Publikationer av Anders Lansner
Refereegranskade
Artiklar
[1]
J. Xu et al., "Modeling Cycle-to-Cycle Variation in Memristors for In-Situ Unsupervised Trace-STDP Learning," IEEE Transactions on Circuits and Systems - II - Express Briefs, vol. 71, no. 2, s. 627-631, 2024.
[2]
N. B. Ravichandran, A. Lansner och P. Herman, "Spiking representation learning for associative memories," Frontiers in Neuroscience, vol. 18, 2024.
[3]
D. Wang et al., "A Memristor-Based Learning Engine for Synaptic Trace-Based Online Learning," IEEE Transactions on Biomedical Circuits and Systems, vol. 17, no. 5, s. 1153-1165, 2023.
[4]
M. Jafarian et al., "Cluster Synchronization as a Mechanism of Free Recall in Working Memory Networks," IEEE Open Journal of Control Systems, vol. 2, s. 454-463, 2023.
[5]
A. Lansner, F. Fiebig och P. Herman, "Fast Hebbian plasticity and working memory," Current Opinion in Neurobiology, vol. 83, 2023.
[6]
N. Chrysanthidis et al., "Traces of Semantization, from Episodic to Semantic Memory in a Spiking Cortical Network Model," eNeuro, vol. 9, no. 4, 2022.
[7]
D. Wang et al., "Mapping the BCPNN Learning Rule to a Memristor Model," Frontiers in Neuroscience, vol. 15, 2021.
[8]
F. Fiebig, P. Herman och A. Lansner, "An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity," ENEURO, vol. 7, no. 2, 2020.
[9]
Y. Yang et al., "Optimizing BCPNN Learning Rule for Memory Access," Frontiers in Neuroscience, vol. 14, 2020.
[10]
D. Stathis et al., "eBrainII : a 3 kW Realtime Custom 3D DRAM Integrated ASIC Implementation of a Biologically Plausible Model of a Human Scale Cortex," Journal of Signal Processing Systems, vol. 92, no. 11, s. 1323-1343, 2020.
[11]
N. Chrysanthidis, F. Fiebig och A. Lansner, "Introducing double bouquet cells into a modular cortical associative memory model," Journal of Computational Neuroscience, vol. 47, no. 2-3, s. 223-230, 2019.
[12]
R. H. Martinez Mayorquin, A. Lansner och P. Herman, "Probabilistic associative learning suffices for learning the temporal structure of multiple sequences," PLOS ONE, vol. 14, no. 8, 2019.
[13]
G. Iatropoulos et al., "The language of smell : Connecting linguistic and psychophysical properties of odor descriptors," Cognition, vol. 178, s. 37-49, 2018.
[14]
F. Fiebig och A. Lansner, "A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation," Journal of Neuroscience, vol. 37, no. 1, s. 83-96, 2017.
[15]
G. Iatropoulos et al., "Analysis of Statistics and Semantic Relations of Odor-Describing Words in Written Olfactory Versus Non- Olfactory Contexts," Chemical Senses, vol. 42, no. 2, s. E34-E35, 2017.
[16]
P. Berthet et al., "Functional Relevance of Different Basal Ganglia Pathways Investigated in a Spiking Model with Reward Dependent Plasticity," Frontiers in Neural Circuits, vol. 10, 2016.
[17]
P. J. Tully et al., "Spike-Based Bayesian-Hebbian Learning of Temporal Sequences," PloS Computational Biology, vol. 12, no. 5, 2016.
[18]
A. Mazzoni et al., "Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models," PloS Computational Biology, vol. 11, no. 12, 2015.
[19]
P. Krishnamurthy, G. Silberberg och A. Lansner, "Long-range recruitment of Martinotti cells causes surround suppression and promotes saliency in an attractor network model," Frontiers in Neural Circuits, vol. 9, 2015.
[20]
J. Eriksson et al., "Neurocognitive Architecture of Working Memory," Neuron, vol. 88, no. 1, s. 33-46, 2015.
[21]
B. Vogginger et al., "Reducing the computational footprint for real-time BCPNN learning," Frontiers in Neuroengineering, vol. 9, no. 2, 2015.
[22]
S. Marco et al., "A biomimetic approach to machine olfaction, featuring a very large-scale chemical sensor array and embedded neuro-bio-inspired computation," Microsystem Technologies : Micro- and Nanosystems Information Storage and Processing Systems, vol. 20, no. 4-5, s. 729-742, 2014.
[23]
B. A. Kaplan och A. Lansner, "A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system," Frontiers in Neural Circuits, vol. 8, no. Feb, s. 5, 2014.
[24]
M. A. Petrovici et al., "Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling Platforms," PLOS ONE, vol. 9, no. 10, s. e108590, 2014.
[25]
F. Fiebig och A. Lansner, "Memory consolidation from seconds to weeks : a three-stage neural network model with autonomous reinstatement dynamics," Frontiers in Computational Neuroscience, vol. 8, s. 64, 2014.
[26]
P. Berthet och A. Lansner, "Optogenetic Stimulation in a Computational Model of the Basal Ganglia Biases Action Selection and Reward Prediction Error," PLOS ONE, vol. 9, no. 3, s. e90578, 2014.
[27]
P. Tully, M. Hennig och A. Lansner, "Synaptic and nonsynaptic plasticity approximating probabilistic inference," Frontiers in Synaptic Neuroscience, vol. 6, no. APR, 2014.
[28]
C. Meli och A. Lansner, "A modular attractor associative memory with patchy connectivity and weight pruning," Network, vol. 24, no. 4, s. 129-150, 2013.
[29]
B. Kaplan et al., "Anisotropic connectivity implements motion-basedprediction in a spiking neural network," Frontiers in Computational Neuroscience, 2013.
[30]
M. Schain et al., "Arterial input function derived from pairwise correlations between PET-image voxels," Journal of Cerebral Blood Flow and Metabolism, vol. 33, no. 7, s. 1058-1065, 2013.
[31]
M. Lundqvist, P. Herman och A. Lansner, "Effect of Prestimulus Alpha Power, Phase, and Synchronization on Stimulus Detection Rates in a Biophysical Attractor Network Model," Journal of Neuroscience, vol. 33, no. 29, s. 11817-11824, 2013.
[32]
P. A. Herman, M. Lundqvist och A. Lansner, "Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network," Brain Research, vol. 1536, no. SI, s. 68-87, 2013.
[33]
P. Tully et al., "Probabilistic computation underlying sequence learning in a spiking attractor memory network," BMC Neuroscience, no. 14 (Suppl 1), 2013.
[34]
A. Lansner et al., "Reactivation in Working Memory : An Attractor Network Model of Free Recall," PLOS ONE, vol. 8, no. 8, s. e73776, 2013.
[35]
M. Lundqvist et al., "Stimulus detection rate and latency, firing rates and 1-40Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network model," NeuroImage, vol. 83, s. 458-471, 2013.
[36]
P. Krishnamurthy, G. Silberberg och A. Lansner, "A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses," PLOS ONE, vol. 7, no. 4, s. e30752, 2012.
[37]
P. Berthet, J. Hällgren Kotaleski och A. Lansner, "Action selection performance of a reconfigurable Basal Ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity," Frontiers in Behavioral Neuroscience, vol. 6, s. 65, 2012.
[38]
S. Benjaminsson och A. Lansner, "Nexa : A scalable neural simulator with integrated analysis," Network, vol. 23, no. 4, s. 254-271, 2012.
[39]
M. Lundqvist, P. Herman och A. Lansner, "Variability of spike firing during theta-coupled replay of memories in a simulated attractor network," Brain Research, vol. 1434, s. 152-161, 2012.
[40]
D. Bruederle et al., "A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems," Biological Cybernetics, vol. 104, no. 4-5, s. 263-296, 2011.
[41]
D. N. Silverstein och A. Lansner, "Is attentional blink a byproduct of neocortical attractors?," Frontiers in Computational Neuroscience, vol. 5, 2011.
[42]
B. Auffarth, B. Kaplan och L. Anders, "Map formation in the olfactory bulb by axon guidance of olfactory neurons," Frontiers in Systems Neuroscience, vol. 5, no. 0, 2011.
[43]
S. Benjaminsson, P. Fransson och A. Lansner, "A Novel Model-Free Data Analysis Technique Based on Clustering in a Mutual Information Space : Application to Resting-State fMRI," Frontiers in Systems Neuroscience, vol. 4, s. 34:1-34:8, 2010.
[44]
M. Lundqvist, A. Compte och A. Lansner, "Bistable, Irregular Firing and Population Oscillations in a Modular Attractor Memory Network," PloS Computational Biology, vol. 6, no. 6, s. e1000803, 2010.
[45]
M. Lundqvist, P. Herman och A. Lansner, "Theta and Gamma Power Increases and Alpha/Beta Power Decreases with Memory Load in an Attractor Network Model," Journal of cognitive neuroscience, vol. 23, no. 10, s. 3008-3020, 2010.
[46]
A. Lansner, "Associative memory models : from the cell-assembly theory to biophysically detailed cortex simulations," TINS - Trends in Neurosciences, vol. 32, no. 3, s. 178-186, 2009.
[47]
C. Johansson och A. Lansner, "Implementing Plastic Weights in Neural Networks using Low Precision Arithmetic," Neurocomputing, vol. 72, no. 4-6, s. 968-972, 2009.
[48]
M. Sandström et al., "Modeling the response of a population of olfactory receptor neurons to an odorant," Journal of Computational Neuroscience, vol. 27, s. 337-355, 2009.
[49]
A. Kozlov et al., "Simple cellular and network control principles govern complex patterns of motor behavior," Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 47, s. 20027-20032, 2009.
[50]
M. Djurfeldt et al., "Brain-scale simulation of the neocortex on the IBM Blue Gene/L supercomputer," IBM Journal of Research and Development, vol. 52, no. 1-2, s. 31-41, 2008.
[51]
M. Djurfeldt, Ö. Ekeberg och A. Lansner, "Large-scale modeling - a tool for conquering the complexity of the brain," Frontiers in Neuroinformatics, vol. 2, s. 1-4, 2008.
[52]
A. . K. Kozlov et al., "A hemicord locomotor network of excitatory interneurons : a simulation study," Biological Cybernetics, vol. 96, no. 2, s. 229-243, 2007.
[53]
P. Westermark et al., "A mathematical model of the mitochondrial NADH shuttles and anaplerosis in the pancreatic beta-cell," American Journal of Physiology. Endocrinology and Metabolism, vol. 292, no. 2, s. E373-E393, 2007.
[54]
C. Johansson och A. Lansner, "Imposing Biological Constraints onto an Abstract Neocortical Attractor Network Model," Neural Computation, vol. 19, no. 7, s. 1871-1896, 2007.
[55]
S. Grillner et al., "Modeling a vertebrate motor system : pattern generation, steering and control of body orientation," Progress in Brain Research, vol. 165, s. 221-234, 2007.
[56]
M. Huss et al., "Roles of ionic currents in lamprey CPG neurons : a modeling study," Journal of Neurophysiology, vol. 97, no. 4, s. 2696-2711, 2007.
[57]
M. Sandström, J. Hellgren Kotaleski och A. Lansner, "Scaling effects in a model of the olfactory bulb," Neurocomputing, vol. 70, no. 10-12, s. 1802-1807, 2007.
[58]
R. Brette et al., "Simulation of networks of spiking neurons : A review of tools and strategies," Journal of Computational Neuroscience, vol. 23, no. 3, s. 349-398, 2007.
[59]
C. Johansson och A. Lansner, "Towards Cortex Sized Artificial Neural Systems," Neural Networks, vol. 20, no. 1, s. 48-61, 2007.
[60]
M. Lundqvist et al., "Attractor dynamics in a modular network model of neocortex," Network, vol. 17, no. 3, s. 253-276, 2006.
[61]
M. Lundqvist, M. Rehn och A. Lansner, "Attractor dynamics in a modular network model of the cerebral cortex," Neurocomputing, vol. 69, no. 10-12, s. 1155-1159, 2006.
[62]
C. Johansson, M. Rehn och A. Lansner, "Attractor neural networks with patchy connectivity," Neurocomputing, vol. 69, no. 7-9, s. 627-633, 2006.
[63]
C. Johansson, Ö. Ekeberg och A. Lansner, "Clustering of stored memories in an attractor network with local competition," International Journal of Neural Systems, vol. 16, no. 6, s. 393-403, 2006.
[64]
M. Sandström et al., "The impact of the distribution of isoforms on CaMKII activation," Neurocomputing, vol. 69, no. 10-12, s. 1010-1013, 2006.
[65]
B. Cürüklü och A. Lansner, "A model of the summation pools within the layer 4 (area 17)," Neurocomputing, vol. 65, s. 167-172, 2005.
[66]
E. De Schutter et al., "Biophysically detailed modelling of microcircuits and beyond," TINS - Trends in Neurosciences, vol. 28, no. 10, s. 562-569, 2005.
[67]
R. Yuste et al., "The cortex as a central pattern generator," Nature Reviews Neuroscience, vol. 6, no. 6, s. 477-483, 2005.
[68]
A. Svantesson et al., "A mathematical model of the Pyrosequencing reaction system," Biophysical Chemistry, vol. 110, no. 02-jan, s. 129-145, 2004.
[69]
P. Westermark, J. Hällgren Kotaleski och A. Lansner, "Derivation of a reversible Hill equation with modifiers affecting catalytic properties," WSEAS Transactions on Biology and Biomedicine, vol. 1, s. 91-98, 2004.
[70]
P. Westermark, J. Hällgren Kotaleski och A. Lansner, "Glucose-stimulated insulin secretion - insights from modelling," Recent Research Developments in Biophysics, vol. 3, s. 325-350, 2004.
[71]
M. Rehn och A. Lansner, "Sequence memory with dynamical synapses," Neurocomputing, vol. 58-60, s. 271-278, 2004.
[72]
P. Westemark och A. B. Lansner, "A model of phosphofructokinase and glycolytic oscillations in the pancreatic beta-cell," Biophysical Journal, vol. 85, no. 1, s. 126--139, 2003.
[73]
A. Sandberg, J. Tegner och A. Lansner, "A working memory model based on fast Hebbian learning," Network, vol. 14, no. 4, s. 789-802, 2003.
[74]
A. Kozlov, A. Lansner och S. Grillner, "Burst dynamics under mixed NMDA and AMPA drive in the models of the lamprey spinal CPG," Neurocomputing, vol. 52-54, s. 65-71, 2003.
[75]
A. Lansner, E. Fransén och A. Sandberg, "Cell assembly dynamics in detailed and abstract attractor models of cortical associative memory," Theory in biosciences, vol. 122, no. 1, s. 19-36, 2003.
[76]
D. Eriksson et al., "Effects of short-term synaptic plasticity in a local microcircuit on cell firing," Neurocomputing, vol. 52-54, s. 7-12, 2003.
[77]
M. Huss et al., "Role of A-current in lamprey locomotor network neurons," Neurocomputing, vol. 52-54, s. 295-300, 2003.
[78]
A. Sandberg et al., "A Bayesian attractor network with incremental learning," Network, vol. 13, no. 2, s. 179-194, 2002.
[79]
A. K. Kozlov et al., "Mechanisms for lateral turns in lamprey in response to descending unilateral commands : a modeling study," Biological Cybernetics, vol. 86, no. 1, s. 1-14, 2002.
[80]
A. Sandberg och A. Lansner, "Synaptic depression as an intrinsic driver of reinstatement dynamics in an attractor network," Neurocomputing, vol. 44, s. 615-622, 2002.
[81]
N. Wahlgren och A. Lansner, "Biological evaluation of a Hebbian-Bayesian learning rule," Neurocomputing, vol. 38, s. 433-438, 2001.
[82]
A. Kozlov et al., "Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG : Consequences for network pattern generation," Journal of Computational Neuroscience, vol. 11, no. 2, s. 183-200, 2001.
[83]
A. Sandberg, A. Lansner och K. M. Petersson, "Selective enhancement of recall through plasticity modulation in an autoassociative memory," Neurocomputing, vol. 38, s. 867-873, 2001.
[84]
A. Sandberg et al., "A palimpsest memory based on an incremental Bayesian learning rule," Neurocomputing, vol. 32, s. 987-994, 2000.
[85]
R. Orre et al., "Bayesian neural networks with confidence estimations applied to data mining," Computational Statistics & Data Analysis, vol. 34, no. 4, s. 473-493, 2000.
[86]
A. Bjorklund, A. Lansner och V. E. Grill, "Glucose-induced Ca2+ (i) abnormalities in human pancreatic islets - Important role of overstimulation," Diabetes, vol. 49, no. 11, s. 1840-1848, 2000.
[87]
A. Kozlov et al., "Modeling of plasticity of the synaptic connections in the lamprey spinal CPG - consequences for network behavior," Neurocomputing, vol. 32, s. 441-446, 2000.
[88]
J. Hellgren Kotaleski, S. Grillner och A. Lansner, "Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey I. : Segmental oscillations dependent on reciprocal inhibition," Biological Cybernetics, vol. 81, no. 4, s. 317-330, 1999.
[89]
J. Hellgren Kotaleski, A. Lansner och S. Grillner, "Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey II. : Hemisegmental oscillations produced by mutually coupled excitatory neurons," Biological Cybernetics, vol. 81, no. 4, s. 299-315, 1999.
[90]
M. Djurfeldt et al., "See-A framework for simulation of biologically detailed and artificial neural networks and systems," Neurocomputing, vol. 26-27, s. 997-1003, 1999.
[91]
E. Fransén och A. Lansner, "A model of cortical associative memory based on a horizontal network of connected columns," Network, vol. 9, no. 2, s. 235-264, 1998.
[92]
M. Ullström et al., "Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.," Biological Cybernetics, vol. 79, no. 1, s. 1-14, 1998.
[93]
T. Wadden et al., "Intersegmental coordination in the lamprey : Simulations using a network model without segmental boundaries," Biological Cybernetics, vol. 76, no. 1, s. 1-9, 1997.
[94]
J. Tegner et al., "Low-voltage-activated calcium channels in the lamprey locomotor network : Simulation and experiment," Journal of Neurophysiology, vol. 77, no. 4, s. 1795-1812, 1997.
[95]
Ö. Ekeberg, S. Grillner och A. Lansner, "The Neural Control of Fish Swimming studied through Numerical Simulations," Adaptive Behavior, vol. 3, no. 4, s. 363-384, 1995.
Konferensbidrag
[96]
D. Wang et al., "FPGA-Based HPC for Associative Memory System," i 29TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC 2024, 2024, s. 52-57.
[97]
N. B. Ravichandran, A. Lansner och P. Herman, "Brain-like Combination of Feedforward and Recurrent Network Components Achieves Prototype Extraction and Robust Pattern Recognition," i Lecture Notes in Computer Science, 2023, s. 488-501.
[98]
N. B. Ravichandran, A. Lansner och P. Herman, "Brain-like combination of feedforward and recurrentnetwork components achieves prototype extraction androbust pattern recognition," i Lecture Notes in Computer Science, 2023.
[99]
P. Pereira, A. Lansner och P. Herman, "Incremental Attractor Neural Network Modelling of the Lifespan Retrieval Curve," i 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022.
[100]
D. Wang et al., "Memristor-Based In-Circuit Computation for Trace-Based STDP," i 2022 Ieee International Conference On Artificial Intelligence Circuits And Systems (Aicas 2022) : Intelligent Technology In The Post-Pandemic Era, 2022, s. 1-4.
[101]
J. Xu et al., "A Memristor Model with Concise Window Function for Spiking Brain-Inspired Computation," i 3rd IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS, 2021.
[102]
D. Stathis et al., "Approximate computation of post-synaptic spikes reduces bandwidth to synaptic storage in a model of cortex," i PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, s. 685-688.
[103]
N. B. Ravichandran, A. Lansner och P. Herman, "Brain-Like Approaches to Unsupervised Learning of Hidden Representations - A Comparative Study," i Artificial Neural Networks And Machine Learning, ICANN 2021, Pt V, 2021, s. 162-173.
[104]
N. B. Ravichandran, A. Lansner och P. Herman, "Semi-supervised learning with Bayesian Confidence Propagation Neural Network," i ESANN 2021 Proceedings - 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 2021, s. 441-446.
[105]
A. Podobas et al., "StreamBrain : An HPC Framework for Brain-like Neural Networks on CPUs, GPUs and FPGAs," i ACM International Conference Proceeding Series, 2021.
[106]
L. Liu et al., "A FPGA-based Hardware Accelerator for Bayesian Confidence Propagation Neural Network," i 2020 IEEE Nordic Circuits and Systems Conference, NORCAS 2020 - Proceedings, 2020.
[107]
G. Villani et al., "Analysis of free recall dynamics of an abstract working memory model," i 2020 American Control Conference (ACC), 2020, s. 2562-2567.
[108]
N. B. Ravichandran, A. Lansner och P. Herman, "Learning representations in Bayesian Confidence Propagation neural networks," i 2020 International joint conference on neural networks (IJCNN), 2020.
[109]
R. H. Martinez Mayorquin et al., "Sequence Disambiguation with Synaptic Traces in Associative Neural Networks," i 28th International Conference on Artificial Neural Networks, ICANN 2019, 2019, s. 793-805.
[110]
N. B. Ravichandran et al., "Pedestrian simulation as multi-objective reinforcement learning," i Proceedings of the 18th International Conference on Intelligent Virtual Agents, IVA 2018, 2018, s. 307-312.
[111]
F. Fiebig och A. Lansner, "Memory Consolidation from Seconds to Weeks Through Autonomous Reinstatement Dynamics in a Three-Stage Neural Network Model," i ADVANCES IN COGNITIVE NEURODYNAMICS (IV), 2015, s. 47-53.
[112]
N. Farahini et al., "A scalable custom simulation machine for the Bayesian Confidence Propagation Neural Network model of the brain," i 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, s. 578-585.
[113]
B. A. Kaplan et al., "Signature of an anticipatory response in area V1 as modeled by a probabilistic model and a spiking neural network," i PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, s. 3205-3212.
[114]
B. A. Kaplan et al., "Signature of an anticipatory response in area VI as modeled by a probabilistic model and a spiking neural network," i 2014 International Joint Conference on Neural Networks (IJCNN), 2014, s. 3205-3212.
[115]
A. Lansner, A. Hemani och N. Farahini, "Spiking brain models : Computation, memory and communication constraints for custom hardware implementation," i 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), 2014, s. 556-562.
[116]
S. Marco et al., "Biologically inspired large scale chemical sensor arrays and embedded data processing," i Smart Sensors, Actuators, And Mems VI, 2013, s. 876303.
[117]
K. Persaud et al., "Reverse Engineering of Nature in the field of Chemical Sensors," i 14th International Meeting on Chemical Sensors - IMCS 2012, 2012.
[118]
J. Fonollosa et al., "Biologically inspired computation for chemical sensing," i Procedia Comput. Sci., 2011, s. 226-227.
[119]
M. Sandström, T. Proschinger och A. Lansner, "A Bulb Model Implementing Fuzzy Coding of Odor Concentration," i Olfaction and Electronic Nose : Proceedings of the 13th International Symposium on Olfaction and Electronic Nose, 2009, s. 159-162.
[120]
A. Lansner, S. Benjaminsson och C. Johansson, "From ANN to Biomimetic Information Processing," i BIOLOGICALLY INSPIRED SIGNAL PROCESSING FOR CHEMICAL SENSING, 2009, s. 33-43.
[121]
M. Djurfeldt och A. Lansner, "Memory capacity in a model of cortical layers II/III," i Neuroinformatics 2008. Stockholm, Sweden. 7 Sep - 9 Sep 2008, 2008.
[122]
C. Johansson, M. Rehn och A. Lansner, "Attractor neural networks with patchy connectivity," i ESANN 2005 Proceedings - 13th European Symposium on Artificial Neural Networks, 2007, s. 429-434.
[123]
C. Johansson och A. Lansner, "A Hierarchical Brain Inspired Computing System," i International Symposium on Nonlinear Theory and its Applications – NOLTA’06, Sep. 11-14, Bologna, Italy, 2006, s. 599-602.
[124]
C. Johansson och A. Lansner, "Attractor Memory with Self-Organizing Input," i Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2006, s. 265-280.
[125]
R. Steinert, M. Rehn och A. Lansner, "Recognition of handwritten digits using sparse codes generated by local feature extraction methods," i ESANN'2006 : 14th European Symposium on Artificial Neural Networks, 2006, s. 161-166.
[126]
E. Fransén et al., "Evaluation of model scalability in parallel neural simulators," i WAM-BAMM*05, 2005.
[127]
C. Johansson och A. Lansner, "Towards cortex sized artificial nervous systems," i KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2004, s. 959-966.
[128]
C. Johansson och A. Lansner, "Towards cortex sized attractor ANN," i BIOLOGICALLY INSPIRED APPROACHES TO ADVANCED INFORMATION TECHNOLOGY, 2004, s. 63-79.
[129]
C. Johansson, P. Raicevic och A. Lansner, "Reinforcement Learning Based on a Bayesian Confidence Propagating Neural Network," i 2003, April 10-11, SAIS-SSLS Joint Workshop, Center for Applied Autonomous Sensor Systems, Örebro, Sweden, 2003.
[130]
C. Johansson, A. Sandberg och A. Lansner, "A Neural Network with Hypercolumns," i In Proc. International Conference on Artificial Neural Networks - ICANN’02, 2002, s. 192-197.
Kapitel i böcker
[131]
A. Lansner och M. Diesmann, "Virtues, Pitfalls, and Methodology of Neuronal Network Modeling and Simulations on Supercomputers," i Computational Systems Neurobiology, Nicolas Le Novére red., : Springer, 2012, s. 283-315.
Icke refereegranskade
Artiklar
[132]
A. Lansner, P. Herman och R. H. Martinez Mayorquin, "Storing long and overlapping sequences in an attractor memory network with Bayesian-Hebbian learning," Journal of Computational Neuroscience, vol. 51, s. S67-S68, 2023.
[133]
N. Chrysanthidis et al., "Semantization of episodic memory in a spiking cortical attractor network model," Journal of Computational Neuroscience, vol. 49, no. SUPPL 1, s. S86-S87, 2021.
[134]
M. Schain et al., "Image derived input function using a multivariate analysis method based on pair-wise correlation between PET-image voxels," Journal of Cerebral Blood Flow and Metabolism, vol. 32, s. S149-S151, 2012.
[135]
S. Benjaminsson och A. Lansner, "Adaptive sensor drift counteraction by a modular neural network," Chemical sensors, vol. 36, no. 1, s. E41-E41, 2011.
[136]
S. Benjaminsson och A. Lansner, "Adaptive sensor drift counteraction by a modular neural network," Neuroscience research, vol. 68, s. E212-E212, 2010.
[137]
S. Marco, A. Lansner och A. Gutierrez Galvez, "Exploratory Analysis of the Rat Olfactory Bulb Activity," Chemical Senses, vol. 31, no. 8, s. E73-E73, 2006.
[138]
J. Hellgren Kotaleski, S. Grillner och A. Lansner, "Computer simulation of the segmental neural network generation locomotion in laprey by using populations of network inteneurons," Biological Cybernetics, vol. 68, s. 1-13, 1992.
Konferensbidrag
[139]
P. Herman och A. Lansner, "Odor recognition framework for evaluating olfactory codes," i 20th Congress of European Chemoreception Research Organization (ECRO-2010), 2011, s. E17-E17.
[140]
A. Lansner, "Modelling the associative memory capabilities of attractor networks with specific reference to cortical olfactory processing," i ISOEN 2005, 2005.
[141]
A. Kozlov et al., "Detailed reduced models excitatory hemi-cord locomotor network lamprey," i Society for Neuroscience's Meeting, New Orleans, LA, USA, November 8-12, 2003 [k-sfn03], 2003.
[142]
B. Cürüclü och A. Lansner, "Quantitative Assessment of the Local and Long-Range Horizontal Connections within the Striate Cortex," i 2nd International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS), special session on 'Biologically Inspired Computer Vision', 2003.
[143]
J. Hellgren Kotaleski, A. Lansner och S. Grillner, "Production of phase lag in chains of neural networks oscillating through an escape mechanism," i Proceedings of the sixth annual conference on Computational neuroscience : trends in research, 1998, s. 65-70.
Kapitel i böcker
[144]
S. Benjaminsson, P. Herman och A. Lansner, "Performance of a computational model of the mammalian olfactory system," i Neuromorphic Olfaction, : CRC Press, 2016, s. 173-211.
[145]
M. Mehta och A. Lansner, "Coordination in Circuits," i Dynamic Coordination in the Brain : From Neurons to Mind, C. Von der Malsburg, C., Phillips W. A., Singer W. red., : MIT Press, 2010, s. 133-148.
[146]
A. Lansner och M. Lundqvist, "Modeling Coordination in the Neocortex at the Microcircuit and Global Network Level," i Dynamic Coordination in the Brain : From Neurons to Mind, von der Malsburg, C., Phillips W. A., Singer W. red., : MIT Press, 2010, s. 83-99.
[147]
A. Lansner, "Cell assemblies," i Encyclopedia of Nonlinear Science, Alwyn Scott red., New York : Routledge, 2005, s. 103-105.
[148]
A. Lansner, "Neural network models," i Encyclopedia of Nonlinear Science, New York : Routledge, 2005, s. 614-616.
Rapporter
[149]
C. Meli och A. Lansner, "A modular attractor associative memory with patchy connectivity and weight pruning," KTH Royal Institute of Technology, TRITA-CSC-CB 2013:01, 2013.
[150]
E. M. Rehn, S. Benjaminsson och A. Lansner, "Event-based Sensor Interface for Supercomputer scale Neural Networks," KTH Royal Institute of Technology, TRITA-CSC-CB, 2012:02, 2012.
[151]
[152]
S. Benjaminsson och A. Lansner, "Extreme scaling of brain simulation on JUGENE," KTH Royal Insitute of Technology, 2011.
[153]
M. Djurfeldt och A. Lansner, "1st INCF Workshop on Large-scale Modeling of the Nervous System," Nature Publishing Group, 2007.
[154]
R. Steinert och A. Lansner, "Towards robust classification of sensor data with drift, using a Two-Layer Bayesian Network," , 2006.
[155]
[156]
M. Djurfeldt et al., "Massively parallel simulation of brain-scale neuronal network models," , Trita-NA-P, 0513, 2005.
[157]
C. Johansson och A. Lansner, "On the Storage Capacity of an Abstract Cortical Model with Silent Hypercolumns," , Trita-NA-P, 0501, 2005.
[158]
C. Johansson och A. Lansner, "BCPNN Implemented with Fixed-Point Arithmetic," , Trita-NA-P, 0403, 2004.
[159]
C. Johansson och A. Lansner, "Mapping of the BCPNN onto Cluster Computers," , TRITA-NA-P, 0305, 2003.
[160]
A. Lansner, "INVESTIGATIONS INTO THE PATIERN PROCESSING CAPABILITIES OF ASSOCIATIVE NETS," Stockholm, Sweden : KTH Royal Institute of Technology, TRITA-NA, 8601, 1986.
Övriga
[161]
Ö. Ekeberg et al., "Computational Brain Science at CST, CSC, KTH," KTH Royal Institute of Technology, 2016.
[162]
[163]
F. Fiebig, P. Herman och A. Lansner, "An Indexing Theory for Working Memory based on Fast Hebbian Plasticity," (Manuskript).
[164]
[165]
M. Huss et al., "Functional roles of ionic currents in lamprey CPG neurons : a model study," (Manuskript).
[166]
N. Chrysanthidis, F. Fiebig och A. Lansner, "Introducing double bouquet cells into a modular cortical associative memory model," (Manuskript).
[167]
S. Benjaminsson, P. Herman och A. Lansner, "Odour discrimination and mixture segmentation in a holistic model of the mammalian olfactory system," (Manuskript).
[168]
M. Sandström, J. Källgren Kotaleski och A. Lansner, "Varying Olfactory Receptor Numbers Give Rise to a Fuzzy Code for Stimulus Concentration.," (Manuskript).
Senaste synkning med DiVA:
2024-11-17 00:24:16