Hoppa till huvudinnehållet
Till KTH:s startsida

Publikationer av Erik Englesson

Refereegranskade

Artiklar

[1]
M. Gamba et al., "Deep Double Descent via Smooth Interpolation," Transactions on Machine Learning Research, vol. 4, 2023.
[2]
E. Englesson, A. Mehrpanah och H. Azizpour, "Logistic-Normal Likelihoods for Heteroscedastic Label Noise," Transactions on Machine Learning Research, vol. 8, 2023.

Konferensbidrag

[3]
A. Mehrpanah, E. Englesson och H. Azizpour, "On Spectral Properties of Gradient-Based Explanation Methods," i Computer Vision – ECCV 2024 - 18th European Conference, Proceedings, 2025, s. 282-299.
[4]
A. Nilsson et al., "Indirectly Parameterized Concrete Autoencoders," i International Conference on Machine Learning, ICML 2024, 2024, s. 38237-38252.
[5]
E. Englesson och H. Azizpour, "Robust Classification via Regression for Learning with Noisy Labels," i Proceedings ICLR 2024 - The Twelfth International Conference on Learning Representations, 2024.
[6]
E. Englesson och H. Azizpour, "Consistency Regularization Can Improve Robustness to Label Noise," i International Conference on Machine Learning (ICML) Workshops, 2021 Workshop on Uncertainty and Robustness in Deep Learning, 2021.
[7]
E. Englesson och H. Azizpour, "Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels," i Proceedings 35th Conference on Neural Information Processing Systems (NeurIPS 2021)., 2021.
[8]
E. Englesson och H. Azizpour, "Efficient Evaluation-Time Uncertainty Estimation by Improved Distillation," i International Conference on Machine Learning (ICML) Workshops, 2019 Workshop on Uncertainty and Robustness in Deep Learning, 2019.

Icke refereegranskade

Avhandlingar

[9]
E. Englesson, "On Label Noise in Image Classification : An Aleatoric Uncertainty Perspective," Doktorsavhandling Stockholm : KTH Royal Institute of Technology, TRITA-EECS-AVL, 2024:45, 2024.
Senaste synkning med DiVA:
2024-12-22 04:35:10