
Slutrapport från CSA:s projekt SAFT

CSA Centre for Sustainable Aviation

(SAFT = Simulation of atmosphere and Air traffic For a quieter environmenT)

1. SAFT – a simulation code for noise mapping

- Outline, Capabilities
- Full Simulation, semi-empirically individual sound sources (Chalmers)
- Alternative atmosphere models/data sources
- Some features
- 2. Case examples
- 3. Conclusions
- 4. SAFT links with running and coming CSA-projects

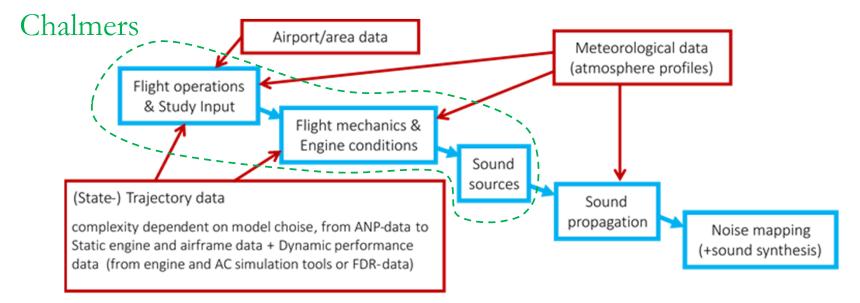
1. SAFT – a simulation code for noise mapping

✓ SAFT - a computer code for aircraft noise mapping of single event aircraft pass by + a CSA-project (2.5 year 2016-2019 ended in June)

▼ Partners: KTH-MWL and Chalmers

Outline

The current SAFT simulation code – single event

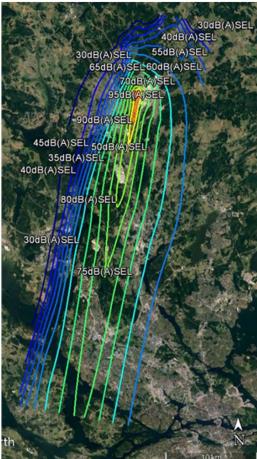

(draft final SAFT report at:

https://www.kth.se/polopoly_fs/1.926212.1568982611!/Slutrapport_SAFT_draftversion1.pdf_)

where:

blue = original work packages which also corresponds to the main blocks in the SAFT computer code

red = user input data


SAFT capabilities:

- v noise time histories in any ground point along a flightpath
- ✓ noise level contour lines on ground for "any" aircraft, i.e. existing and future aircraft, given aircraft/engine performance along a trajectory (ground track + profile)

... by accounting for:

- the **atmospheric profile** ("real weather") by involving SMHI/met.no prognosis data (or other, e.g. simpler standard type profiles)
- sound propagation models, selected within a set of implemented ones of different complexity/accuracy (from "integrated" over "straight rays" to "refracted rays")

Some ongoing initiatives towards simulation methods (or at least a more comprehensive extension of the NPD-data to more than one speed/configuration) can be found in

P. Houtave and J.-P. Clairbois, "Single aircraft pass-by: Modelling relevant noise at ground", in Euronoise 2018, Crete, 2018.

C. Zellman, "Dr.Thesis: Development of an Aircraft Noise Emission Model Accounting for Flight Parameters," Technischen Universität Berlin, Berlin, 2017.

D. Mavris and C. Perullo, "Noise Power Distance Re-Evaluation, FAA Project 043," 2018. https://ascent.aero/documents/2018/06/ascent-043-2017-annual-report.pdf

User screen view when running SAFT interactively:

Decide the type of noise computation n you want to run among the following SAFT run-paths:

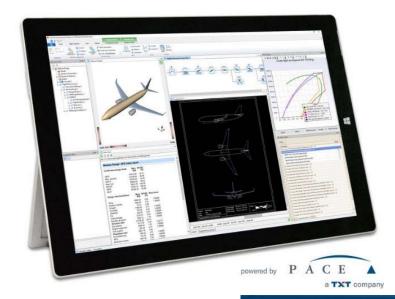
NOISE MAPPING

- -- ECAC Doc.29 integrated-/sound immission model, AC's within the ANP-database Output: Noise Contours --
- 1. Original NPD-data sound immission fix atm./absorp.model SAE-ARP-1845 (Default)
- 2. Atmosphere and absorption adjusted NPD-data sound immission choice of atm./absorp.model follows no refraction
- -- Simulation-/sound emission models Output: Noise and/or Noise Event Time Histories --
- 3. Reversed engineering combined sound source from NPD-SEL and given spectral and directivity data (i.e. merged individual, fan+jet+...) --
- [4. Simulation, total AC-sound sources established from measurements of pass-by noise events. NOT YET IMPLEMENTED!]
- 5. Full Simulation, semi-empirically modelled individual sound sources. AC: A321-V2533 Needs input preparation outside SAFT!!!

DATA PREPARATION - for later use in noise mapping

- -- AROME atmosphere data only, for later use Output: atmosphere profile(s)saved in file --
- 6. Creation of an atmosphere profile for a selected met.no AROME dataset (to be applied in later SAFT-runs)
- -- TL only (no AC involved) for later use Output: TL interpolant matrix saved in file --
- 7. Creation of a Transmission Loss (TL) matrix for a selected atmosphere dataset (to be applied in later SAFT-runs)
- -- Establish an AC sound source sample for later use Output: frequency, directivity, speed- and AC configuration dependent sound source saved in file --
- 8. AC sound source estimate outgoing from sound measurements on ground and related trajectory data (to be applied in later SAFT-runs)

Please give a number between 1 and 8:


SAFT run type:

- -- Simulation-/sound emission models Output: Noise and/or Noise Event Time Histories --
- 5. Full Simulation, semi-empirically modelled individual sound sources. AC: A321-V2533

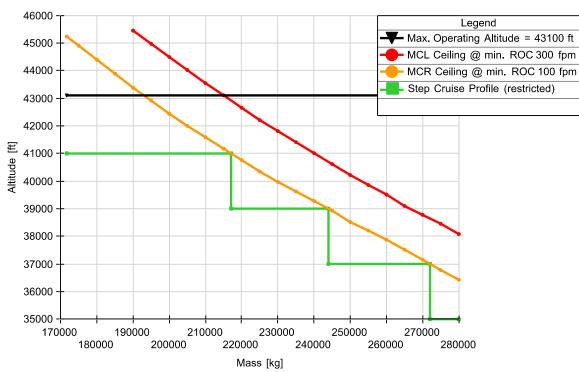
Pacelab APD

- Commercial software for aircraft design
- Supplement with inhouse methods (to be developed)
- We are going in this direction

https://www.txtgroup.com/markets/solutions/pacelab-apd/, cited October 7th, 2019

AIRCRAFT INPUT

- Airbus A350-XWB Pacelab APD model.
- Design requirements:
 - Range 8100 NM
 - 325 PAX
 - Initial cruise at 35,000 ft
 - Climb to 35,000 ft in less than 25 min (TOC M0.84)
 - Air traffic control limits CAS = 250 kts up to 10,000 ft
 - After 10,000 ft climb at optimum CAS = 300 kts
 - Take of field length, 3200 m
 - Landing field length, 1600 m
 - Fuel reserves: 5% contingency fuel, 100NM diversion @20,000 ft, 30 min hold


AIRBUS A350-900 Specifications

oposition:0	
Characteristics	
Wing loading	640.5 kg/m ²
PAX	48J + 277Y
Cruise Mach	0.85
Thrust	
Engine	2 Rolls-Royce XWB-84
Output/Flat Rating	2 x 84,200 lbf / ISA+15 C
Weights	Kg
Max Ramp Weight	280,900
Max TO Weight	280,000
Max Land. Weight	207,000
Max Zero Fuel Weight	195,000
OEW	141,000 (calculated)
Max Payload Structure	54,000
Max Fuel	113,000
Limits	
Ceiling certification	43,100 ft
Max operating Mach	0.89

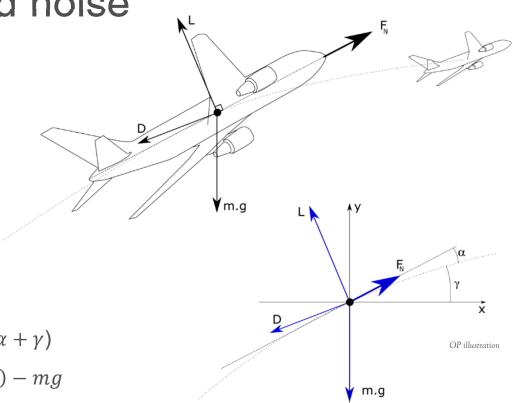
AIRCRAFT ENGINE MATCHING

- Match engine propulsion system
- Update mission specification
- In SAFT we developed a A321-200 model with a V2533-A5 engine
- We used in-house propulsion understanding and discussed aircraft performance assumptions based on current APD-model and Novair expertise

Altitude capabilities

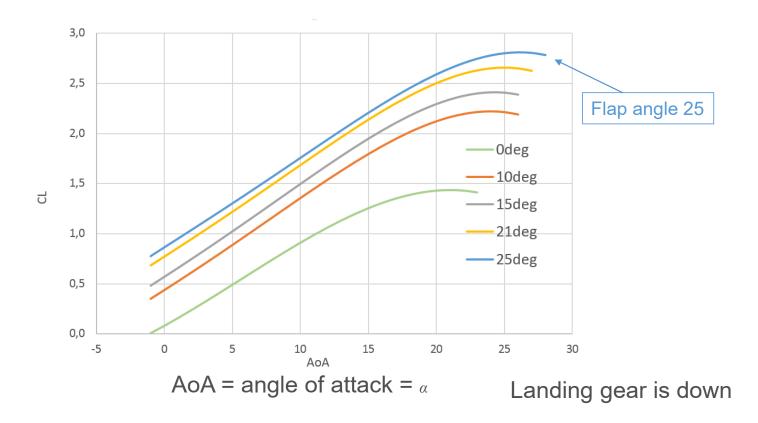
Cruise @ CAS/Mach 320/0.85 | Climb @ CAS/Mach 300/0.84 | ISA Dev. = 0.0 K | FlightLevels = RVSM East

2019-10-15 Chalmers tekniska högskola 10


CHALMERS

Aircraft performance and noise

- To build a simple dynamic aircraft model project forces in x- and y- direction
- Again we simplify by setting the engine orientation in the flight direction.


$$F_{x} = -Lsin\gamma - Dcos\gamma + F_{N}cos(\alpha + \gamma)$$

$$F_{y} = Lcos\gamma - Dsin\gamma + F_{N}sin(\alpha + \gamma) - mg$$

 Lift and drag are obtained from previously derived expressions.

During approach flap settings are changing

- Under normal approach conditions net thrust can be predicted from aerodynamics only
- Climb-out & fly-over are more difficult

ENGINE PERFORMANCE SIMULATION

GESTPAN – General Stationary and Transient Propulsion Analysis

- Zero-dimensional aero-thermodynamic analysis employing discrete component maps
- · Solves for the mass and energy balance between the various engine components

Image courtesy of CFM

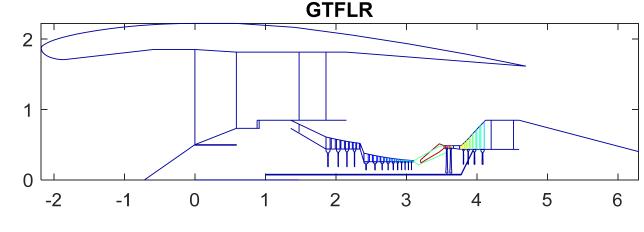
Ability to simulate a wide range of aero-engines as well as industrial gas turbines

Key Capabilities

- Ability to introduce customised (user defined) component characteristics.
- Design, Off design and transient performance calculations

GESTPAN - Interconnected Engine Component Schematic of Turbofan

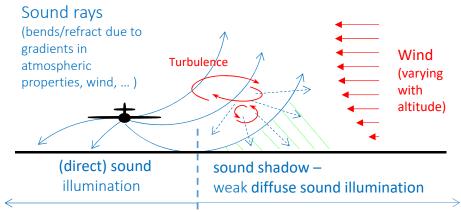
*Grönstedt, T., "Development of Methods for Analysis and Optimization of Complex Jet Engine Systems", PhD Thesis, Department of Thermo and Fluid Dynamics, Chalmers University of Technology, 2000.

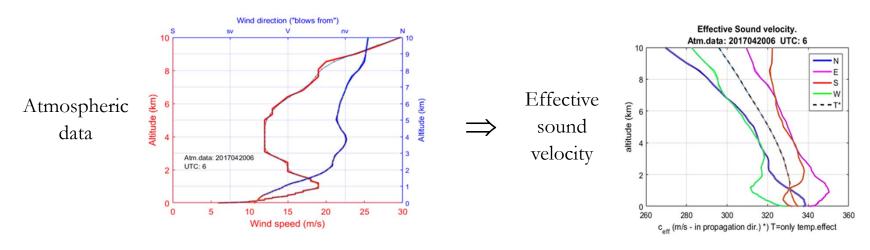

2019-10-15 Chalmers tekniska högskola 13

Bypass duct

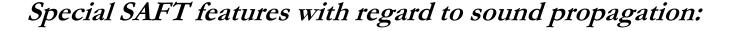
| Protational speed balance | Protational spe

WEIGHT AND DIMENSIONS PREDICTIONS


- Geometry needed to define data in noise sources
- Interesting to cross
 breed these methods
 with estimation based methods planned in follow up project CIDER.
- Turbomachinery flow and blade speeds available to calculate noise sources



SAFT three alternative atmosphere models/data sources:

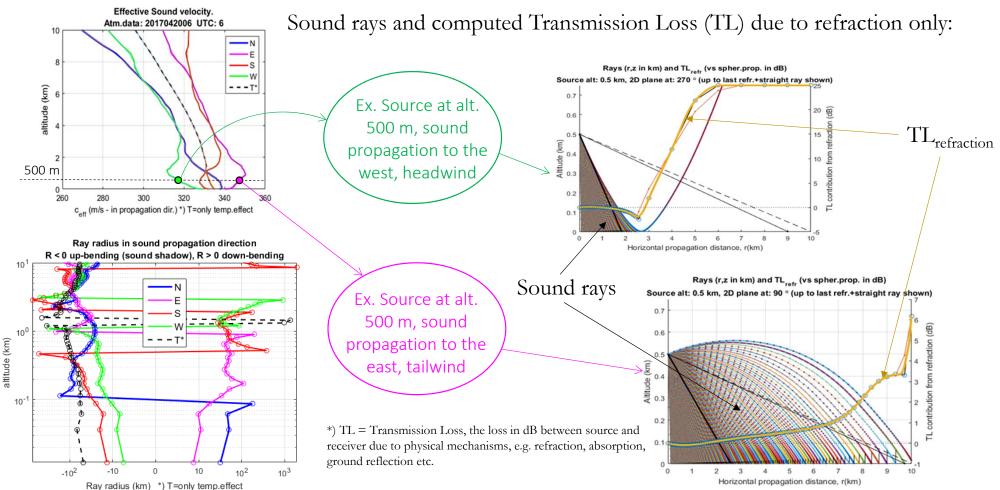

CSA Centre for Sustainable Aviation

- 1. ISA atmosphere + wind
- 2. Typical atmospheres wrt cloud cover, stability, temp + wind as of IMAGINE project
- 3. Forecast data (AROME/met.no/SMHI covering Scandinavia each hour one day ahead, or historical data over years)

Ulf Tengzelius + Tomas Grönstedt/Olivier Petit Slutrapport från CSA:s Projekt SAFT 10 oktober 2019

- Fast: TL-interpolant matrix approach time and lat, long invariant TL matrix used for all trajectory grid points (fcn of source alt, horizontal distance and propagation heading, 0-360°, also emission- and incident angles are interpolated in the same way)
- Simple selection or generation of new ground tracks
- "Automatic" **effective gridding** around any ground track
- Time event analyses possible in any grid point, including sub-division in separate TL contributions based on the physics behind
- ✓ **Direct grid comparisons possible** contours of "∆dB", e.g. between different propagation models, different weather data, different aircraft, procedures,...
- **"Real" weather prognoses** allow for **forecasting noise patterns** including different forecasts with various probability

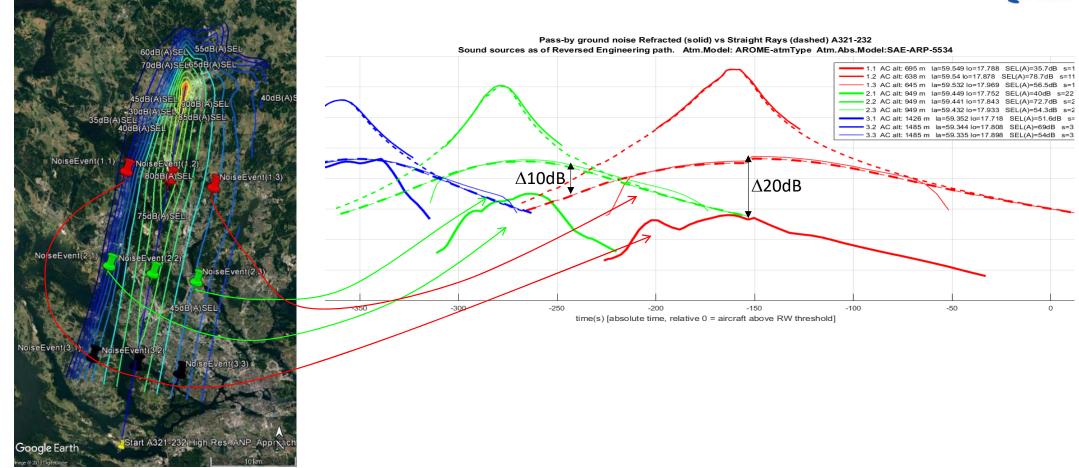
Versatile in terms of possible studies, e.g.


- new aircraft concepts or modification of existing types
- noise prognoses
- verified mew routing and runway use pattern with regard to weather and noise distribution
- value of the planning process for new runways

Due to the easy understanding and running of SAFT:

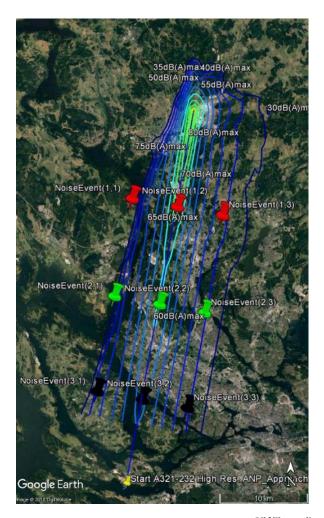
- pedagogical tool in the process of learning about aircraft noise, "ready to run by beginners"
- **supporting knowledge dissemination and cooperation with experts other fields,** such as aeronautics, ATM and emissions

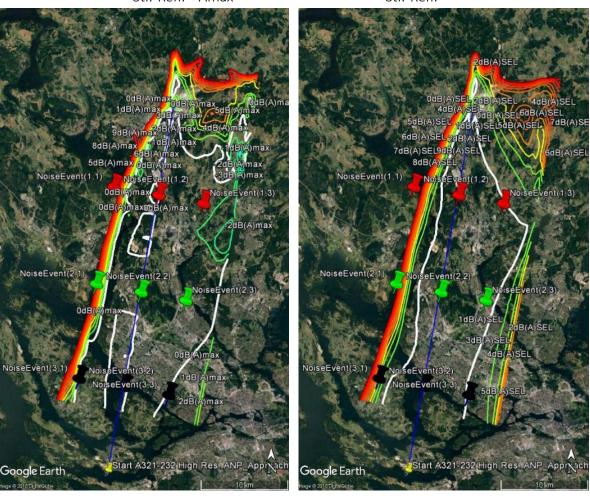
Sound propagation, ray-tracing. Transmission Loss (TL*)



Ulf Tengzelius + Tomas Grönstedt/Olivier Petit Slutrapport från CSA:s Projekt SAFT 10 oktober 2019

2. Case examples

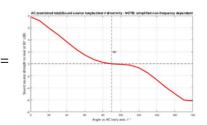

Example Landing in side wind \Rightarrow significant asymmetry for lateral ground positions



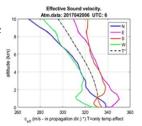
... cont. More sample runs output

$L_{pmax(A)}$ contours (refr.rays)

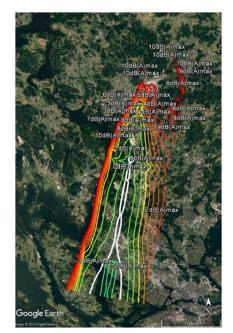
$\begin{array}{ll} \text{Difference (dB) Straight vs Refracted rays model} \\ \Delta \text{dB}_{\text{Str.-Refr.}} \, \text{L}_{\text{Amax}} & \Delta \text{dB}_{\text{Str.-Refr.}} \, \text{SEL(A)} \end{array}$



... cont. More sample runs output

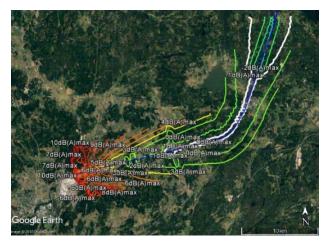

Example runs $\Delta dB_{ECACdoc.29.-Refr.Rays}(L_{Amax})$

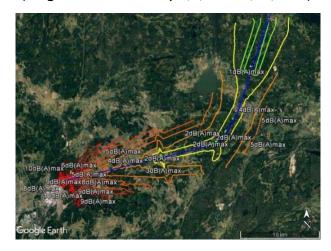
longitudinal directivity 8,0,-6 dB 0,90,180°



(same sample atmosphere data profile as above)

RW011 side wind


(longitudinal directivity 8,0,-6 dB 0,90,180°)


Tendencies in L_{Amax} example:

- **For zero directivity and close to the ground track, similar noise levels** are found for ECAC Doc.29 and simulation methods, both for side- and headwind conditions
- **▼** Further out laterally, difference tend to increase, ECAC Doc.29 overestimate(?)
- For headwind conditions and longitudinal directivity 8,0,-6 dB at 0,90,180° rather large differences also close to the ground track, ECAC Doc.29 tend to overestimate(?)

RW26 headwind (zero directivity)

RW26 headwind (longitudinal directivity 8,0,-6 dB 0,90,180°)



Ulf Tengzelius + Tomas Grönstedt/Olivier Petit Slutrapport från CSA:s Projekt SAFT 10 oktober 2019

... cont. G. More sample runs output

Absorption – examples ECAC Doc29 with different atmosphere data

Comparison SAE AIR1845 and ARP866A $\Delta \rm L_{Amax}\, dB_{1845\text{-}866A}$ sample day atmosphere data

Comparison SAE ARP866A and new ARP5534 $\Delta L_{\text{Amax}}\, \text{dB}_{\text{866A-5534}}\, \text{sample day atmosphere data}$

Comparison ISA atm and sample day atm. (ARP5534) $\Delta L_{\rm Amax}\,dB_{\rm ISA-SMHI}$ sample day atmosphere data

Comparison two sample days atmosphere $\Delta L_{Amax} dB_{'spring'-'summer'}$ (SMHI/ARP5534)

3. Some conclusions from SAFT work wrt traffic scenario/noise modelling

- 1. CPU time for time-stepping aircraft noise simulation is no more any principle obstacle (in contrary to what is expressed in e.g. ECAC Doc29 documents) even for air traffic over longer time spans
- 2. Semi-empirical, physically based, noise source models for airframe and aero-engines is a good tool for looking at trends in noise levels but not yet ready for predicting absolute noise levels, especially for air-traffic involving a large number of AC types and flight conditions.
- 3. The strength of the integrated methods is the NPD-database, covering most active AC-types
- 4. These NPD-data is at the same time one limiting factor of the integrated methods since it only covers a fictive 160-knots + config "full" situation (e.g. due to ECAC Doc29 for SEL a higher speed results in a lower sound level due to the shorter time of the event, though in reality there is a strong opposite effect from speed on noise level instead giving a higher levels both due to higher airframe and engine noise)
- 5. The best suited approach for establishing AC noise sources (freq, directive, config and speed dependent) for a number of aircraft types and conditions would today be noise measurements in combination with a time-stepping code ("back-propagation"), FDR and ADS-B data + meteo/atmospheric profile data.

4. SAFT applications in coming CSA-projects and beyond

A. A new multi-level gridding technique covering Stockholm TMA

CSA Centre for Sustainable Aviation

- B. Establish noise sources for most common aircraft through measurements
 - Cooperation with CSA-project ULLA carrying out aircraft pass-by measurements around Arlanda airport in Stockholm
 - ✓ ULLA-project: Establish aircraft pass-by noise data from several noise measurements stations together with OpenSky* ADS-B trajectory data, validation with FDR-data.

Ulf Tengzelius + Tomas Grönstedt/Olivier Petit Slutrapport från CSA:s Projekt SAFT 10 oktober 2019

*) http://www.opensky-network.org

- ✓ Independent weather resilient measurement stations with: microphone, computer (Raspberry Pi), internet connection and solar power/battery support
- Triggers noise measurement for aircraft movement within certain area supported by OpenSky ADS-B trajectory data
- Together with meteorological data* (atmospheric profile variables) and a time stepping code such as SAFT one have all resources for an aircraft (total) sound source strength estimation as a function frequency and directivity through "back propagation"
- Open matters:
 - variation, uncertainties along complete computational chain?
 - identification of independent variables, thrust, configuration/LG, speed, static pressure and temperature at aircraft altitude, ...?
 - optimal positioning of microphones wrt axial directivity and else?

Price per station ca 500 Euro (commercial equipment ca 20 000!)

Example correlated noise measurement and ADS-B trajectory data

Noise:

Measured noise level from file:

A320_251NSL_4ac9e1_SAS_20190504_202611.323_FAP_7.5nm_approach_dB_G.mat

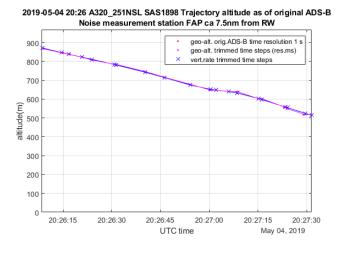
65

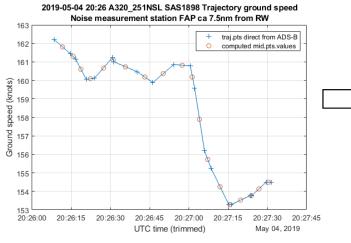
60

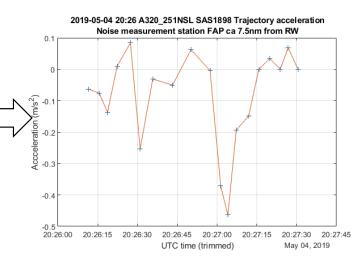
Fast, 0.125 ms
Slow, 1 s

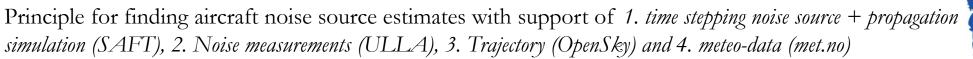
20:26:00 20:26:15 20:26:30 20:26:45 20:27:00 20:27:15 20:27:30 20:27:45
time (s)

May 04, 2019




Below, computed acceleration:


Is this information enough for finding configuration and thrust? (with support of Lift/Drag estimates)


Some ADS-B trajectory data, altitude and ground speed as a fcn of time:

micposULLA5 RW26 Soul

Sound pressure level at ground: $L_p = L_{I,source,i} + TL_{tot}$

Sound source: $L_{I,source,i}(t,f,\mathbb{Z},\mathbb{Z},config,"thrust",Mach no,"AC-type",p(z),T(z),...)$

Transmission Loss: $TL = TL_{Sphere} + TL_{Refr} + TL_{GrRefl} + TL_{AirAtt} + TL_{\rho c}$

Since we have from measurements (green = knowns, red = unknowns):

 $L_{p,mic,i}^{meas} = L_{I,source,i} + TL_{tot}$

.... and from SAFT: $L_{p,mic,i}^{SAFT} = L_{I,source,i}^{SAFT} + TL_{tot}^{SAFT}$

We can get sound source estimates: $\hat{L}_{I,source,i} = L_{p,mic,i}^{meas} - TL_{tot}^{SAFT}$

CSA projects starting 2019/2010:

SAFT development and studies

ODESTA - Optimizing Aircraft Descent for Environmentally Sustainable Aviation, LiU

CIDER - CorrelatIon- and physics based preDiction of noisE scenaRios Chalmers

SAFT studies (+"trimming")

TREVOL - Aircraft Trajectory Analysis for Reduced Environmental Impact KTH

OPNOP - Operational Noise Optimization Huvudsökande: KTH/Vernamack

ERAS - Evaluation of Realistic Approach Scenarios KTH/Vernamack

The end!

A

 C

K