Hoppa till huvudinnehållet
Till KTH:s startsida

Publikationer av Anna Finne Wistrand

Refereegranskade

Artiklar

[9]
T. Ayyachi, D. Pappalardo och A. Finne Wistrand, "Defining the role of linoleic acid in acrylic bone cement," Journal of Applied Polymer Science, vol. 139, no. 25, 2022.
[12]
S. Suliman et al., "Immune-instructive copolymer scaffolds using plant-derived nanoparticles to promote bone regeneration," Inflammation and Regeneration, vol. 42, no. 1, 2022.
[13]
B. Sana, A. Finne Wistrand och D. Pappalardo, "Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems," Materials Today Chemistry, vol. 25, 2022.
[15]
S. Mohamed-Ahmed et al., "Comparison of bone regenerative capacity of donor-matched human adipose–derived and bone marrow mesenchymal stem cells," Cell and Tissue Research, vol. 383, no. 3, s. 1061-1075, 2021.
[23]
T. Fuoco, R. A. Almas och A. Finne Wistrand, "Multipurpose Degradable Physical Adhesive Based on Poly(d,l-lactide-co-trimethylene Carbonate)," Macromolecular Chemistry and Physics, vol. 221, no. 10, 2020.
[28]
T. Fuoco och A. Finne Wistrand, "Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters," POLYMER REVIEWS, vol. 60, no. 1, s. 86-113, 2020.
[31]
D. Pappalardo, T. Mathisen och A. Finne Wistrand, "Biocompatibility of Resorbable Polymers : A Historical Perspective and Framework for the Future," Biomacromolecules, vol. 20, no. 4, s. 1465-1477, 2019.
[34]
T. Fuoco, T. Mathisen och A. Finne Wistrand, "Minimizing the time gap between service lifetime and complete resorption of degradable melt-spun multifilament fibers," Polymer degradation and stability, vol. 163, s. 43-51, 2019.
[35]
T. Fuoco, T. Mathisen och A. Finne Wistrand, "Poly(L-lactide) and Poly(L-lactide-co-trimethylene carbonate) Melt-Spun Fibers : Structure-Processing-Properties Relationship," Biomacromolecules, vol. 20, no. 3, s. 1346-1361, 2019.
[37]
R. -. Ramani-Mohan et al., "Deformation strain is the main physical driver for skeletal precursors to undergo osteogenesis in earlier stages of osteogenic cell maturation," Journal of Tissue Engineering and Regenerative Medicine, vol. 12, no. 3, s. e1474-e1479, 2018.
[39]
A. Ahlinder, T. Fuoco och A. Finne Wistrand, "Medical grade polylactide, copolyesters and polydioxanone : Rheological properties and melt stability," Polymer testing, vol. 72, s. 214-222, 2018.
[41]
T. Fuoco, D. Pappalardo och A. F. Wistrand, "Redox-Responsive Disulfide Cross-Linked PLA-PEG Nanoparticles," Macromolecules, vol. 50, no. 18, s. 7052-7061, 2017.
[42]
J. Fagerland et al., "Template-assisted enzymatic synthesis of oligopeptides from a polylactide chain," Biomacromolecules, vol. 18, no. 12, s. 4271-4280, 2017.
[43]
T. Fuoco, A. Finne-Wistrand och D. Pappalardo, "A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups : From Monomer Design to Editable Porous Scaffolds," Biomacromolecules, vol. 17, no. 4, s. 1383-1394, 2016.
[45]
S. Bartaula-Brevik et al., "Angiogenic and Immunomodulatory Properties of Endothelial and Mesenchymal Stem Cells," Tissue Engineering. Part A, vol. 22, no. 3-4, s. 244-252, 2016.
[48]
J. Fagerland, A. Finne-Wistrand och D. Pappalardo, "Modulating the thermal properties of poly(hydroxybutyrate) by the copolymerization of rac-beta-butyrolactone with lactide," New Journal of Chemistry, vol. 40, no. 9, s. 7671-7679, 2016.
[52]
A. Skodje et al., "Biodegradable polymer scaffolds loaded with low-dose BMP-2 stimulate periodontal ligament cell differentiation," Journal of Biomedical Materials Research. Part A, vol. 103, no. 6, s. 1991-1998, 2015.
[53]
M. A. Yassin et al., "Cell seeding density is a critical determinant for copolymer scaffolds-induced bone regeneration," Journal of Biomedical Materials Research. Part A, vol. 103, no. 11, s. 3649-3658, 2015.
[54]
Y. Sun et al., "Reinforced Degradable Biocomposite by Homogenously Distributed Functionalized Nanodiamond Particles," Macromolecular materials and engineering, vol. 300, no. 4, s. 436-447, 2015.
[56]
J. Undin, A. Finne-Wistrand och A.-C. Albertsson, "Adjustable Degradation Properties and Biocompatibility of Amorphous and Functional Poly(ester-acrylate)-Based Materials," Biomacromolecules, vol. 15, no. 7, s. 2800-2807, 2014.
[59]
T. O. Pedersen et al., "Mesenchymal stem cells induce endothelial cell quiescence and promote capillary formation," Stem Cell Research & Therapy, vol. 5, s. 23, 2014.
[60]
J. Fagerland, A. Finne-Wistrand och K. Numata, "Short One-Pot Chemo-Enzymatic Synthesis of L-Lysine and L-Alanine Diblock Co-Oligopeptides," Biomacromolecules, vol. 15, no. 3, s. 735-743, 2014.
[62]
Z. Xing et al., "Biological Effects of Functionalizing Copolymer Scaffolds with Nanodiamond Particles," Tissue Engineering. Part A, vol. 19, no. 15-16, s. 1783-1791, 2013.
[66]
T. O. Pedersen et al., "Hyperbaric oxygen stimulates vascularization and bone formation in rat calvarial defects," International Journal of Oral and Maxillofacial Surgery, vol. 42, no. 7, s. 907-914, 2013.
[67]
X. Yang, A. Finne-Wistrand och M. Hakkarainen, "Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites," Composites Science And Technology, vol. 86, s. 149-156, 2013.
[68]
J. Fagerland och A. Finne-Wistrand, "Mapping the synthesis and the impact of low molecular weight PLGA-g-PEG on sol-gel properties to design hierarchical porous scaffolds," Journal of polymer research, vol. 21, no. 1, s. 337, 2013.
[69]
[70]
S. Dånmark et al., "Development of a novel microfluidic device for long-term in situ monitoring of live cells in 3-dimensional matrices," Biomedical microdevices (Print), vol. 14, no. 5, s. 885-893, 2012.
[71]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Electroactive Hydrophilic Polylactide Surface by Covalent Modification with Tetraaniline," Macromolecules, vol. 45, no. 2, s. 652-659, 2012.
[74]
D. Pappalardo et al., "Synthetic pathways enables the design of functionalized poly(lactic acid) with pendant mercapto groups," Journal of Polymer Science Part A : Polymer Chemistry, vol. 50, no. 4, s. 792-800, 2012.
[75]
K. Arvidson et al., "Bone regeneration and stem cells," Journal of Cellular and Molecular Medicine, vol. 15, no. 4, s. 718-746, 2011.
[76]
Z. Xing et al., "Comparison of short-run cell seeding methods for poly(L-lactide-co-1,5-dioxepan-2-one) scaffold intended for bone tissue engineering," International Journal of Artificial Organs, vol. 34, no. 5, s. 432-441, 2011.
[77]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Degradable and Electroactive Hydrogels with Tunable Electrical Conductivity and Swelling Behavior," Chemistry of Materials, vol. 23, no. 5, s. 1254-1262, 2011.
[78]
Z. Xing et al., "Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds," Journal of Biomedical Materials Research. Part A, vol. 96A, no. 2, s. 349-357, 2011.
[80]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Facile Synthesis of Degradable and Electrically Conductive Polysaccharide Hydrogels," Biomacromolecules, vol. 12, no. 7, s. 2601-2609, 2011.
[81]
T. Tyson et al., "Functional and highly porous scaffolds for biomedical applications," Macromolecular Bioscience, vol. 11, no. 10, s. 1432-1442, 2011.
[82]
S. B. Idris et al., "Global Gene Expression Profile of Osteoblast-Like Cells Grown on Polyester Copolymer Scaffolds," Tissue Engineering. Part A, vol. 17, no. 21-22, s. 2817-2831, 2011.
[83]
S. Dånmark et al., "In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization," ACTA BIOMATERIALIA, vol. 7, no. 5, s. 2035-2046, 2011.
[85]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Simple Route to Size-Tunable Degradable and Electroactive Nanoparticles from the Self-Assembly of Conducting Coil-Rod-Coil Triblock Copolymers," Chemistry of Materials, vol. 23, no. 17, s. 4045-4055, 2011.
[87]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Versatile Functionalization of Polyester Hydrogels with Electroactive Aniline Oligomers," Journal of Polymer Science Part A : Polymer Chemistry, vol. 49, no. 9, s. 2097-2105, 2011.
[88]
S. Målberg et al., "Bio-Safe Synthesis of Linear and Branched PLLA," Journal of Polymer Science Part A : Polymer Chemistry, vol. 48, no. 5, s. 1214-1219, 2010.
[89]
S. B. Idris et al., "Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering," Journal of bioactive and compatible polymers (Print), vol. 25, no. 6, s. 567-583, 2010.
[90]
[92]
Y. Xue et al., "Growth and differentiation of bone marrow stromal cells on biodegradable polymer scaffolds : An in vitro study," Journal of Biomedical Materials Research - Part A, vol. 95A, no. 4, s. 1244-1251, 2010.
[93]
B. Guo, A. Finne-Wistrand och A.-C. Albertsson, "Molecular Achitecture of electroactive and biodegradable copolymers composed of polyactide and carboxyl-capped aniline trimer," Biomacromolecules, vol. 11, no. 4, s. 855-863, 2010.
[94]
S. Danmark et al., "Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds," Journal of bioactive and compatible polymers (Print), vol. 25, no. 2, s. 207-223, 2010.
[95]
S. B. Idris et al., "Polyester copolymer scaffolds enhance expression of bone markers in osteoblast-like cells," J BIOMED MATER RES PART A, vol. 94A, no. 2, s. 631-639, 2010.
[96]
K. Schander et al., "Response of Bone and Periodontal Ligament Cells to Biodegradable Polymer Scaffolds In Vitro," Journal of bioactive and compatible polymers (Print), vol. 25, no. 6, s. 584-602, 2010.
[97]
J. Undin et al., "Synthesis of Amorphous Aliphatic Polyester-Ether Homo- and Copolymers by Radical Polymerization of Ketene Acetals," Journal of Polymer Science Part A : Polymer Chemistry, vol. 48, no. 22, s. 4965-4973, 2010.
[98]
S. Målberg, A. Finne Wistrand och A.-C. Albertsson, "The environmental influence in enzymatic polymerization of aliphatic polyesters in bulk and aqueous mini-emulsion," Polymer, vol. 51, no. 23, s. 5318-5322, 2010.
[99]
T. Tyson, A. Finne Wistrand och A.-C. Albertsson, "Degradable Porous Scaffolds from Various L-Lactide and Trimethylene Carbonate Copolymers Obtained by a Simple and Effective Method," Biomacromolecules, vol. 10, no. 1, s. 149-154, 2009.
[100]
P. Plikk et al., "Mapping the Characteristics of the Radical Ring-Opening Polymerization of a Cyclic Ketene Acetal Towards the Creation of a Functionalized Polyester," Journal of Polymer Science Part A : Polymer Chemistry, vol. 47, no. 18, s. 4587-4601, 2009.
[102]
A. Stjerndahl et al., "Minimization of residual tin in the controlled Sn(II)octoate-catalyzed polymerization of ε-caprolactone," Journal of Biomedical Materials Research - Part A, vol. 87A, no. 4, s. 1086-1091, 2008.
[103]
[105]
T. Redin et al., "Bulk polymerization of p-dioxanone using a cyclic tin alkoxide as initiator," Journal of Polymer Science Part A : Polymer Chemistry, vol. 45, no. 23, s. 5552-5558, 2007.
[106]
A. Stjerndahl, A. F. Wistrand och A. C. Albertsson, "Industrial utilization of tin-initiated resorbable polymers : synthesis on a large scale with a low amount of initiator residue," Biomacromolecules, vol. 8, no. 3, s. 937-940, 2007.
[107]
A. Finne Wistrand och A.-C. Albertsson, "Tuned mechanical properties achieved by varying polymer structure : Knowledge that generates new materials for tissue engineering," Chinese Journal of Polymer Science, vol. 25, no. 2, s. 113-118, 2007.
[108]
A. Finne Wistrand och A.-C. Albertsson, "The use of polymer design in resorbable colloids," Annual review of materials research (Print), vol. 36, s. 369-395, 2006.
[110]
K. Odelius, A. Finne och A.-C. Albertsson, "Versatile and controlled synthesis of resorbable star-shaped polymers using a spirocyclic tin initiator : Reaction optimization and kinetics," Journal of Polymer Science Part A : Polymer Chemistry, vol. 44, no. 1, s. 596-605, 2006.
[111]
M. Mattioli-Belmonte et al., "Suitable materials for soft tissue reconstruction : In vitro studies of cell-triblock copolymer interactions," Journal of bioactive and compatible polymers (Print), vol. 20, no. 6, s. 509-526, 2005.
[112]
A. Finne och A.-C. Albertsson, "New functionalized polyesters to achieve controlled architectures," Journal of Polymer Science Part A : Polymer Chemistry, vol. 42, no. 3, s. 444-452, 2004.
[113]
A. Finne Wistrand, M. Ryner och A.-C. Albertsson, "Degradable polymers : Design, synthesis and testing," Macromolecular Symposia, vol. 195, s. 241-246, 2003.
[114]
N. Andronova, A. Finne och A.-C. Albertsson, "Fibrillar structure of resorbable microblock copolymers based on 1,5-dioxepan-2-one and epsilon-caprolactone," Journal of Polymer Science Part A : Polymer Chemistry, vol. 41, no. 15, s. 2412-2423, 2003.
[115]
A. Finne och A.-C. Albertsson, "Polyester hydrogels with swelling properties controlled by the polymer architecture, molecular weight, and crosslinking agent," Journal of Polymer Science Part A : Polymer Chemistry, vol. 41, no. 9, s. 1296-1305, 2003.
[116]
A. Finne, . Reema och A.-C. Albertsson, "Use of germanium initiators in ring-opening polymerization of L-lactide," Journal of Polymer Science Part A : Polymer Chemistry, vol. 41, no. 19, s. 3074-3082, 2003.
[117]
A. Finne, N. Andronova och A.-C. Albertsson, "Well-organized phase-separated nanostructured surfaces of hydrophilic/hydrophobic ABA triblock copolymers," Biomacromolecules, vol. 4, no. 5, s. 1451-1456, 2003.
[118]
A. Finne och A.-C. Albertsson, "Controlled synthesis of star-shaped L-lactide polymers using new spirocyclic tin initiators," Biomacromolecules, vol. 3, no. 4, s. 684-690, 2002.

Icke refereegranskade

Artiklar

[120]
K. Gurzawska-Comis et al., "GUIDED BONE REGENERATION IN OSTEOPOROSIS BY PLANT-DERIVED NANOPARTICLES," Tissue Engineering. Part A, vol. 29, no. 11-12, s. 576-577, 2023.

Böcker

[121]
M. Hakkarainen och A. Finne-Wistrand, Update on polylactide based materials. 1. uppl. Shawbury, Shrewsbury, Shropshire : iSmithers, 2011.

Kapitel i böcker

[122]
A.-C. Albertsson et al., "Design and synthesis of different types of poly(lactic acid)/polylactide copolymers," i Poly(lactic acid) : Synthesis, Structures, Properties, Processing, Applications, and End of Life, : Wiley, 2022, s. 45-71.
[123]
A. Finne Wistrand och M. Hakkarainen, "Polylactide :  ," i Handbook of Engineering and Speciality Thermoplastics : Polyethers and Polyesters, S. Thomas and V. P.M. red., Hoboken, NJ, USA : John Wiley & Sons, 2011, s. 349-376.
[124]
A.-C. Albertsson et al., "Design and Syntesis of Different Types of Poly(Lactic acid)," i Poly(Lactic Acid) : Synthesis, Structures, Properties, Processing and Applications, Rafael Auras, Loong-Tak Lim, Susan E. M. Selke, Hideto Tsuji red., : John Wiley & Sons, 2010, s. 43-58.

Patent

Patent

[128]
A. Morales-Lopez, A. Finne Wistrand och K. Marteleur, "Methods of producing and determining propensity for bacterial adhesion to parts for bioprocessing systems," se WO 2024/160524 A1, 2024.
[129]
Á. Morales López, A. Finne Wistrand och K. Marteleur, "Methods of producing and determining cleanability of parts for bioprocessing systems," WO 2024/160524 A1, 2023.
[130]
A. Finne Wistrand, "Aliphatic poly(ester)s with thiol pendant groups," us US10577459 B2 (2020-03-03), 2020.
[131]
"Tissue engineering scaffolds," gb GB2560369A (2020-04-01), 2020.
Senaste synkning med DiVA:
2024-11-18 00:07:53