : Rovira I Virgili, 2010.
Övriga
[139]
S. Sandin et al., "Deactivation and selectivity for the electrochemical ozone production at Ni- and Sb- doped SnO2 / Ti electrodes," (Manuskript).
[140]
[141]
A. Wiorek, M. Cuartero och G. A. Crespo, "Selective Deionization of Thin-Layer Samples using the Tandem Carbon Nanotubes – Polymeric Membranes," (Manuskript).
[142]
Y. Liu, G. A. Crespo och M. Cuartero, "Voltammetric Ion-Selective Electrodes in Thin-Layer Samples : The Case for Absolute Potassium Detection Using Ultrathin Membranes," (Manuskript).
Patent
Patent
[143]
G. A. Crespo, E. Bakker och M. Afshar, "Reversible detection of ions with perm-selective membranes," us WO2014016791A2/A3, 2014.
[144]
G. A. Crespo et al., "Electrodes selective for solid contact ions based on carbon nanotubes," es 2310476B1 (2009-11-17), 2007.
Senaste synkning med DiVA:
2024-12-18 01:01:43